
toto

Random generation of combinatorial structures

Gilles Schaeffer

CNRS / Ecole Polytechnique,
Palaiseau, France

Uniform random maps and graphs on
surfaces using Boltzmann sampling

Uniform random generation?

Uniform random generation?

A combinatorial class A, ranked by a size: An = {a ∈ A, |a| = n} finite.

Ex: ordered trees (n edges)

|An| = 1
n+1

`2n
n

´
is finite.

Uniform random generation?

A combinatorial class A, ranked by a size: An = {a ∈ A, |a| = n} finite.

Ex: ordered trees (n edges)

|An| = 1
n+1

`2n
n

´
is finite.

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

Uniform random generation?

A combinatorial class A, ranked by a size: An = {a ∈ A, |a| = n} finite.

Ex: ordered trees (n edges)

(((((((((())))))))))|An| = 1
n+1

`2n
n

´
is finite.

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

Ex: for ordered trees:

⇔⇔

or balanced parenthesis words (n pairs)

Uniform random generation?

A combinatorial class A, ranked by a size: An = {a ∈ A, |a| = n} finite.

Ex: ordered trees (n edges)

(((((((((())))))))))|An| = 1
n+1

`2n
n

´
is finite.

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

Ex: for ordered trees:

⇔⇔

or balanced parenthesis words (n pairs)

apply a uniform random permutation to (n)n

to get a uniform random word among the
`2n

n

´
parenthesis words

Uniform random generation?

A combinatorial class A, ranked by a size: An = {a ∈ A, |a| = n} finite.

Ex: ordered trees (n edges)

(((((((((())))))))))|An| = 1
n+1

`2n
n

´
is finite.

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

Ex: for ordered trees:

⇔

))))))))))))((((((((((((

⇔

or balanced parenthesis words (n pairs)

apply a uniform random permutation to (n)n

to get a uniform random word among the
`2n

n

´
parenthesis words

Uniform random generation?

A combinatorial class A, ranked by a size: An = {a ∈ A, |a| = n} finite.

Ex: ordered trees (n edges)

(((((((((())))))))))|An| = 1
n+1

`2n
n

´
is finite.

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

Ex: for ordered trees:

⇔

))))))))))))((((((((((((

⇔

or balanced parenthesis words (n pairs)

apply a uniform random permutation to (n)n

to get a uniform random word among the
`2n

n

´
parenthesis words

Uniform random generation?

A combinatorial class A, ranked by a size: An = {a ∈ A, |a| = n} finite.

Ex: ordered trees (n edges)

(((((((((())))))))))|An| = 1
n+1

`2n
n

´
is finite.

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

Ex: for ordered trees:

⇔

))))))))))))((((((((((((

⇔

or balanced parenthesis words (n pairs)

apply a uniform random permutation to (n)n

to get a uniform random word among the
`2n

n

´
parenthesis words

Uniform random generation?

A combinatorial class A, ranked by a size: An = {a ∈ A, |a| = n} finite.

Ex: ordered trees (n edges)

(((((((((())))))))))|An| = 1
n+1

`2n
n

´
is finite.

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

Ex: for ordered trees:

⇒

⇔

))))))))))))((((((((((((

⇔

or balanced parenthesis words (n pairs)

apply a uniform random permutation to (n)n

to get a uniform random word among the
`2n

n

´
parenthesis words

Uniform random generation?

A combinatorial class A, ranked by a size: An = {a ∈ A, |a| = n} finite.

Ex: ordered trees (n edges)

(((((((((())))))))))|An| = 1
n+1

`2n
n

´
is finite.

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

Ex: for ordered trees:

⇒

⇔

))))))))))))((((((((((((

⇔

or balanced parenthesis words (n pairs)

apply a uniform random permutation to (n)n

to get a uniform random word among the
`2n

n

´
parenthesis words

Uniform random generation?

A combinatorial class A, ranked by a size: An = {a ∈ A, |a| = n} finite.

Ex: ordered trees (n edges)

(((((((((())))))))))|An| = 1
n+1

`2n
n

´
is finite.

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

Ex: for ordered trees:

⇒ ⇒

⇔

))))))))))))((((((((((((

⇔

or balanced parenthesis words (n pairs)

apply a uniform random permutation to (n)n

to get a uniform random word among the
`2n

n

´
parenthesis words

Uniform random generation?

A combinatorial class A, ranked by a size: An = {a ∈ A, |a| = n} finite.

Ex: ordered trees (n edges)

(((((((((())))))))))|An| = 1
n+1

`2n
n

´
is finite.

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

Ex: for ordered trees:

⇒ ⇒

⇔

))))))))))))((((((((((((

⇔

one • of n+1

or balanced parenthesis words (n pairs)

apply a uniform random permutation to (n)n

to get a uniform random word among the
`2n

n

´
parenthesis words

Uniform random generation?

A combinatorial class A, ranked by a size: An = {a ∈ A, |a| = n} finite.

Ex: ordered trees (n edges)

(((((((((())))))))))|An| = 1
n+1

`2n
n

´
is finite.

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

Ex: for ordered trees:

⇒ ⇒

⇔

))))))))))))((((((((((((

⇔

it is a bijection:
“2n

n

”
= (n+1)|An|; the output tree is uniform

one • of n+1

or balanced parenthesis words (n pairs)

apply a uniform random permutation to (n)n

to get a uniform random word among the
`2n

n

´
parenthesis words

Uniform random generation?

