What kind of laws come from urns?

Brigitte CHAUVIN
INRIA Rocquencourt, Projet Algorithms
and
Université de Versailles St-Quentin, LMV

Joint work with Nicolas POUYANNE

Pólya-Eggenberger urns with 2 colours

One urn, red and black balls

Replacement matrix $R=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), a, b, c, d$ integers.
Composition vector $U^{D T}(n)=\binom{$ \# red at time n}{ \# black at time n}$; \quad U^{D T}(0)=\binom{x_{0}}{y_{0}}$

Pólya-Eggenberger urns with 2 colours

Replacement matrix $R=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), a, b, c, d$ integers.
Composition vector $U^{D T}(n)=\binom{$ \# red at time n}{ \# black at time n}$; \quad U^{D T}(0)=\binom{x_{0}}{y_{0}}$

Question: Asymptotics of $U^{D T}(n)$?

References

[1] G. Pólya Sur quelques points de la théorie des probabilités. Ann. Inst. Henri Poincaré 1 (1931), 117-161.
[2] H.M. Mahmoud Pólya urn models. CRC Press, (2008)
[3] S. Janson Functional limit theorem for multitype branching processes and generalized Pólya urns. Stochastic Processes and Applications, 110 (2004), 177-245.
[4] P. Flajolet, J. Gabarró, H. Pekari Analytic urns. Annals of Probability, 33 (3) (2005), 1200-1233.
[5] N. Pouyanne An algebraic approach of Pólya processes (2005). Ann. Inst. Henri Poincaré, Vol. 44, No. 2, 293-323.

Pólya-Eggenberger urns with 2 colours

One urn, red and black balls

Replacement matrix $R=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), a, b, c, d$ integers.
Composition vector $U^{D T}(n)=\binom{$ \# red at time n}{ \# black at time n}$; \quad U^{D T}(0)=\binom{x_{0}}{y_{0}}$

Assumption

Balance: $a+b=c+d:=S$

$$
\# \text { at time } n=x_{0}+y_{0}+S n .
$$

$R=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \sim\left(\begin{array}{cc}S & 0 \\ 0 & m\end{array}\right) \quad m=\sigma S=a-c=d-b$

2 kinds of asymptotics:

- Gaussian: when $\sigma S<\frac{1}{2} S$ "small" urn

$$
\frac{U^{D T}(n)-n v_{1}}{\sqrt{n}} \underset{n \rightarrow \infty}{\stackrel{\mathcal{D}}{\longrightarrow}} \mathcal{N}\left(0, \Sigma^{2}\right)
$$

2 kinds of asymptotics:

- Gaussian: when $\sigma S \leq \frac{1}{2} S \quad$ "small" urn

$$
\frac{U^{D T}(n)-n v_{1}}{\sqrt{n} \sqrt{\log n}} \underset{n \rightarrow \infty}{\stackrel{\mathcal{D}}{\longrightarrow}} \mathcal{N}\left(0, \Sigma^{2}\right)
$$

2 kinds of asymptotics:

- Gaussian: when $\sigma S<\frac{1}{2} S \quad$ "small" urn

$$
\frac{U^{D T}(n)-n v_{1}}{\sqrt{n}} \underset{n \rightarrow \infty}{\stackrel{\mathcal{D}}{\longrightarrow}} \mathcal{N}\left(0, \Sigma^{2}\right)
$$

- non Gaussian: when $\frac{1}{2} S<\sigma S<S$ "large" urn

$$
U^{D T}(n)=n v_{1}+n^{\sigma} W^{D T} v_{2}+o\left(n^{\sigma}\right)
$$

where
v_{1}, v_{2} are deterministic vectors
$W^{D T}$ is a martingale's limit
$o()$ means a.s. and in any $L^{p}, p \geq 1$
the moments of $W^{D T}$ can be recursively calculated.

