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Introduction
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Let [ 7 ] be the Stirling number of the first kind (unsigned
version). Their generating function is given by

n—1
¢n(2) = [[(z+1) = r(i(j)”) dn(1) = nl.

0

An asymptotic expansion for j = O(1) is given in Wilf [14], which
has been extended to the range j = O(In n) by Hwang [6]. The
generalized Sirling numbers have been considered by Tsylova [13]
and Chelluri et al. [2]. The g—Stirling numbers are studied in
Kyriakoussis and Vamvakari [9].

In this talk, we revisit the asymptotic expansions in the central
region and we analyse the non-central region

f=n—n" —«>1/2. We use Cauchy’s integral formula and the
saddle point method.
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Central region
Central region

Consider
N LJ
Inli) = n!

as a random variable. The mean and variance are given by

n—1
1
Mi=E(h) = 2= =Ho=v(n+1)+7,
0
n—1 i 7.[.2
2. _ — _
o ._V(Jn)—zo:(1+i)2—1/1(1,n+1)+¢(n+1) T
and
M~in(n)+7+ —+0 (=
TS, n?)’

2
5 T 3 1
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It is convenient to set

2

A:=In(n) — 3 +v=In (ne”‘“2/6> ,
and to consider all our next asymptotics (n — oo) as functions of
A. Of course, all asymptotics can be reformulated in terms of
In(n).

We have

2 1
M~A+”+O<>,
6 n

U2~A—|—(9<1>.
n
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A celebretated theorem of Goncharov says that

)~ (£,

g

where N is the Gaussian distribution, with a rate of convergence
O(1/4/In(n)). This can also be deduced from the Quasi-Power
theorem of Hwang [7],[8].

In this Section, we want to obtain a more precise local limit
theorem for J,(j) in terms of x := J_TM and A.

By Cauchy’s theorem,

N L[ on(2) 1 [ s
In(j) = — 2 dz:_/ﬂe (2 dyz,

27i 27i
where € is inside the analyticity domain of the integrand and
encircles the origin and

5(z) = Si1(2) + S2(2),  Si(z Zln(z—l-l — In(n!),
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Set .
: d's
() .—
S\ R
These derivatives can be expressed in terms of ¢(k,z + n) and
Y(k, z).

We will use the Saddle point method (for a good introduction to
this method, see Flajolet and Sedgewick [3], ch.VIII). First we
must find the solution of

sWiz)=o0 (1)

with smallest module.

Set Z := z* — ¢, where, here, it is easy to check that z* = 1. Set
j =M + xo and B := /A to simplify the expressions.

This leads, to first order (keeping only the € term in (1)), to

—x x?-1 1 1/ 3x 1 1
=g 0 <53>+n <433 o <B4>>+O <234> -
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This shows that, asymptotically, € is given by a Laurent series of
powers of n~1, where each coeficient is given by a Laurent series of
powers of B~!. To obtain more precision, we set again

j = M + xo, expand in powers of n~1, and equate each coefficient
to 0. Note that we will need the 1/n term of ¢ later on. This leads

to
—x 1 0 1 1/3x x?>+43/2 1
=B B +B3+O<B4>+n<483+ B +O<35>>

1
+0 (g )

We have, with Z .=z —e =1 — ¢,

27

() = = | exp [5(2)+5(2)(2)(z—2)2/2!+§:5(1)(2)(2—2)'//! dz
1=3

Note that the linear term vanishes. Set z = Z + i7. This gives
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In(j) = —exp[S ]/ exp s@(z)(ir) /2'—1—25 (it //']dr
(2)

Let us first analyze S(Z). We obtain (we see now why we need the
1/n term of &: there is a summation Y7o in S;(2))

3 4 2
. 5 x*/6—x —x*/12+x°/2-1/2
5(2) = —x°/2 + 5 + 52
—x3/3+x5/20 + x/2 — 7%x3/18 + ¢(3)x3/3
B3

wo(a) o (ar).
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Now we compute the derivatives, (here and in the following, we
provide only a few terms but Maple knows more).