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

⇒ ⇒
))))))))))))((((((((((((

it is a bijection:
“2n

n

”
= (n+1)|An|; the output tree is uniform

one • of n+1

Uniform random generation?

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

⇒ ⇒
))))))))))))((((((((((((

it is a bijection:
“2n

n

”
= (n+1)|An|; the output tree is uniform

one • of n+1

Complexity: O(n log n) random bits (initial permutation)
Can be improved to O(n) random bits on average

Uniform random generation?

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

⇒ ⇒
))))))))))))((((((((((((

it is a bijection:
“2n

n

”
= (n+1)|An|; the output tree is uniform

one • of n+1

Complexity: O(n log n) random bits (initial permutation)
Can be improved to O(n) random bits on average

Allows to produce huge random trees: limit is storage.

Pictures are courtesy of Philippe Flajolet and Carine Pivoteau

Uniform random generation?

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

⇒ ⇒
))))))))))))((((((((((((

it is a bijection:
“2n

n

”
= (n+1)|An|; the output tree is uniform

one • of n+1

Complexity: O(n log n) random bits (initial permutation)
Can be improved to O(n) random bits on average

Allows to produce huge random trees: limit is storage.

In general sampling aims at ”in silico” experiments:

Pictures are courtesy of Philippe Flajolet and Carine Pivoteau

– Average case complexity of algorithms

Uniform random generation?

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

⇒ ⇒
))))))))))))((((((((((((

it is a bijection:
“2n

n

”
= (n+1)|An|; the output tree is uniform

one • of n+1

Complexity: O(n log n) random bits (initial permutation)
Can be improved to O(n) random bits on average

Allows to produce huge random trees: limit is storage.

In general sampling aims at ”in silico” experiments:

Pictures are courtesy of Philippe Flajolet and Carine Pivoteau
series parallel graph drawing

quality” ” ” ”

– Average case complexity of algorithms

Uniform random generation?

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

⇒ ⇒
))))))))))))((((((((((((

it is a bijection:
“2n

n

”
= (n+1)|An|; the output tree is uniform

one • of n+1

Complexity: O(n log n) random bits (initial permutation)
Can be improved to O(n) random bits on average

Allows to produce huge random trees: limit is storage.

In general sampling aims at ”in silico” experiments:

– In silico statistical physics, bioinformatics

– In silico combinatorics and discrete probability
Pictures are courtesy of Philippe Flajolet and Carine Pivoteau

series parallel graph drawing

quality” ” ” ”

– Average case complexity of algorithms

Uniform random generation?

Uniform random sampler UA(n): output random elements of An s.t.

Pr(UA(n) = a) = 1
|An|

, for any a ∈ An.

⇒ ⇒
))))))))))))((((((((((((

it is a bijection:
“2n

n

”
= (n+1)|An|; the output tree is uniform

one • of n+1

Complexity: O(n log n) random bits (initial permutation)
Can be improved to O(n) random bits on average

Allows to produce huge random trees: limit is storage.

In general sampling aims at ”in silico” experiments:

– In silico statistical physics, bioinformatics

– In silico combinatorics and discrete probability
Pictures are courtesy of Philippe Flajolet and Carine Pivoteau

series parallel graph drawing

quality” ” ” ”

– Average case complexity of algorithms

Issues: complexity, genericity

Uniform random generation?

In general sampling aims at ”in silico” experiments:

– In silico biology or statistical physics

– In silico combinatorics and discrete probability

quality” ” ” ”

– Average case complexity of algorithms

Pictures are courtesy of Carine Pivoteau and Philippe Flajolet
series parallel graph drawing

Issues: complexity, genericity

Uniform random generation?

In general sampling aims at ”in silico” experiments:

– In silico biology or statistical physics

– In silico combinatorics and discrete probability

quality” ” ” ”

– Average case complexity of algorithms

– Bijective sampling requires efforts and luck... such results are rare

Pictures are courtesy of Carine Pivoteau and Philippe Flajolet
series parallel graph drawing

Issues: complexity, genericity

Uniform random generation?

In general sampling aims at ”in silico” experiments:

– In silico biology or statistical physics

– In silico combinatorics and discrete probability

quality” ” ” ”

– Average case complexity of algorithms

– Bijective sampling requires efforts and luck... such results are rare

– but almost anything you can count by recurrence you can generate by
recursive sampling: automatic for decomposable/constructive structures

systematized in Flajolet, Zimmermann, Van Cutsem, (1994); limited to sizes of order 104

Pictures are courtesy of Carine Pivoteau and Philippe Flajolet
series parallel graph drawing

Issues: complexity, genericity

Uniform random generation?

In general sampling aims at ”in silico” experiments:

– In silico biology or statistical physics

– In silico combinatorics and discrete probability

quality” ” ” ”

– Average case complexity of algorithms

Some possible tradeoffs: Imperfect sampling (distribution → uniform)

– Bijective sampling requires efforts and luck... such results are rare

– but almost anything you can count by recurrence you can generate by
recursive sampling: automatic for decomposable/constructive structures

systematized in Flajolet, Zimmermann, Van Cutsem, (1994); limited to sizes of order 104

Pictures are courtesy of Carine Pivoteau and Philippe Flajolet
series parallel graph drawing

Issues: complexity, genericity

Uniform random generation?