2 kinds of asymptotics:

- Gaussian: when $\sigma S<\frac{1}{2} S$ "small" urn

$$
\frac{U^{D T}(n)-n v_{1}}{\sqrt{n}} \underset{n \rightarrow \infty}{\stackrel{\mathcal{D}}{\longrightarrow}} \mathcal{N}\left(0, \Sigma^{2}\right)
$$

- non Gaussian: when $\frac{1}{2} S<\sigma S<S$ "large" urn

$$
U^{D T}(n)=n v_{1}+n^{\sigma} W^{D T} v_{2}+o\left(n^{\sigma}\right)
$$

where
v_{1}, v_{2} are deterministic vectors
$W^{D T}$ is a martingale's limit
$o()$ means a.s. and in any $L^{p}, p \geq 1$
the moments of $W^{D T}$ can be recursively calculated.
Goal: distribution of $W^{D T}$

Embedding

Continuous-time Markov process $\left(U^{C T}(t)\right)_{t \geq 0}$
$U^{C T}(0)=\binom{x_{0}}{y_{0}}$.
$\mathcal{E x p}(1)$ clock on each ball; independence of the clocks.
Branching:
\rightarrow if a red ball rings, replace it by $a+1$ red balls and b black balls
\rightarrow if a black ball rings, replace it by c red balls and $d+1$ black balls
$0<\tau_{1}<\cdots<\tau_{n}<\ldots$ are the jump times

$$
\left(U^{C T}\left(\tau_{n}\right)\right)_{n \geq 0} \stackrel{\mathcal{D}}{=}\left(U^{D T}(n)\right)_{n \geq 0}
$$

Embedding

Continuous-time Markov process $\left(U^{C T}(t)\right)_{t \geq 0}$
$U^{C T}(0)=\binom{x_{0}}{y_{0}}$.
$\mathcal{E x p}(1)$ clock on each ball; independence of the clocks.
Branching:
\rightarrow if a red ball rings, replace it by $a+1$ red balls and b black balls
\rightarrow if a black ball rings, replace it by c red balls and $d+1$ black balls
$0<\tau_{1}<\cdots<\tau_{n}<\ldots$ are the jump times

$$
\left(U^{C T}\left(\tau_{n}\right)\right)_{n \geq 0} \stackrel{\mathcal{D}}{=}\left(U^{D T}(n)\right)_{n \geq 0}
$$

Benefit: independence

Outline

Discrete urn $U^{D T}(n)$ $W^{D T}$
\longrightarrow Continuous-time branching process $U^{C T}(t)$ $W^{C T}$

Outline

$\begin{array}{lc}\text { Discrete urn } U^{D T}(n) \\ W^{D T} & \longrightarrow \\ W^{C T}\end{array}$

$$
\text { connection: } W^{C T}=\xi^{\sigma} W^{D T} \quad \text { where } \xi \stackrel{\mathcal{D}}{=} \Gamma\left(\frac{x_{0}+y_{0}}{S}\right)
$$

Outline

$\begin{array}{lc}\text { Discrete urn } U^{D T}(n) \\ W^{D T} & \longrightarrow \\ W^{C T}\end{array}$

$$
\text { connection: } W^{C T}=\xi^{\sigma} W^{D T} \quad \text { where } \xi \stackrel{\mathcal{D}}{=} \Gamma\left(\frac{x_{0}+y_{0}}{S}\right)
$$

Independence properties \downarrow
Dislocation equations on $W^{C T}$

Outline

$\begin{array}{lc}\text { Discrete urn } U^{D T}(n) \\ W^{D T} & \longrightarrow \\ W^{C T}\end{array}$

$$
\text { connection: } W^{C T}=\xi^{\sigma} W^{D T} \quad \text { where } \xi \stackrel{\mathcal{D}}{=} \Gamma\left(\frac{x_{0}+y_{0}}{S}\right)
$$

Independence properties \downarrow
Dislocation equations on $W^{C T}$
\downarrow
Differential system on the Fourier transform of $W^{C T}$