We need these many terms in the following.
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We can now compute (2), for instance by using the classical trick
of setting

s@)(z 2I+Zs I =—u?)2.

Computing 7 as a truncated series in u, this gives, by inversion,

u(l+x/(2B) +...) + u?(i/(3B) +...) + u3(—1/(36B2) + .. ')+
B

Setting d7 = %du, expanding w.r.t. B and integrating on

[u= —00..00], this gives
1 L X 5/12 — x2/8 +x(87r2—10—93x2—48C(3)) N
V27 B 2B B2 48B3
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Finally (2) leads to

1 2
() ~ e
() J3nB
3 *ox2 1 B x5 x 7rX C(3)X
Xox —S+% -1 XXk +
- exp 63 TP B22 2, 7372 2B3 +]
x 5/12—x2/8 X(87r — 10 — 93x2 — 48¢(3))
14+ ==
[*25+ B2 48B3 e
or
Jn(j)NRla
1 2
Ry = e /2.
! V2B
x3/6 —x/2  3x2/8 —x*/6 —1/12+ x5/72
-1
[+ B ' B2
w3 X X 2x ¢(3)x3
L 18 +32740 3?4514 +5 s toet e —SB)x+ (3) 4
53
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For n = 3000, a comparison between J,(j) and

V2o exp p IS given In rigure 1.
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Figure 1. Comparison between J,(j) and

1 _ (=M /ol e
L exp (J) . n = 3000
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Of course, only few values of j are significant and also the quality
of the Gaussian is low, all asymptotic expressions depend actually
on powers of A1, but A is not large.

N2
A comparison of J,,(j)/[\/%m exp [— (J_TM> /2” with

Jn(j)/R1, with 2 terms in Ry, is given in Figure 2.
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Figure 2: J,(J) \/2170

color=blue, n = 3000
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The precision of R is of order 1072. Using 3 terms in R; leads to
a less good result: A is not large enough to take advantage of the
A=3/2 term: A = 6.94 here, we deal with asymptotic series, not
necessarily convergent ones. More terms can be computed in R;
(which is almost automatic with Maple).
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Large deviation, j = n—n% «a>1/2

The case j = O(n) is analyzed in Timashev [12] and the case

J = n—c, c constant, in Griinberg [5]. As previous work for the
case j = n— n%, let us mention Bender [1], Temme [11], Moser
and Wyman [10] (see also the comments by Odlyzko in [4],
p.1182). They all use, explicitly or not, the Saddle point method.
For a < 1/2, Moser and Wyman (6.9) give an explicit asymptotic
expression. For az > 1/2, they first compute in (4.52) the numerical
solution zn of §’'(zn) = 0 and give in (4.51) an asymptotic
expression. This is rather precise: for n = 50, this gives a precision
of order 10~%. [1] and [11] also compute numerically zn. However,
all theses results do not shed light on the dependence of [2/]¢(z)
on n®. This what we want to explicit in this Section. It appears
that the range aw > 1/2 is more delicate than the other range.
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Recall that 1
on(z) = ][z +1)= r(i(j)n)'
0
We have M(z+n)
6nl2) := iyt = P32
with

n—1
S(z) = S1(2) + S2(2), Su(2) = > _In(z+1), S2(2) = —(j+1) In(2).
0

We first compute Z such that
S'(z)=0. (3)

We have 11
S'(2) = wlz + m) —w(z) - L=
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Similarly (we need these expressions later on)

Jj+1
5(2)(2) = 1/}(1’2 + n) - w(laz) + 72
J+1

SWNz) =k —1,z4n) —p(k — 1,2) + (=1)*(k — D=

Some experiments with some values for a (a« = 5/8 is a good
choice) show that Z must be a combili of x = n® and y = n!~¢
and x > y. Note that both x and y are large. The first terms in
the asymptotics of Z are easy to compute: set z = n(3. Equation
(3) leads to
U1+ B) ~(nd) = & —
n —(n - - =
5 yB  nB
But ¢)(n) ~ In(n). So we have
| (1 n 1) 1 1 L1 1 1 1 1 1
n — ~N — — — —_——— Y — — —,
B 6 y8 g "B 2227 B yp

or 3~ %.
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More generally, we have