In general sampling aims at ”in silico” experiments:

– In silico biology or statistical physics

– In silico combinatorics and discrete probability

quality” ” ” ”

– Average case complexity of algorithms

Some possible tradeoffs: Imperfect sampling (distribution → uniform)

– Bijective sampling requires efforts and luck... such results are rare

– but almost anything you can count by recurrence you can generate by
recursive sampling: automatic for decomposable/constructive structures

systematized in Flajolet, Zimmermann, Van Cutsem, (1994); limited to sizes of order 104

analyzed by Denise, Zimmermann (1997)– floating points in recursive sampling

Pictures are courtesy of Carine Pivoteau and Philippe Flajolet
series parallel graph drawing

Issues: complexity, genericity

Uniform random generation?

In general sampling aims at ”in silico” experiments:

– In silico biology or statistical physics

– In silico combinatorics and discrete probability

quality” ” ” ”

– Average case complexity of algorithms

Some possible tradeoffs: Imperfect sampling (distribution → uniform)

– Bijective sampling requires efforts and luck... such results are rare

– but almost anything you can count by recurrence you can generate by
recursive sampling: automatic for decomposable/constructive structures

– simulation of Markov chains is a versatile tool but probabilists are
happy when they can prove it leads to polynomial algorithms.

systematized in Flajolet, Zimmermann, Van Cutsem, (1994); limited to sizes of order 104

analyzed by Denise, Zimmermann (1997)– floating points in recursive sampling

huge literature, see D.B. Wilson for perfect sampling

Pictures are courtesy of Carine Pivoteau and Philippe Flajolet
series parallel graph drawing

Issues: complexity, genericity

Uniform random generation?

In general sampling aims at ”in silico” experiments:

– In silico biology or statistical physics

– In silico combinatorics and discrete probability

quality” ” ” ”

– Average case complexity of algorithms

Some possible tradeoffs: Imperfect sampling (distribution → uniform)

– Bijective sampling requires efforts and luck... such results are rare

– but almost anything you can count by recurrence you can generate by
recursive sampling: automatic for decomposable/constructive structures

– simulation of Markov chains is a versatile tool but probabilists are
happy when they can prove it leads to polynomial algorithms.

Relax the exact size requirement: Boltzmann sampling (see later)

systematized in Flajolet, Zimmermann, Van Cutsem, (1994); limited to sizes of order 104

analyzed by Denise, Zimmermann (1997)– floating points in recursive sampling

huge literature, see D.B. Wilson for perfect sampling

Pictures are courtesy of Carine Pivoteau and Philippe Flajolet
series parallel graph drawing

My favorite random guys: maps and graphs

A planar graph G: there exists
an embedding of G in the plane

0BBB@
0 1 1 1 1
1 0 1 0 0
1 1 0 0 0
1 0 0 0 0
1 0 0 0 0

1CCCA
vertex labels: {1,. . ., n}

My favorite random guys: maps and graphs

A planar graph G: there exists
an embedding of G in the plane

0BBB@
0 1 1 1 1
1 0 1 0 0
1 1 0 0 0
1 0 0 0 0
1 0 0 0 0

1CCCA
A planar map M : combinatorial
description of an embedding of a
connected graph in the plane

6=
label edges and give cyclic order around vertices

vertex labels: {1,. . ., n}

My favorite random guys: maps and graphs

A planar graph G: there exists
an embedding of G in the plane

0BBB@
0 1 1 1 1
1 0 1 0 0
1 1 0 0 0
1 0 0 0 0
1 0 0 0 0

1CCCA
A planar map M : combinatorial
description of an embedding of a
connected graph in the plane

6=
label edges and give cyclic order around vertices

1

2
34 5 (1,5,2,3)(1̄,4)(2̄,4̄)(3̄)(5̄)

vertex labels: {1,. . ., n}

My favorite random guys: maps and graphs

A planar graph G: there exists
an embedding of G in the plane

0BBB@
0 1 1 1 1
1 0 1 0 0
1 1 0 0 0
1 0 0 0 0
1 0 0 0 0

1CCCA
A planar map M : combinatorial
description of an embedding of a
connected graph in the plane

6=
label edges and give cyclic order around vertices

1

2
34 5 (1,5,2,3)(1̄,4)(2̄,4̄)(3̄)(5̄)

Surfaces: let Sg be the compact orientable surface of genus g.
S0 is the sphere, S1 the torus; in general Sg is a ”sphere” with g handles.

A map of genus g: combinatorial description of a proper embedding in Sg .

A graph G of genus ≤ g: there exists a proper embedding of G in Sg .

...

vertex labels: {1,. . ., n}

Proper = Faces must be topological disks: no handle inside a face.

Euler’s formula reads v + f = e + 2− 2g.

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

0

-1 1

1

0 0

-1

-1

0

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

0

-1 1

1

0 0

-1

-1

0

|Tn| = 3n · 1
n+1

“2n
n

”

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = 3n · 1
n+1

“2n
n

”