Outline

Discrete urn $U^{D T}(n) \longrightarrow$
$W^{D T}$$\quad \begin{gathered}\text { Continuous-time branching process } U^{C T}(t) \\ W^{C T}\end{gathered}$

$$
\text { connection: } W^{C T}=\xi^{\sigma} W^{D T} \quad \text { where } \xi \stackrel{\mathcal{D}}{=} \Gamma\left(\frac{x_{0}+y_{0}}{S}\right)
$$

Dislocation equations on $W^{C T}$
\downarrow
Differential system on the Fourier transform of $W^{C T}$
\downarrow
Resolution \rightarrow distribution of $W^{C T}$

Outline

Discrete urn $U^{D T}(n) \longrightarrow$
$W^{D T}$$\quad \begin{gathered}\text { Continuous-time branching process } U^{C T}(t) \\ W^{C T}\end{gathered}$ $W^{D T}$ $W^{C T}$

Dislocation equations on $W^{C T}$
\downarrow
Differential system on the Fourier transform of $W^{C T}$
\downarrow
Resolution \rightarrow distribution of $W^{C T}$ (connection) \downarrow

Distribution of $W^{D T}$

Dislocation equations

Simplification of the notations:

$$
\begin{aligned}
X_{t} & :=U^{C T}(t) \text { starting from }\left(x_{0}, y_{0}\right)=(1,0) \\
Y_{t} & :=U^{C T}(t) \text { starting from }\left(x_{0}, y_{0}\right)=(0,1)
\end{aligned}
$$

Dislocation equations

Simplification of the notations:

$$
\begin{aligned}
& X_{t}:=U^{C T}(t) \text { starting from }\left(x_{0}, y_{0}\right)=(1,0) \\
& Y_{t}:=U^{C T}(t) \text { starting from }\left(x_{0}, y_{0}\right)=(0,1)
\end{aligned}
$$

$\forall t>$ first splitting time τ_{1},

$$
\left\{\begin{array}{l}
X_{t} \stackrel{\mathcal{D}}{=}[a+1] X_{t-\tau_{1}}+[b] Y_{t-\tau_{1}} \\
Y_{t} \stackrel{\mathcal{D}}{=}[c] X_{t-\tau_{1}}+[d+1] Y_{t-\tau_{1}},
\end{array}\right.
$$

[] is a notation

Dislocation equations

Simplification of the notations:

$$
\begin{aligned}
X_{t} & :=U^{C T}(t) \text { starting from }\left(x_{0}, y_{0}\right)=(1,0) \\
Y_{t} & :=U^{C T}(t) \text { starting from }\left(x_{0}, y_{0}\right)=(0,1)
\end{aligned}
$$

$\forall t>$ first splitting time τ_{1},

$$
\left\{\begin{array}{l}
X_{t} \stackrel{\mathcal{D}}{=}[a+1] X_{t-\tau_{1}}+[b] Y_{t-\tau_{1}} \\
Y_{t} \stackrel{\mathcal{D}}{=}[c] X_{t-\tau_{1}}+[d+1] Y_{t-\tau_{1}},
\end{array}\right.
$$

[] is a notation
Take projections, renormalize, take the limit, $t \rightarrow+\infty$:

$$
\left\{\begin{array}{l}
W_{(1,0)}^{C T} \stackrel{\text { not }}{=} X \stackrel{\mathcal{D}}{=} e^{-m \tau_{1}}([a+1] X+[b] Y) \\
W_{(0,1)}^{C T} \stackrel{\text { not }}{=} Y \stackrel{\mathcal{D}}{=} e^{-m \tau_{1}}([c] X+[d+1] Y)
\end{array}\right.
$$

Dislocation equations

Simplification of the notations:

$$
\begin{aligned}
X_{t} & :=U^{C T}(t) \text { starting from }\left(x_{0}, y_{0}\right)=(1,0) \\
Y_{t} & :=U^{C T}(t) \text { starting from }\left(x_{0}, y_{0}\right)=(0,1)
\end{aligned}
$$

