Prudent self-avoiding walks

Mireille Bousquet-Mélou, CNRS, Bordeaux, France
http://www.labri.fr/~bousquet

+ ArXiv 2008

Self-avoiding walks (SAW)

Conjectures $(d=2)$

- Enumeration: The number of n-step SAW is equivalent to (κ) $\mu^{n} n^{11 / 32}$ for n large.
- Asymptotic properties: The endpoint lies on average at distance $n^{3 / 4}$ from the starting point.
- Limit process: The scaling limit of SAW is SLE $_{8 / 3}$ (proved under an assumption of conformal invariance [Lawler et al. 02])

This is too hard!
... for exact enumeration
\Rightarrow Study of toy models, that should be as general as possible, but still tractable

- develop new techniques in exact enumeration
- solve better and better approximations of real SAW

A toy model: Partially directed walks

- Model: Self-avoiding walks with steps N, W, E

"Markovian with memory 1"
- Enumeration: generating function and asymptotics

$$
\sum_{n} a(n) t^{n}=\frac{1+t}{1-2 t-t^{2}} \Rightarrow a(n) \sim(1+\sqrt{2})^{n} \sim(2.41 \ldots)^{n}
$$

- Asymptotic properties: coordinates of the endpoint

$$
\mathbb{E}\left(\left|X_{n}\right|\right) \sim \sqrt{n}, \quad \mathbb{E}\left(Y_{n}\right) \sim n
$$

I. Prudent self-avoiding walks:

Definition, functional equations

Self-directed walks [Turban-Debierre 86]
Exterior walks [Préa 97]
Outwardly directed SAW [Santra-Seitz-Klein 01]
Prudent walks [Duchi 05], [Dethridge, Guttmann, Jensen 07], [mbm 08]

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

not prudent!

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Remark: Partially directed walks are prudent

A property of prudent walks

A property of prudent walks

The box of a prudent walk

The endpoint of a prudent walk is always on the border of the box

Recursive construction of prudent walks

Each new step either inflates the box or walks (prudently) along the border.

Recursive construction of prudent walks: Where is the endpoint?

- Three more parameters
(catalytic parameters)

- Generating function of prudent walks ending on the top of their box:

$$
T(t ; u, v, w)=\sum_{w} t^{|w|} u^{i(w)} v^{j(w)} w^{h(w)}
$$

Series with three catalytic variables u, v, w

Recursive construction of prudent walks: Where is the endpoint?

- Three more parameters
(catalytic parameters)

- Generating function of prudent walks ending on the top of their box:

$$
\begin{aligned}
&\left(1-\frac{u v w t\left(1-t^{2}\right)}{(u-t v)(v-t u)}\right) T(t ; u, v, w)= \\
& 1+\mathcal{T}(t ; w, u)+\mathcal{T}(t ; w, v)-t v \frac{\mathcal{T}(t ; v, w)}{u-t v}-t u \frac{\mathcal{T}(t ; u, w)}{v-t u}
\end{aligned}
$$

with $\mathcal{T}(t ; u, v)=t v T(t ; u, t u, v)$.

- Generating function of all prudent walks, counted by the length and the half-perimeter of the box:

$$
P(t ; u)=1+4 T(t ; u, u, u)-4 T(t ; 0, u, u)
$$

Simpler families of prudent walks [Préa 97]

- The endpoint of a 3-sided walk lies always on the top, right or left side of the box
- The endpoint of a 2-sided walk lies always on the top or right side of the box
- The endpoint of a 1 -sided walk lies always on the top side of the box $(=$ partially directed!)

Functional equations for prudent walks:

The more general the class, the more additional variables
(Walks ending on the top of the box)

- General prudent walks: three catalytic variables
$\left(1-\frac{u v w t\left(1-t^{2}\right)}{(u-t v)(v-t u)}\right) T(t ; u, v, w)=1+\mathcal{T}(w, u)+\mathcal{T}(w, v)-t v \frac{\mathcal{T}(v, w)}{u-t v}-t u \frac{\mathcal{T}(u, w)}{v-t u}$ with $\mathcal{T}(u, v)=t v T(t ; u, t u, v)$.
- Three-sided walks: two catalytic variables

$$
\left(1-\frac{u v t\left(1-t^{2}\right)}{(u-t v)(v-t u)}\right) T(t ; u, v)=1+\cdots-\frac{t^{2} v}{u-t v} T(t ; t v, v)-\frac{t^{2} u}{v-t u} T(t ; u, t u)
$$

- Two-sided walks: one catalytic variable

$$
\left(1-\frac{t u\left(1-t^{2}\right)}{(1-t u)(u-t)}\right) T(t ; u)=\frac{1}{1-t u}+t \frac{u-2 t}{u-t} T(t ; t)
$$

II. Two-sided prudent walks

Two-sided walks: exact enumeration

Proposition The length generating function of 2-sided walks is:

$$
P(t)=\frac{1}{1-2 t-2 t^{2}+2 t^{3}}\left(1+t-t^{3}+t(1-t) \sqrt{\frac{1-t^{4}}{1-2 t-t^{2}}}\right)
$$