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = 3n · 1
n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = 3n · 1
n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}

vertex or face marked

bijection

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = (n + 2) · |Mn|
|Tn| = 3n · 1

n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}
Euler’s formula: v + f = n + 2

vertex or face marked

bijection

|Mn| = 2
n+2

· 3n

n+1

`2n
n

´

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = (n + 2) · |Mn|
|Tn| = 3n · 1

n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}
Euler’s formula: v + f = n + 2

vertex or face marked

bijection

|Mn| = 2
n+2

· 3n

n+1

`2n
n

´

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = (n + 2) · |Mn|
|Tn| = 3n · 1

n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}
Euler’s formula: v + f = n + 2

vertex or face marked

bijection

|Mn| = 2
n+2

· 3n

n+1

`2n
n

´

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = (n + 2) · |Mn|
|Tn| = 3n · 1

n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}
Euler’s formula: v + f = n + 2

vertex or face marked

bijection

|Mn| = 2
n+2

· 3n

n+1

`2n
n

´

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = (n + 2) · |Mn|
|Tn| = 3n · 1

n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}
Euler’s formula: v + f = n + 2

vertex or face marked

bijection

|Mn| = 2
n+2

· 3n

n+1

`2n
n

´

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = (n + 2) · |Mn|
|Tn| = 3n · 1

n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}
Euler’s formula: v + f = n + 2

vertex or face marked

bijection

|Mn| = 2
n+2

· 3n

n+1

`2n
n

´

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = (n + 2) · |Mn|
|Tn| = 3n · 1

n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}
Euler’s formula: v + f = n + 2

vertex or face marked

bijection

|Mn| = 2
n+2

· 3n

n+1

`2n
n

´

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = (n + 2) · |Mn|
|Tn| = 3n · 1

n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}
Euler’s formula: v + f = n + 2

vertex or face marked

bijection

|Mn| = 2
n+2

· 3n

n+1

`2n
n

´

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = (n + 2) · |Mn|
|Tn| = 3n · 1

n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}
Euler’s formula: v + f = n + 2

vertex or face marked

bijection

|Mn| = 2
n+2

· 3n

n+1

`2n
n

´

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = (n + 2) · |Mn|
|Tn| = 3n · 1

n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}
Euler’s formula: v + f = n + 2

vertex or face marked

bijection

|Mn| = 2
n+2

· 3n

n+1

`2n
n

´

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = (n + 2) · |Mn|
|Tn| = 3n · 1

n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}
Euler’s formula: v + f = n + 2

vertex or face marked

bijection

|Mn| = 2
n+2

· 3n

n+1

`2n
n

´

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = (n + 2) · |Mn|
|Tn| = 3n · 1

n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}
Euler’s formula: v + f = n + 2

vertex or face marked

bijection

|Mn| = 2
n+2

· 3n

n+1

`2n
n

´

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = (n + 2) · |Mn|

0

1
1

1
1

2

2

2

3
3

2

|Tn| = 3n · 1
n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}
Euler’s formula: v + f = n + 2

vertex or face marked

bijection

|Mn| = 2
n+2

· 3n

n+1

`2n
n

´

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = (n + 2) · |Mn|

0

1
1

1
1

2

2

2

3
3

2

|Tn| = 3n · 1
n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}
Euler’s formula: v + f = n + 2

vertex or face marked

bijection

|Mn| = 2
n+2

· 3n

n+1

`2n
n

´

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = (n + 2) · |Mn|

0

1
1

1
1

2

2

2

3
3

2

|Tn| = 3n · 1
n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}
Euler’s formula: v + f = n + 2

vertex or face marked

bijection

|Mn| = 2
n+2

· 3n

n+1

`2n
n

´

Uniform random planar maps
My recurrent claim: Trees are to maps
what words (codes) are to trees.

Tn = {ordered trees with n vertices; root label 0 ;
integer labels that differ at most by 1 along edges}

|Tn| = (n + 2) · |Mn|
|Tn| = 3n · 1

n+1

“2n
n

”
Mn = {edge rooted planar maps with n edges}
Euler’s formula: v + f = n + 2

vertex or face marked

bijection

|Mn| = 2
n+2

· 3n

n+1

`2n
n

´
Theorem: Uniform random planar maps with
n edges can be generated in linear time from
the closure of uniform random ordered trees.

Decomposing planar graphs
A decomposition for planar graphs was essentially given by Tutte.

cf Marc Noy’s talk for its application to asymptotics.

Decomposing planar graphs
A decomposition for planar graphs was essentially given by Tutte.

cf Marc Noy’s talk for its application to asymptotics.

1) planar graph = set (planar connected graphs)

Decomposing planar graphs
A decomposition for planar graphs was essentially given by Tutte.

cf Marc Noy’s talk for its application to asymptotics.

1) planar graph = set (planar connected graphs)

connected planar graph

2)

Decomposing planar graphs
A decomposition for planar graphs was essentially given by Tutte.

cf Marc Noy’s talk for its application to asymptotics.

1) planar graph = set (planar connected graphs)

=

2-connected

(, , , . . .)

vertex rooted connected planar graphsedge rootedconnected planar graph = ◦v

2)

Recall: labeled graphs

1

2

3

Decomposing planar graphs
A decomposition for planar graphs was essentially given by Tutte.

cf Marc Noy’s talk for its application to asymptotics.

1) planar graph = set (planar connected graphs)

=

2-connected

(, , , . . .)

vertex rooted connected planar graphsedge rootedconnected planar graph = ◦v

= (, , , . . .)

2-connected graphsedge rooted = 3-connected ◦e virtual edge rooted 2-connected planar graphs

2)

3)

Recall: labeled graphs

1

2

3

Decomposing planar graphs
A decomposition for planar graphs was essentially given by Tutte.

cf Marc Noy’s talk for its application to asymptotics.

1) planar graph = set (planar connected graphs)

=

2-connected

(, , , . . .)

vertex rooted connected planar graphsedge rootedconnected planar graph = ◦v

= (, , , . . .)