$\forall t>$ first splitting time τ_{1},

$$
\left\{\begin{array}{l}
X_{t} \stackrel{\mathcal{D}}{=}[a+1] X_{t-\tau_{1}}+[b] Y_{t-\tau_{1}} \\
Y_{t} \stackrel{\mathcal{D}}{=}[c] X_{t-\tau_{1}}+[d+1] Y_{t-\tau_{1}}
\end{array}\right.
$$

[] is a notation
Take projections, renormalize, take the limit, $t \rightarrow+\infty$:

$$
\left\{\begin{array}{l}
W_{(1,0)}^{C T} \stackrel{\text { not }}{=} X \stackrel{\mathcal{D}}{=} e^{-m \tau_{1}}([a+1] X+[b] Y) \\
W_{(0,1)}^{C T} \stackrel{\text { not }}{=} Y \stackrel{\mathcal{D}}{=} e^{-m \tau_{1}}([c] X+[d+1] Y)
\end{array}\right.
$$

Goal: ? distribution of X and Y;

1. If you love Analytic Combinatorics:

Let $\quad a_{n}=\mathbb{E}\left(X^{n}\right) \quad b_{n}=\mathbb{E}\left(Y^{n}\right)$
Let $\quad F(T):=\sum_{n \geq 0} \frac{a_{n}}{n!} T^{n} \quad G(T):=\sum_{n \geq 0} \frac{b_{n}}{n!} T^{n} \quad$ Laplace series

1. If you love Analytic Combinatorics:

Let $\quad a_{n}=\mathbb{E}\left(X^{n}\right) \quad b_{n}=\mathbb{E}\left(Y^{n}\right)$
Let $\quad F(T):=\sum_{n \geq 0} \frac{a_{n}}{n!} T^{n} \quad G(T):=\sum_{n \geq 0} \frac{b_{n}}{n!} T^{n} \quad$ Laplace series
Dislocation equations
Recursion on the moments

1. If you love Analytic Combinatorics:

Let $\quad a_{n}=\mathbb{E}\left(X^{n}\right) \quad b_{n}=\mathbb{E}\left(Y^{n}\right)$
Let $\quad F(T):=\sum_{n \geq 0} \frac{a_{n}}{n!} T^{n} \quad G(T):=\sum_{n \geq 0} \frac{b_{n}}{n!} T^{n} \quad$ Laplace series
Dislocation equations
Recursion on the moments
\downarrow (multinomial formula)

$$
\left\{\begin{array}{l}
F(T)+m T F^{\prime}(T)=F(T)^{a+1} G(T)^{b} \\
G(T)+m T G^{\prime}(T)=F(T)^{c} G(T)^{d+1} \\
+ \text { initial conditions }
\end{array}\right.
$$

2. If you like Probability, too:

Let $\quad \mathcal{F}(x)=\mathbb{E}\left(e^{i x X}\right) \quad \mathcal{G}(x)=\mathbb{E}\left(e^{i x Y}\right)$

2. If you like Probability, too:

Let $\quad \mathcal{F}(x)=\mathbb{E}\left(e^{i x X}\right) \quad \mathcal{G}(x)=\mathbb{E}\left(e^{i x Y}\right)$
Insert in the dislocation equation:

$$
\mathcal{F}(x)=\frac{x}{m x^{1+\frac{1}{m}}} \int_{0}^{x} \mathcal{F}^{a+1}(t) \mathcal{G}^{b}(t) \frac{d t}{t^{1-1 / m}}, \quad(x>0)
$$

2. If you like Probability, too:

Let $\quad \mathcal{F}(x)=\mathbb{E}\left(e^{i x X}\right) \quad \mathcal{G}(x)=\mathbb{E}\left(e^{i x Y}\right)$
Insert in the dislocation equation:

$$
\mathcal{F}(x)=\frac{x}{m x^{1+\frac{1}{m}}} \int_{0}^{x} \mathcal{F}^{a+1}(t) \mathcal{G}^{b}(t) \frac{d t}{t^{1-1 / m}}, \quad(x>0)
$$