[Duchi 05]

Proofs

- Kernel method applied to

$$
\left\{\begin{aligned}
\left((1-t u)(u-t)-t u\left(1-t^{2}\right)\right) T(t ; u) & =u-t+t(u-2 t)(1-t u) T(t ; t) \\
P(t) & =2 T(t ; 1)-T(t ; 0)
\end{aligned}\right.
$$

- Context-free grammar

Two-sided walks: exact enumeration

Proposition The length generating function of 2-sided walks is:

$$
P(t)=\frac{1}{1-2 t-2 t^{2}+2 t^{3}}\left(1+t-t^{3}+t(1-t) \sqrt{\frac{1-t^{4}}{1-2 t-t^{2}}}\right)
$$

But there He came...

Asymptotic enumeration

Properties of large random objects

Two-sided walks: asymptotic enumeration

- The length generating function of 2-sided walks is

$$
P(t)=\frac{1}{1-2 t-2 t^{2}+2 t^{3}}\left(1+t-t^{3}+t(1-t) \sqrt{\frac{1-t^{4}}{1-2 t-t^{2}}}\right)
$$

- Dominant singularity: a simple pole for $1-2 t-2 t^{2}+2 t^{3}=0$, that is, $t_{c}=0.40303 \ldots$ Asymptotically,

$$
p(n) \sim \kappa(2.48 \ldots)^{n}
$$

Compare with $2.41 \ldots$ for partially directed walks.

Two-sided walks: properties of large random walks (uniform distribution)

- The random variables X_{n}, Y_{n} and D_{n} satisfy

$$
\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(Y_{n}\right) \sim n \quad \mathbb{E}\left(\left(X_{n}-Y_{n}\right)^{2}\right) \sim n, \quad \mathbb{E}\left(D_{n}\right) \sim 4.15 \ldots
$$

Two-sided walks: random generation (uniform distribution)

- Recursive step-by-step construction à la Wilf $\Rightarrow 500$ steps (precomputation of $O\left(n^{2}\right)$ large numbers)

Two-sided walks: random generation (uniform distribution)

500 steps

780 steps

1354 steps

3148 steps

- Recursive step-by-step construction à la Wilf $\Rightarrow 500$ steps (precomputation of $O\left(n^{2}\right)$ large numbers)
- Boltzmann sampling via the context-free grammar [Duchon-Flajolet-Louchard-Schaeffer 02]

$$
\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(Y_{n}\right) \sim n \quad \mathbb{E}\left(\left(X_{n}-Y_{n}\right)^{2}\right) \sim n, \quad \mathbb{E}\left(D_{n}\right) \sim 4.15 \ldots
$$

Another distribution: Kinetic two-sided walks

At time n, the walk chooses one of the admissible steps with uniform probability.
[An admissible step is one that gives a two-sided walk]

Remark: Walks of length n are no longer uniform

$$
\frac{1}{4} \cdot \frac{1}{2} \quad\lfloor
$$

$$
\frac{1}{4} \cdot \frac{1}{3}
$$

Another distribution: Kinetic two-sided walks

500 steps

1000 steps

5000 steps

10000 steps

- Random generation: Recursive step-by-step construction à la Wilf (no precomputation)
- Asymptotic properties (from exact enumeration)

$$
\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(Y_{n}\right) \sim n \quad \mathbb{E}\left(\left(X_{n}-Y_{n}\right)^{2}\right) \sim n^{2}, \quad \mathbb{E}\left(D_{n}\right) \sim \sqrt{n}
$$

III. Three-sided prudent walks

Three-sided walks: two catalytic variables

$$
\left(1-\frac{u v t\left(1-t^{2}\right)}{(u-t v)(v-t u)}\right) T(t ; u, v)=1+\cdots-\frac{t^{2} v}{u-t v} T(t ; t v, v)-\frac{t^{2} u}{v-t u} T(t ; u, t u)
$$

- Cancel the kernel by an appropriate choice of $v \equiv v(t ; u)$
- This kernel is homogeneous in u and v

Three-sided prudent walks: exact enumeration

- The length generating function of three-sided prudent walks is:

$$
P(t)=\frac{1}{1-2 t-t^{2}}\left(\frac{1+3 t+t q\left(1-3 t-2 t^{2}\right)}{1-t q}+2 t^{2} q T(t ; 1, t)\right)
$$

where
$T(t ; 1, t)=\sum_{k \geq 0}(-1)^{k} \frac{\prod_{i=0}^{k-1}\left(\frac{t}{1-t q}-U\left(q^{i+1}\right)\right)}{\prod_{i=0}^{k}\left(\frac{t q}{q-t}-U\left(q^{i}\right)\right)}\left(1+\frac{U\left(q^{k}\right)-t}{t\left(1-t U\left(q^{k}\right)\right)}+\frac{U\left(q^{k+1}\right)-t}{t\left(1-t U\left(q^{k+1}\right)\right)}\right)$
with

$$
U(w)=\frac{1-t w+t^{2}+t^{3} w-\sqrt{\left(1-t^{2}\right)\left(1+t-t w+t^{2} w\right)\left(1-t-t w-t^{2} w\right)}}{2 t}
$$

and

$$
q=U(1)=\frac{1-t+t^{2}+t^{3}-\sqrt{\left(1-t^{4}\right)\left(1-2 t-t^{2}\right)}}{2 t} .
$$