2-connected graphsedge rooted = 3-connected ◦e virtual edge rooted 2-connected planar graphs

Theorem (Whitney). A 3-c planar graph has a unique embedding

2)

3)

Recall: labeled graphs

1

2

3

Decomposing planar graphs
A decomposition for planar graphs was essentially given by Tutte.

cf Marc Noy’s talk for its application to asymptotics.

1) planar graph = set (planar connected graphs)

In other terms: 4) 3-c planar graphs and in bijection with 3-c planar maps

=

2-connected

(, , , . . .)

vertex rooted connected planar graphsedge rootedconnected planar graph = ◦v

= (, , , . . .)

2-connected graphsedge rooted = 3-connected ◦e virtual edge rooted 2-connected planar graphs

Theorem (Whitney). A 3-c planar graph has a unique embedding

2)

3)

Recall: labeled graphs

1

2

3

Decomposing planar graphs
A decomposition for planar graphs was essentially given by Tutte.

cf Marc Noy’s talk for its application to asymptotics.

1) planar graph = set (planar connected graphs)

In other terms: 4) 3-c planar graphs and in bijection with 3-c planar maps

=

2-connected

(, , , . . .)

vertex rooted connected planar graphsedge rootedconnected planar graph = ◦v

= (, , , . . .)

2-connected graphsedge rooted = 3-connected ◦e virtual edge rooted 2-connected planar graphs

Theorem (Whitney). A 3-c planar graph has a unique embedding

Then, essentially the same decomposition allows to relate planar 3-c maps
to 2-c and connected planar maps the other way round.

2)

3)

Recall: labeled graphs

1

2

3

Decomposing planar graphs
A decomposition for planar graphs was essentially given by Tutte.

cf Marc Noy’s talk for its application to asymptotics.

1) planar graph = set (planar connected graphs)

In other terms: 4) 3-c planar graphs and in bijection with 3-c planar maps

=

2-connected

(, , , . . .)

vertex rooted connected planar graphsedge rootedconnected planar graph = ◦v

= (, , , . . .)

2-connected graphsedge rooted = 3-connected ◦e virtual edge rooted 2-connected planar graphs

Theorem (Whitney). A 3-c planar graph has a unique embedding

Then, essentially the same decomposition allows to relate planar 3-c maps
to 2-c and connected planar maps the other way round.

2)

3)
5)

maps

6)
maps

Recall: labeled graphs

1

2

3

Decomposing planar graphs
A decomposition for planar graphs was essentially given by Tutte.

cf Marc Noy’s talk for its application to asymptotics.

1) planar graph = set (planar connected graphs)

In other terms: 4) 3-c planar graphs and in bijection with 3-c planar maps

=

2-connected

(, , , . . .)

vertex rooted connected planar graphsedge rootedconnected planar graph = ◦v

= (, , , . . .)

2-connected graphsedge rooted = 3-connected ◦e virtual edge rooted 2-connected planar graphs

Theorem (Whitney). A 3-c planar graph has a unique embedding

Then, essentially the same decomposition allows to relate planar 3-c maps
to 2-c and connected planar maps the other way round.

2)

3)
5)

maps

6)
maps

Recall: labeled graphs

Recall Recurrent Claim: planar maps can be generated from trees.

1

2

3

Decomposing planar graphs
A decomposition for planar graphs was essentially given by Tutte.

cf Marc Noy’s talk for its application to asymptotics.

1) planar graph = set (planar connected graphs)

In other terms: 4) 3-c planar graphs and in bijection with 3-c planar maps

One needs an easy way to perform sampling for the composition of two
combinatorial structures

=

2-connected

(, , , . . .)

vertex rooted connected planar graphsedge rootedconnected planar graph = ◦v

= (, , , . . .)

2-connected graphsedge rooted = 3-connected ◦e virtual edge rooted 2-connected planar graphs

Theorem (Whitney). A 3-c planar graph has a unique embedding

Then, essentially the same decomposition allows to relate planar 3-c maps
to 2-c and connected planar maps the other way round.

2)

3)
5)

maps

6)
maps

Recall: labeled graphs

Recall Recurrent Claim: planar maps can be generated from trees.

1

2

3

Decomposing planar graphs
A decomposition for planar graphs was essentially given by Tutte.

cf Marc Noy’s talk for its application to asymptotics.

1) planar graph = set (planar connected graphs)

In other terms: 4) 3-c planar graphs and in bijection with 3-c planar maps

One needs an easy way to perform sampling for the composition of two
combinatorial structures

=

2-connected

(, , , . . .)

vertex rooted connected planar graphsedge rootedconnected planar graph = ◦v

= (, , , . . .)

2-connected graphsedge rooted = 3-connected ◦e virtual edge rooted 2-connected planar graphs

Theorem (Whitney). A 3-c planar graph has a unique embedding

Then, essentially the same decomposition allows to relate planar 3-c maps
to 2-c and connected planar maps the other way round.

Boltzmann sampling does this!

2)

3)
5)

maps

6)
maps

Recall: labeled graphs

Recall Recurrent Claim: planar maps can be generated from trees.

1

2

3

Boltzmann models, Boltzmann sampling
A combinatorial class A = (An)n≥0

Its generating function A(x) =
P

a∈A x|a| =
P

n |An|xn.

Boltzmann models, Boltzmann sampling
A combinatorial class A = (An)n≥0

Its generating function A(x) =
P

a∈A x|a| =
P

n |An|xn.