Derive:

$$
\left\{\begin{array}{l}
\mathcal{F}(x)+m x \mathcal{F}^{\prime}(x)=\mathcal{F}(x)^{a+1} \mathcal{G}(x)^{b} \\
\mathcal{G}(x)+m x \mathcal{G}^{\prime}(x)=\mathcal{F}(x)^{c} \mathcal{G}(x)^{d+1} \\
+ \text { initial conditions }
\end{array}\right.
$$

2. If you like Probability, too:

Let $\quad \mathcal{F}(x)=\mathbb{E}\left(e^{i x X}\right) \quad \mathcal{G}(x)=\mathbb{E}\left(e^{i x Y}\right)$
Insert in the dislocation equation:

$$
\mathcal{F}(x)=\frac{x}{m x^{1+\frac{1}{m}}} \int_{0}^{x} \mathcal{F}^{a+1}(t) \mathcal{G}^{b}(t) \frac{d t}{t^{1-1 / m}}, \quad(x>0)
$$

Derive:

$$
\left\{\begin{array}{l}
\mathcal{F}(x)+m x \mathcal{F}^{\prime}(x)=\mathcal{F}(x)^{a+1} \mathcal{G}(x)^{b} \\
\mathcal{G}(x)+m x \mathcal{G}^{\prime}(x)=\mathcal{F}(x)^{c} \mathcal{G}(x)^{d+1} \\
+ \text { initial conditions }
\end{array}\right.
$$

Singular in 0

Resolution of the differential system

$$
\left\{\begin{array}{l}
\mathcal{F}(x)+m x \mathcal{F}^{\prime}(x)=\mathcal{F}(x)^{a+1} \mathcal{G}(x)^{b} \\
\mathcal{G}(x)+m x \mathcal{G}^{\prime}(x)=\mathcal{F}(x)^{c} \mathcal{G}(x)^{d+1}
\end{array}\right.
$$

Change of function, with $x^{S}(-S w)^{m}=1$.

$$
\left\{\begin{array}{l}
f(w)=x^{\frac{1}{m}} \mathcal{F}(x) \\
g(w)=x^{\frac{1}{m}} \mathcal{G}(x)
\end{array}\right.
$$

Non singular differential system

$$
(p f 60) \quad\left\{\begin{array}{l}
f^{\prime}=f^{a+1} g^{b} \\
g^{\prime}=f^{c} g^{d+1}
\end{array}\right.
$$

Resolution of the differential system

$$
(p f 60) \quad\left\{\begin{array}{l}
f^{\prime}=f^{a+1} g^{b} \\
g^{\prime}=f^{c} g^{d+1}
\end{array}\right.
$$

First integral:

$$
\frac{1}{g^{m}}-\frac{1}{f^{m}}=\text { Constant }=\frac{1}{\kappa^{m}}
$$

Resolution of the differential system

$$
(p f 60) \quad\left\{\begin{array}{l}
f^{\prime}=f^{a+1} g^{b} \\
g^{\prime}=f^{c} g^{d+1}
\end{array}\right.
$$

First integral:

$$
\frac{1}{g^{m}}-\frac{1}{f^{m}}=\text { Constant }=\frac{1}{\kappa^{m}}
$$

g is a function of f :

$$
g=\frac{f}{\left(1+\left(\frac{f}{\kappa}\right)^{m}\right)^{1 / m}}
$$

Resolution of the differential system

$$
(p f 60) \quad\left\{\begin{array}{l}
f^{\prime}=f^{a+1} g^{b} \\
g^{\prime}=f^{c} g^{d+1}
\end{array}\right.
$$

First integral:

$$
\frac{1}{g^{m}}-\frac{1}{f^{m}}=\text { Constant }=\frac{1}{\kappa^{m}}
$$

g is a function of f :

$$
g=\frac{f}{\left(1+\left(\frac{f}{\kappa}\right)^{m}\right)^{1 / m}}
$$

Insert in (pf60):

$$
\frac{f^{\prime}}{f^{S+1}} \times\left(1+\left(\frac{f}{\kappa}\right)^{m}\right)^{\frac{b}{m}}=1 \quad(+ \text { boundary condition })
$$