Three-sided prudent walks: asymptotic enumeration and singularities

- The length generating function of three-sided prudent walks is:

$$
\begin{gathered}
P(t)=\frac{1}{1-2 t-t^{2}}\left(\frac{1+3 t+t q\left(1-3 t-2 t^{2}\right)}{1-t q}+2 t^{2} q T(t ; 1, t)\right) \\
T(t ; 1, t)=\sum_{k \geq 0}(-1)^{k} \frac{\prod_{i=0}^{k-1}\left(\frac{t}{1-t q}-U\left(q^{i+1}\right)\right)}{\prod_{i=0}^{k}\left(\frac{t q}{q-t}-U\left(q^{i}\right)\right)}\left(1+\frac{U\left(q^{k}\right)-t}{t\left(1-t U\left(q^{k}\right)\right)}+\frac{U\left(q^{k+1}\right)-t}{t\left(1-t U\left(q^{k+1}\right)\right)}\right)
\end{gathered}
$$

- Asymptotic enumeration: The dominant singularity is (again) a simple pole for $1-2 t-2 t^{2}+2 t^{3}=0$. Asymptotically,

$$
p(n) \sim \kappa(2.48 \ldots)^{n}
$$

- Singularity analysis: The series $P(t)$ has infinitely many poles, satisfying $\frac{t q}{q-t}=U\left(q^{i}\right)$ for some $i \geq 0$. Hence it is neither algebraic, nor even D-finite.

Three-sided prudent walks:

random generation and asymptotic properties

- Random generation: Recursive method à la Wilf $\Rightarrow 400$ steps (pre-computation of $O\left(n^{3}\right)$ numbers)
- Asymptotic properties: The average width of the box is $\sim n$

IV. Four-sided (i.e. general) prudent walks

General prudent walks: three catalytic variables

$$
\begin{aligned}
& \left(1-\frac{u v w t\left(1-t^{2}\right)}{(u-t v)(v-t u)}\right) T(u, v, w)=1+\mathcal{T}(w, u)+\mathcal{T}(w, v)-t v \frac{\mathcal{T}(v, w)}{u-t v}-t u \frac{\mathcal{T}(u, w)}{v-t u} \\
& \text { with } \mathcal{T}(u, v)=t v T(u, t u, v)
\end{aligned}
$$

Random prudent walks

- Uniform model: recursive generation, 195 steps (sic! $O\left(n^{4}\right)$ numbers)

- Kinetic model: recursive generation with no precomputation

500 steps
1000 steps
10000 steps
20000 steps

Conjectures, and summary of the results

	Nature of the g.f.	Asympt. growth	End-to-end distance
1-sided (part. dir)	Rat.	$(2.41 \ldots)^{n}$	n
2-sided	Alg. [Duchi 05]	$(2.48 \ldots)^{n}$	n
3-sided	not D-finite	$(2.48 \ldots)^{n}$	n
4-sided (general)	not D-finite	$(2.48 \ldots)^{n}$	n
square lattice SAW	$?$	$(2.63 \ldots)^{n} n^{11 / 32}$	$n^{3 / 4}$

Conjectures: [Dethridge, Guttmann, Jensen 07]

What's next?

- Exact enumeration: General prudent walks on the square lattice - Growth constant?
- Uniform random generation: better algorithms (maximal length 200 for general prudent walks...)

Uniform

- Kinetic models
- Limit processes?
- More general walks (with A. Bacher), with growth constant 2.54...

Triangular prudent walks

The length generating function of triangular prudent walks is

$$
P(t ; 1)=\frac{6 t(1+t)}{1-3 t-2 t^{2}}(1+t(1+2 t) R(t ; 1, t))
$$

with

$$
R(t ; 1, t)=(1+Y)(1+t Y) \sum_{k \geq 0} \frac{t^{\binom{k+1}{2}}\left(Y\left(1-2 t^{2}\right)\right)^{k}}{\left(Y\left(1-2 t^{2}\right) ; t\right)_{k+1}}\left(\frac{Y t^{2}}{1-2 t^{2}} ; t\right)_{k}
$$

and

$$
Y=\frac{1-2 t-t^{2}-\sqrt{(1-t)\left(1-3 t-t^{2}-t^{3}\right)}}{2 t^{2}}
$$

Notation:

$$
(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)
$$

- The series $P(t ; 1)$ is neither algebraic, nor even D-finite (infinitely many poles at $\left.Y t^{k}\left(1-2 t^{2}\right)=0\right)$