Let x0 > 0 be such that A(x0) is finite (e.g. x0 < ρA)
Γ[A](x0) is a Boltzmann generator of parameter x0 for A if

Pr(Γ[A](x0) = a) = x|a|

A(x)
for all a ∈ A.

Boltzmann models, Boltzmann sampling
A combinatorial class A = (An)n≥0

Its generating function A(x) =
P

a∈A x|a| =
P

n |An|xn.

Let x0 > 0 be such that A(x0) is finite (e.g. x0 < ρA)
Γ[A](x0) is a Boltzmann generator of parameter x0 for A if

Pr(Γ[A](x0) = a) = x|a|

A(x)
for all a ∈ A.

• Composite Boltzmann generators can be assembled for the sum, product
and composition of combinatorial classes.

Γ[A+ B](x) := if Bern(
A(x)

A(x)+B(x)
) thenΓ[A](x) elseΓ[B](x)

Γ[A× B](x) := (Γ[A(x)], Γ[B(x)])

Γ[A ◦ B](x) := let a = Γ[A](B(x)) in (a; (Γ[B](x))|a|)

Suppose we have Boltzmann generators Γ[A](x) and Γ[B](x). Then

Composition in Boltzmann sampling

Γ[A ◦ B](x) := let a = Γ[A](B(x)) in (a; (Γ[B](x))|a|)

Theorem: if Γ[A] and Γ[B] are Boltzmann so is Γ[A ◦ B].

Composition in Boltzmann sampling

Γ[A ◦ B](x) := let a = Γ[A](B(x)) in (a; (Γ[B](x))|a|)

Theorem: if Γ[A] and Γ[B] are Boltzmann so is Γ[A ◦ B].

Then Pr
“
Γ[A ◦ B](x) = γ

”
Proof: Let γ ∈ A ◦ B with γ = (a; b1, . . . , bk) where a ∈ A, k = |a|,
bi ∈ B for i = 1, . . . , k, and |γ| = |b1|+ . . . + |bk|.

= Pr
“
Γ[A] = a

”
·

Q|a|
i=1 Pr

“
Γ[B](x) = bi

”
=

B(x)|a|

A(B(x))
·

Q
i x|bi|

B(x)|a|
= x|b1|+···+|bk|

A(B(x))
= x|γ|

(A◦B)(x)
.

2

Composition in Boltzmann sampling

Γ[A ◦ B](x) := let a = Γ[A](B(x)) in (a; (Γ[B](x))|a|)

Theorem: if Γ[A] and Γ[B] are Boltzmann so is Γ[A ◦ B].

Then Pr
“
Γ[A ◦ B](x) = γ

”
Proof: Let γ ∈ A ◦ B with γ = (a; b1, . . . , bk) where a ∈ A, k = |a|,
bi ∈ B for i = 1, . . . , k, and |γ| = |b1|+ . . . + |bk|.

= Pr
“
Γ[A] = a

”
·

Q|a|
i=1 Pr

“
Γ[B](x) = bi

”
=

B(x)|a|

A(B(x))
·

Q
i x|bi|

B(x)|a|
= x|b1|+···+|bk|

A(B(x))
= x|γ|

(A◦B)(x)
.

2

Theorem: if Γ[A ◦ B] is Boltzmann then so are Core(Γ[A ◦ B]) and
First(Γ[A ◦ B]), where Core(γ) = a and First(γ) = b1.

Uniform sampling from Boltzmann sampling

• Rejection yields uniform sampling (elements of same size have same proba)

U[A](n) := do let a = Γ[A](x) until |a| = n; return a;

Exact size uniform sampling can be often done in quadratic expected time
and approximate size uniform sampling can be done in linear time.

Complexity depends on |An| xn

A(x)
: good choice of x = xn and pointing.

Uniform sampling from Boltzmann sampling

• Rejection yields uniform sampling (elements of same size have same proba)

U[A](n) := do let a = Γ[A](x) until |a| = n; return a;

Exact size uniform sampling can be often done in quadratic expected time
and approximate size uniform sampling can be done in linear time.

Composition, Bivariate, Unlabelled structures and Polya theory

Initial model: Labelled and rigid unlabelled structures
Duchon, Flajolet, Louchard, Schaeffer (2002)

Fusy (2006) and Flajolet, Fusy, Pivoteau (2007) and Bodirsky, Fusy, Kang and Vigerske (2007)

Efficient oracles for the evaluation of generating series
Pivoteau, Salvy, Soria (2008)

• Boltzmann in progress...

Complexity depends on |An| xn

A(x)
: good choice of x = xn and pointing.

Uniform sampling from Boltzmann sampling

• Rejection yields uniform sampling (elements of same size have same proba)

U[A](n) := do let a = Γ[A](x) until |a| = n; return a;

Exact size uniform sampling can be often done in quadratic expected time
and approximate size uniform sampling can be done in linear time.

Composition, Bivariate, Unlabelled structures and Polya theory

Initial model: Labelled and rigid unlabelled structures
Duchon, Flajolet, Louchard, Schaeffer (2002)

Fusy (2006) and Flajolet, Fusy, Pivoteau (2007) and Bodirsky, Fusy, Kang and Vigerske (2007)

Efficient oracles for the evaluation of generating series
Pivoteau, Salvy, Soria (2008)

• Boltzmann in progress...

Applications: plane partitions, colored structures, deterministic automata,
XML documents, Appolonian structures...