Resolution of the differential system (...) $\frac{f^{\prime}}{f^{s+1}} \times\left(1+\left(\frac{f}{k}\right)^{m}\right)^{\frac{b}{m}}=1$ can be written

$$
\frac{d}{d w}\left(I \circ\left(\frac{f}{\kappa}\right)\right)=-\kappa^{S} \quad \text { with } \quad I^{\prime}(z)=-\frac{\left(1+z^{m}\right)^{\frac{b}{m}}}{z^{S+1}} .
$$

Resolution of the differential system (...) $\frac{f^{\prime}}{f^{s+1}} \times\left(1+\left(\frac{f}{k}\right)^{m}\right)^{\frac{b}{m}}=1$ can be written

$$
\begin{gathered}
\frac{d}{d w}\left(I \circ\left(\frac{f}{\kappa}\right)\right)=-\kappa^{S} \quad \text { with } \quad I^{\prime}(z)=-\frac{\left(1+z^{m}\right)^{\frac{b}{m}}}{z^{S+1}} . \\
I(z)=\int_{[z, z \infty)}\left(1+u^{m}\right)^{\frac{b}{m}} \frac{d u}{u^{S+1}}
\end{gathered}
$$

Resolution of the differential system (...) $\frac{f^{\prime}}{f^{S+1}} \times\left(1+\left(\frac{f}{\kappa}\right)^{m}\right)^{\frac{b}{m}}=1$ can be written

$$
\frac{d}{d w}\left(I \circ\left(\frac{f}{\kappa}\right)\right)=-\kappa^{S} \quad \text { with } \quad I^{\prime}(z)=-\frac{\left(1+z^{m}\right)^{\frac{b}{m}}}{z^{S+1}} .
$$

and

$$
\downarrow \quad I(z)=\int_{[z, z \infty)}\left(1+u^{m}\right)^{\frac{b}{m}} \frac{d u}{u^{S+1}}
$$

$I\left(\frac{f(w)}{\kappa}\right)=C_{0}-\kappa^{S} w, \quad$ with C_{0} a negative real constant.

Resolution of the differential system (...) $\frac{f^{\prime}}{f^{S+1}} \times\left(1+\left(\frac{f}{\kappa}\right)^{m}\right)^{\frac{b}{m}}=1$ can be written

$$
\frac{d}{d w}\left(I \circ\left(\frac{f}{\kappa}\right)\right)=-\kappa^{S} \quad \text { with } \quad I^{\prime}(z)=-\frac{\left(1+z^{m}\right)^{\frac{b}{m}}}{z^{S+1}} .
$$

and

$$
\downarrow \quad I(z)=\int_{[z, z \infty)}\left(1+u^{m}\right)^{\frac{b}{m}} \frac{d u}{u^{S+1}}
$$

$I\left(\frac{f(w)}{\kappa}\right)=C_{0}-\kappa^{S} w, \quad$ with C_{0} a negative real constant.

$$
\begin{aligned}
& \downarrow \quad \text { Let } J \text { be the inverse function of } I \\
& f(w)=\kappa J\left(C_{0}-\kappa^{S} w\right)
\end{aligned}
$$

Resolution of the differential system (...) $\frac{f^{\prime}}{f^{s+1}} \times\left(1+\left(\frac{f}{k}\right)^{m}\right)^{\frac{b}{m}}=1$ can be written

$$
\frac{d}{d w}\left(I \circ\left(\frac{f}{\kappa}\right)\right)=-\kappa^{S} \quad \text { with } \quad I^{\prime}(z)=-\frac{\left(1+z^{m}\right)^{\frac{b}{m}}}{z^{S+1}} .
$$

and

$$
\downarrow \quad I(z)=\int_{[z, z \infty)}\left(1+u^{m}\right)^{\frac{b}{m}} \frac{d u}{u^{S+1}}
$$