N y y y v
(e 5ero(s)) o (5]
+ = (1+—+=5+0|=5|)+0|=]]|-
x2 < y y? y3 x3
By bootstrapping, we obtain (we give the first terms)
. ny { 4 2 8 8
zZ=—|1-—

2 3y ' 9y2 + 135y3 + 4054
16

+ PR Y (3
1701y5 ' 45525y6 ' 18225y7

y8
1 1 4 16 1
Sl T T A Ay N (il
+x[ y T2 1358 T <4>]

y

sl )eslee ()] o ()]
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Note that the choice of dominant terms in the bracket of (4)
depends on «a. For instance, for & = 3/4, the dominant terms (in
decreasing order) are

1 1{1 1}{1 1}{1 1}{1 1 1}
7y7y27 X7y3 ) Xy7y4 ) Xy27y5 ) X27Xy37y6 LA

The quality of asymptotic (4) is given in Figure 3 and 4, for

n =500, and x € [v/n, n%°] (first range) so that y € [n®1, \/n].
For some values of j = n — x, we show Z/zn, where, as mentioned,
zn is the numerical solution of S'(zn) = 0. In the full range
JE€[n— n0'97 n — \/n], the precision is of order 1072, in a restricted
range, the precision is of order 1076,

Also a comparison of G,(Z) and Gp(zn) is given in Figure 5,
showing again a precision of order 107°.

1
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Figure 5: Gn(zn)/Gp(2), n = 500, as function of j
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Large deviation, j = n — n®,

Now we must compute S(Z) and its asymptotics. First we
compute In(Z + i), take the asymptotics wrt x, sum on i, and
again take the asymptotics wrt x (recall that n = xy). this leads to

S1(2) = x {(— In(2) 4+ 2In(y) + In(x))y — % + 40;/2 + 40§y3 +.. ]
2 2 49

373y 1352 T
+>1<()2/+61y+>+x12<)3/+)+0<>i/3>

Here we provide only a few terms but Maple knows more. Next
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3

2 94
3y—405y2+...:|
1 94

2
— —+1In(2) — 21 — -4 +...
y+3+ n(2) n(y) n(x)—l—y—i— 135,72 +

Agrge) B ) o3)

52(2) = x [(In(2) ~2In(y) — In(x))y +

—In(2) + 2In(y) + In(x) —
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So, finally
- 2
5(2) ~ x {1 —1In(2) + 2In(y) + In(x) — 3y + .. ]
+In(2) — 21In( )—In(x)+i+i+
g 3y 3y
RYEURTE T
x\ 2 3y 292 7
L1 (1, 10
x2\ 6 18y2
1
+0<X3
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Now we split S(Z) into two parts:

)
2
T1:x{l—ln(2)+2|n(y)+|n(x)—3y+..}

+1In(2) = 2In(y) — In(x),

1 1
2_3y+3y2+
1 1 1 1
+X<_2+3-y_2-)/2+..->
1 17
+X2< 18y?’ )
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This leads to
exp(S(2)) =e"te™ = e Ty,

with
7 89 18263

Ts3=e?=1+_—
3T€ T3y T 182 T 270y% T 32207
| 98000 9517337 491504273
3240y5 ' 97200y6 ' 2041200y7

5137

L( 1,1 7 2311 112469
2 "6y 12y2 ' 540y3 ' 6480y*

n 1 1 13 557 n
x2\ 24 T2y 932y2
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Here we have given all terms compatible with the expansion (4).
Also, with more precision,

2 2 44 26
T = x|1—1n(2) +21 In(x)— — — = % 2D
1=X n(2) +2In(y) + In(x) y 2 3 405y%

40 179968 4727552 3436796 5492621728
27y5 | 18225y6 ' 127575y7 ' 32805y8 ' 22143375y9 '

+1In(2) — 2In(y) — In(x).
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Now we must consider S(K)(2). By direct expansion, this gives the
following expressions (again we provide only the first few terms).
We must use up to six derivatives to get a sufficient precision (of

order x~2) in the Saddle integrals.