Bodini, Fusy, Pivoteau (2006), Bodini, Jacquot (2008), Bassino, Nicaud (2006), Bassino, David, Nicaud (2008),
Darasse, Soria (2007), Darasse (2008),Bernasconi, Panagiotou, Steger, Weißt (2006)

Complexity depends on |An| xn

A(x)
: good choice of x = xn and pointing.

Application to graphs: Fusy’s generator

A (very rough) idea of Eric Fusy’s generator for random planar graphs:

Application to graphs: Fusy’s generator

• 3-connected graphs: Γ[3-c] := Core3(Core2(Γ[Planar maps]))

A (very rough) idea of Eric Fusy’s generator for random planar graphs:

Application to graphs: Fusy’s generator

• 1-connected graphs:
Γ[1-c] := let G2 = Γ[2c] in G2 ◦v (Γ[1c], . . . , Γ[1c]| {z }

#{vertices of G2}

)

• 3-connected graphs: Γ[3-c] := Core3(Core2(Γ[Planar maps]))

A (very rough) idea of Eric Fusy’s generator for random planar graphs:

• 2-connected graphs:
Γ[2-c] := let G3 = Γ[3c] in G3 ◦ (Γ[2c], . . . , Γ[2c]| {z }

#{edges of G3}times

)

Application to graphs: Fusy’s generator

• 1-connected graphs:
Γ[1-c] := let G2 = Γ[2c] in G2 ◦v (Γ[1c], . . . , Γ[1c]| {z }

#{vertices of G2}

)

• 3-connected graphs: Γ[3-c] := Core3(Core2(Γ[Planar maps]))

A (very rough) idea of Eric Fusy’s generator for random planar graphs:

• 2-connected graphs:
Γ[2-c] := let G3 = Γ[3c] in G3 ◦ (Γ[2c], . . . , Γ[2c]| {z }

#{edges of G3}times

)

Application to graphs: Fusy’s generator

• 1-connected graphs:
Γ[1-c] := let G2 = Γ[2c] in G2 ◦v (Γ[1c], . . . , Γ[1c]| {z }

#{vertices of G2}

)

• 3-connected graphs: Γ[3-c] := Core3(Core2(Γ[Planar maps]))

A (very rough) idea of Eric Fusy’s generator for random planar graphs:

The result is a Boltzmann generator for planar graphs. Uniform sampling
is obtained by rejection.

• 2-connected graphs:
Γ[2-c] := let G3 = Γ[3c] in G3 ◦ (Γ[2c], . . . , Γ[2c]| {z }

#{edges of G3}times

)

Application to graphs: Fusy’s generator

• 1-connected graphs:
Γ[1-c] := let G2 = Γ[2c] in G2 ◦v (Γ[1c], . . . , Γ[1c]| {z }

#{vertices of G2}

)

• 3-connected graphs: Γ[3-c] := Core3(Core2(Γ[Planar maps]))

A (very rough) idea of Eric Fusy’s generator for random planar graphs:

The result is a Boltzmann generator for planar graphs. Uniform sampling
is obtained by rejection.

Warning: I skipt a ”lot” of details (rerootings, bivariate compositions...)

• 2-connected graphs:
Γ[2-c] := let G3 = Γ[3c] in G3 ◦ (Γ[2c], . . . , Γ[2c]| {z }

#{edges of G3}times

)

Higher genus maps can be dealt with...

Higher genus maps can be dealt with...

But you’d better ask Guillaume Chapuy about that...

Higher genus maps can be dealt with...

But you’d better ask Guillaume Chapuy about that...

\begin{advertizing}

Higher genus maps can be dealt with...

But you’d better ask Guillaume Chapuy about that...

→ Hear about the almost sure giant 3-c component of genus g in maps!

\begin{advertizing}

Higher genus maps can be dealt with...

But you’d better ask Guillaume Chapuy about that...

→ Learn how to increase the genus bijectively by marking k-uples
of vertices in trees

→ Hear about the almost sure giant 3-c component of genus g in maps!

\begin{advertizing}

Higher genus maps can be dealt with...

But you’d better ask Guillaume Chapuy about that...

→ Learn how to increase the genus bijectively by marking k-uples
of vertices in trees

→ Sample you very own random genus g maps

→ Hear about the almost sure giant 3-c component of genus g in maps!

\begin{advertizing}

Higher genus maps can be dealt with...

But you’d better ask Guillaume Chapuy about that...

→ Learn how to increase the genus bijectively by marking k-uples
of vertices in trees

→ Sample you very own random genus g maps

→ Hear about the almost sure giant 3-c component of genus g in maps!

\begin{advertizing}

→ Take a try on proving our random genus g graph conjecture

Higher genus maps can be dealt with...

But you’d better ask Guillaume Chapuy about that...

→ Learn how to increase the genus bijectively by marking k-uples
of vertices in trees

→ Sample you very own random genus g maps

→ Hear about the almost sure giant 3-c component of genus g in maps!

\begin{advertizing}

→ Take a try on proving our random genus g graph conjecture

\end{advertizing}

Boltzmann graphs wait around the corner

Higher genus maps can be dealt with...

But you’d better ask Guillaume Chapuy about that...

→ Learn how to increase the genus bijectively by marking k-uples
of vertices in trees

→ Sample you very own random genus g maps

→ Hear about the almost sure giant 3-c component of genus g in maps!

\begin{advertizing}

→ Take a try on proving our random genus g graph conjecture

\end{advertizing}

Many thanks again to Philippe, and to the audience

Boltzmann graphs wait around the corner

Random graphs on surfaces: a conjecture (S. 2007)

Take a uniform random labelled graph Xn in the set of graphs
of genus ≤ g with n vertices.