$I\left(\frac{f(w)}{\kappa}\right)=C_{0}-\kappa^{S} w, \quad$ with C_{0} a negative real constant.
$\downarrow \quad$ Let J be the inverse function of I
$f(w)=\kappa J\left(C_{0}-\kappa^{S} w\right)$

$$
\mathcal{F}(x)=\kappa x^{-\frac{1}{m}} J\left(C_{0}+\frac{\kappa^{S}}{S} x^{-\frac{S}{m}}\right)
$$

Consequences of

$$
\mathcal{F}(x)=\kappa x^{-\frac{1}{m}} J\left(C_{0}+\frac{\kappa^{S}}{S} x^{-\frac{S}{m}}\right)
$$

many...

Consequences of

$$
\mathcal{F}(x)=\kappa x^{-\frac{1}{m}} J\left(C_{0}+\frac{\kappa^{S}}{S} x^{-\frac{S}{m}}\right)
$$

many...
Ex 1:

$$
\mathcal{F}(x) \underset{x \rightarrow+\infty}{\sim} \kappa J\left(C_{0}\right) x^{-\frac{1}{m}}
$$

The Fourier transform of X is not integrable. The existence of a density does not come from there.

Consequences of

$$
\mathcal{F}(x)=\kappa x^{-\frac{1}{m}} J\left(C_{0}+\frac{\kappa^{S}}{S} x^{-\frac{S}{m}}\right)
$$

many...
Ex 1:

$$
\mathcal{F}(x) \underset{x \rightarrow+\infty}{\sim} \kappa J\left(C_{0}\right) x^{-\frac{1}{m}}
$$

The Fourier transform of X is not integrable. The existence of a density does not come from there.

Ex 2:
X is not stable

Proof. Insert the Fourier transform of a stable distribution in the differential equation and see the contradiction.

More on these distributions:

Define more general continuous-time \mathbb{R}^{2}-valued Markov processes.
Initial condition: $\left(x_{0}, y_{0}\right) \in \mathbb{R}_{+} \times \mathbb{R}_{+}$
Activities α and jumps governed by matrix $R=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
State vector $U_{x_{0}, y_{0}, \alpha, R}(t)$,
renormalized \rightarrow martingale

$$
\xrightarrow[t \rightarrow \infty]{\longrightarrow} W_{x_{0}, y_{0}, \alpha, R} \text { with the property: }
$$

for every $n \in \mathbb{N}$,

$$
W_{x_{0}, y_{0}, \alpha, R}=[n] W_{\frac{x_{0}}{n}, \frac{y_{0}}{n}, \alpha, R} .
$$

W is infinitely divisible

More on these distributions:

Define more general continuous-time \mathbb{R}^{2}-valued Markov processes.
Initial condition: $\left(x_{0}, y_{0}\right) \in \mathbb{R}_{+} \times \mathbb{R}_{+}$
Activities α and jumps governed by matrix $R=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
State vector $U_{x_{0}, y_{0}, \alpha, R}(t)$,

$$
\text { renormalized } \rightarrow \text { martingale }
$$

$$
\underset{t \rightarrow \infty}{\longrightarrow} W_{x_{0}, y_{0}, \alpha, R} \text { with the property: }
$$

for every $n \in \mathbb{N}$,

$$
W_{x_{0}, y_{0}, \alpha, R}=[n] W_{\frac{x_{0}}{n}, \frac{y_{0}}{n}, \alpha, R} .
$$

W is infinitely divisible

Remember:

Replacement matrix $R=\left(\begin{array}{cc}9 & 2 \\ 1 & 10\end{array}\right)$
Starting from 1 red ball and 0 black ball;
Figure $=W^{D T}$

Replacement matrix $R=\left(\begin{array}{cc}9 & 2 \\ 1 & 10\end{array}\right)$
Starting from 1 red ball and 1 black ball;
Figure $=W^{D T}$

Replacement matrix $R=\left(\begin{array}{ll}6 & 1 \\ 2 & 5\end{array}\right)$
Starting from 9 red balls and 9 black balls;
Figure $=W^{D T}$