1[4 16 1 [ 12 40

@z =410 Loz 40

> X[y4+3y5+'”]+x2[ yto3y? ]
112 8 1[4 1
; F—i_ﬁ—i_..- +F F—’_-.. +O W 3
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1[a@, ), 1@, ) 1102,
2o ]e s ]k,

[ 1
] o ().

128

288 1 1440 1 {2880
?+... + 3 —7+... +5 s T

1280, 1. (1
280 Jvo (s

y8
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Large deviation, j = n — n®,

1 3072 1 18432 1
5)(3\ —

X4
1 {38400 1 268800 1
6)/3\

To check the quality of asymptotic (4), we give in Figure 6 the
comparison between the expression (5) and S(2)(2). The precision
is of of order 1072 In a restricted range, given in Figure 7, the
precision is of order 107*. o < 0.84 in this range.
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0.998

0.996

0.994 $

0.992

0.988

0.986

450

0.984
250 300 400

Figure 6: The quotient of the expression (5) and S(®)(%), as function of

j, n=>500
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1.0002

1.0001

0.9999

0.9998

320 340 360 380 400

420 440 460

Figure 7: The quotient of the expression (5) and S(®)(%), as function of

j, n="500. Restricted range, a < .84
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We proceed now as in Section 2. This leads to

2 3 4 5 6
u-a u'a u-a u
T = \F[uaw 1/§+ PR e 5+(9< >]

We give only as:
1 2 2 n +1 3 4+
a=1-——-—+...+—|z—=—+...
! 3y 9y2 x\2 3y

PN N Py
x2\ 8 4y x3 )

This leads to

with
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h_y 2 2
3 9y2

5 11

Set )
Ts := iMen.
V2r 2
This leads to
[2/]¢n(2) ~ Ts T3 Ta.

1
+ "+x<12_18y+

L1718 17
x2\288 432y ) " x3\576
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We can of course combine T3 and Tjy:

1 1 17207
7—6227_3-,_4_2]_—i 0

3y 18y2  30y3 + 3240y* e
1 < 11 35 15029 )

+ -
X

ot 36y 216y2 * 3240y3 e
n 1 1 1 n 3527 n Lo 1
x2\288 864y 5184y% x3)
We have made several experiments with (6), with n up to 500.
The result is unsatisfactory, only values of x of order \/n give

reasonable results. Also using e’2 instead of T3 does not improve

the precision. Actually, only very large values of n lead to good
precision.
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So we turn to another formulation: instead of using et T3 for
e>(2) we plug directly # into G,(z), ie we set

T7 = Gu(2),
leading to

j L VX
6n(2) ~ =23

For n = 500, using two and three terms in T4, we give in Figures 8
and 9, the quotient [2/]¢,(z)/ Ts. The precision is of order 107°.

T7T4 = Tg say .
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1.0005 :
1.0004 :
1.0003 ;:
1.0002 E;
1.0001 B
b -
250 300 350 400 450

Figure 8: The quotient [2/]¢,(z)/ Ts, two terms in Ty, as function of j,

n =500
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1.00001

1.00001

10.999995 o
0.99999
999985  °

0.99998

250 300 400 450

Figure 9: The quotient [2/]¢,(z)/ T, three terms in Ty, as function of j,

n =500
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Conclusion

Using an almost mechanized program in Maple, we have obtained
some asymptotic expressions for Stirling numbers in central and
non-central regions. We intend to use these techniques in other
non-central ranges.
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