Then Xn a.s. has a unique 3-connected component of linear size C(Xn),
and:

• C(Xn) is a.s. a random 3-connected graphs with minimum genus g,

• C(Xn) a.s. has a unique embedding on Sg ,

• all other components are planar and of size O(n2/3),

and Xn converges when n goes to infinity to ”the” genus g brownian map.

and Xn converges when n goes to infinity to ”the” genus g brownian map.

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

Γ[Seq] = 3

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

Γ[Seq] = 3

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

Γ[Seq] = 2

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

Γ[Seq] = 2

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

The generation finishes with proba 1.

Pr (|Γ[A](xn))| = n) =
|An|·xn

A(x)
≈ 4nn−3/2

`
1
4
(1− 1

n
)
´n ≈ n−3/2

The probability to get size n depends on the choice of x,
increasing near the singularity: if xn = 1

4
(1− 1

n
)

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

The generation finishes with proba 1.

Pr (|Γ[A](xn))| = n) =
|An|·xn

A(x)
≈ 4nn−3/2

`
1
4
(1− 1

n
)
´n ≈ n−3/2

The expected size of a Boltzmann tree of parameter xn = 1
4
(1− 1

n
) is

E(|Γ[A](xn)|) =
A(xn)′

A(xn)
≈ n1/2

The probability to get size n depends on the choice of x,
increasing near the singularity: if xn = 1

4
(1− 1

n
)

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

The generation finishes with proba 1.

Pr (|Γ[A](xn))| = n) =
|An|·xn

A(x)
≈ 4nn−3/2

`
1
4
(1− 1

n
)
´n ≈ n−3/2

The expected size of a Boltzmann tree of parameter xn = 1
4
(1− 1

n
) is

E(|Γ[A](xn)|) =
A(xn)′

A(xn)
≈ n1/2

The probability to get size n depends on the choice of x,
increasing near the singularity: if xn = 1

4
(1− 1

n
)

improve complexity via pointing

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

The generation finishes with proba 1.

Pr (|Γ[A](xn))| = n) =
|An|·xn

A(x)
≈ 4nn−3/2

`
1
4
(1− 1

n
)
´n ≈ n−3/2

The expected size of a Boltzmann tree of parameter xn = 1
4
(1− 1

n
) is

E(|Γ[A](xn)|) =
A(xn)′

A(xn)
≈ n1/2

The probability to get size n depends on the choice of x,
increasing near the singularity: if xn = 1

4
(1− 1

n
)

improve complexity via pointing

3 3
′

′
′

An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).

The generation finishes with proba 1.

Pr (|Γ[A](xn))| = n) =
|An|·xn

A(x)
≈ 4nn−3/2

`
1
4
(1− 1

n
)
´n ≈ n−3/2

The expected size of a Boltzmann tree of parameter xn = 1
4
(1− 1

n
) is

E(|Γ[A](xn)|) =
A(xn)′

A(xn)
≈ n1/2

The probability to get size n depends on the choice of x,
increasing near the singularity: if xn = 1

4
(1− 1

n
)

improve complexity via pointing

′

′
′ n

1 1

Some properties of random discrete surfaces

This approach was pursued by Chassaing-Durhuus (2005), Marckert-
Mokkadem (2004), Miermond (2005), Weill (2006)... culminating with

Some properties of random discrete surfaces

This approach was pursued by Chassaing-Durhuus (2005), Marckert-
Mokkadem (2004), Miermond (2005), Weill (2006)... culminating with

Theorem (Le Gall, 2006). Rescaled planar
quadrangulations converge in the large size
limit to a random continuum planar map
that has spherical topology.

Some properties of random discrete surfaces

This approach was pursued by Chassaing-Durhuus (2005), Marckert-
Mokkadem (2004), Miermond (2005), Weill (2006)... culminating with

Theorem (Le Gall, 2006). Rescaled planar
quadrangulations converge in the large size
limit to a random continuum planar map
that has spherical topology.

In particular there exists no
separating cycle of size � n1/4.

Sphere!

Some properties of random discrete surfaces

This approach was pursued by Chassaing-Durhuus (2005), Marckert-
Mokkadem (2004), Miermond (2005), Weill (2006)... culminating with

Theorem (Le Gall, 2006). Rescaled planar
quadrangulations converge in the large size
limit to a random continuum planar map
that has spherical topology.

In particular there exists no
separating cycle of size � n1/4.

The bfs exploration works also for higer genus surfaces:
Theorem (Chapuy-Marcus-S. 2006) The distance between 2 ran-
dom vertices of a random quad Xg

n of genus g is of order n1/4.

Sphere!

Some properties of random discrete surfaces

This approach was pursued by Chassaing-Durhuus (2005), Marckert-
Mokkadem (2004), Miermond (2005), Weill (2006)... culminating with

Theorem (Le Gall, 2006). Rescaled planar
quadrangulations converge in the large size
limit to a random continuum planar map
that has spherical topology.

In particular there exists no
separating cycle of size � n1/4.

The bfs exploration works also for higer genus surfaces:
Theorem (Chapuy-Marcus-S. 2006) The distance between 2 ran-
dom vertices of a random quad Xg

n of genus g is of order n1/4.

Conjectures.
There is no non-contractible cycles with size � n1/4.
The rescaled continuum limit exists and has genus g.

Sphere!

