PATTERNS IN RANDOM TREES

Michael Drmota*

Institute of Discrete Mathematics and Geometry
Vienna University of Technology
A 1040 Wien, Austria
michael.drmota@tuwien.ac.at
http://www.dmg.tuwien.ac.at/drmota/

* supported by the Austrian Science Foundation FWF, National Research Network Analytic Combinatorics and Probabilistic Number Theory, grant S96.

Contents

- Pattern in Cayley trees
- A central limit theorem
- Functional equations
- Systems of functional equations
- Combinatorics on pattern in trees
- Perspectives

Contents

- Pattern in Cayley trees
- A central limit theorem
- Functional equations
- Systems of functional equations
- Combinatorics on pattern in trees
- Perspectives

Cayley Trees: rooted labelled trees

$$= \bigcirc + \bigcirc + \frac{1}{2!} \bigcirc + \frac{1}{3!} \bigcirc$$

$$\mathcal{R} = \circ + \circ * \mathcal{R} + \frac{1}{2!} \circ * \mathcal{R} * \mathcal{R} + \frac{1}{3!} * \circ \mathcal{R} * \mathcal{R} * \mathcal{R} + \cdots$$

Generating functions

 r_n ... number of **rooted** labelled trees with n nodes

$$R(x) = \sum_{n \ge 1} r_n \frac{x^n}{n!}$$

$$\mathcal{R} = \circ + \circ * \mathcal{R} + \frac{1}{2!} \circ * \mathcal{R} * \mathcal{R} + \frac{1}{3!} \circ * \mathcal{R} * \mathcal{R} * \mathcal{R} + \cdots$$

$$R(x) = x + xR(x) + \frac{1}{2!}xR(x)^2 + \frac{1}{3!}xR(x)^3 + \cdots$$

$$R(x) = xe^{R(x)}$$

Cayley's formula (derived with Lagrange inversion)

$$r_n = n! \frac{1}{n} [u^{n-1}] e^{un} = n^{n-1}$$

$$r_n = n^{n-1}$$

 t_n ... number of **unrooted** labelled trees with n nodes (= r_n/n)

$$t_n = n^{n-2}$$

Probabilistic Model

Every unrooted labelled tree au with n nodes is equally likely

$$\left| \mathbb{P} \{ \tau \text{ occurs} \} = \frac{1}{n^{n-2}} \right|$$

Pattern \mathcal{M}

Pattern \mathcal{M}

Occurence of a pattern ${\cal M}$

Occurence of a pattern $\mathcal M$

Occurence of a pattern $\mathcal M$

Occurence of a pattern $\mathcal M$

Occurence of a pattern ${\mathcal M}$

in a labelled tree

Theorem (Chyzak & D. & Klausner & Kok, CPC '08)

 \mathcal{M} ... be a given finite tree.

 X_n ... number of occurrences of of $\mathcal M$ in a labelled tree of size n

 $\implies X_n$ satisfies a **central limit theorem** with

$$\mathbb{E} X_n \sim \mu n$$
 and $\mathbb{V} X_n \sim \sigma^2 n$.

 $\mu > 0$ and $\sigma^2 \ge 0$ depend on the pattern \mathcal{M} and can be computed explicitly and algorithmically and can be represented as polynomials (with rational coefficients) in 1/e.

Sum of weakly dependent random variables

Sum of weakly dependent random variables

Sum of weakly dependent random variables

Number of nodes of degree 3

= number of nodes of out-degree 2

 $r_{n,m}$... number of **rooted** labelled trees with n nodes and m nodes of out-degree 2

$$R(x,u) = \sum_{n,m} r_{n,m} \frac{x^n}{n!} u^m$$

$$\mathcal{R} = \circ + \circ * \mathcal{R} + \frac{1}{2!} \bullet * \mathcal{R} * \mathcal{R} + \frac{1}{3!} \circ * \mathcal{R} * \mathcal{R} * \mathcal{R} + \cdots$$

$$R(x,u) = x + xR(x,u) + u \frac{1}{2!}xR(x,u)^2 + \frac{1}{3!}xR(x,u)^3 + \cdots$$

$$R(x,u) = xu \frac{R(x,u)^2}{2!} + x \left(e^{R(x,u)} - \frac{R(x,u)^2}{2!} \right)$$

Recursive structure leads to functional equation for gen. func.:

$$A(x,u) = \Phi(x,u,A(x,u))$$

Theorem (Bender, Canfield, Meir & Moon, D.)

Suppose that $A(x,u) = \Phi(x,u,A(x,u))$, where $\Phi(x,u,a)$ has a power series expansion at (0,0,0) with non-negative coefficients and $\Phi_{aa}(x,u,a) \neq 0$.

Let $x_0 > 0$, $a_0 > 0$ (inside the region of convergence) satisfy the system of equations:

$$a_0 = \Phi(x_0, 1, a_0), \quad 1 = \Phi_a(x_0, 1, a_0).$$

Then there exists analytic function g(x,u),h(x,u), and $\rho(u)$ such that locally

$$A(x,u) = g(x,u) - h(x,u)\sqrt{1 - \frac{x}{\rho(u)}}.$$

Idea of the Proof.

Set
$$F(x,u,a)=\Phi(x,u,a)-a$$
. Then we have
$$F(x_0,1,a_0)=0$$

$$F_a(x_0,1,a_0)=0$$

$$F_x(x_0,1,a_0)\neq 0$$

$$F_{aa}(x_0,1,a_0)\neq 0.$$

Weierstrass preparation theorem implies that there exist analytic functions H(x,u,a), p(x,u), q(x,u) with $H(x_0,1,a_0)\neq 0$, $p(x_0,1)=q(x_0,1)=0$ and

$$F(x, u, a) = H(x, u, a) ((a - a_0)^2 + p(x, u)(a - a_0) + q(x, u)).$$

$$F(x, u, a) = 0 \iff (a - a_0)^2 + p(x, u)(a - a_0) + q(x, u) = 0.$$

Consequently

$$A(x,u) = a_0 - \frac{p(x,u)}{2} \pm \sqrt{\frac{p(x,u)^2}{4} - q(x,u)}$$
$$= \left[g(x,u) - h(x,u) \sqrt{1 - \frac{x}{\rho(u)}} \right],$$

where we write

$$\frac{p(x,u)^2}{4} - q(x,u) = K(x,u)(x - \rho(u))$$

which is again granted by the Weierstrass preparation theorem and we set

$$g(x,u) = a_0 - \frac{p(x,u)}{2}$$
 and $h(x,u) = \sqrt{-K(x,u)\rho(u)}$.

A Central Limit Theorem for Functional Equations

Suppose that $A(x,u) = \Phi(x,u,A(x,u))$, where $\Phi(x,u,a)$ has a power series expansion at (0,0,0) with non-negative coefficients and $\Phi_{aa}(x,u,a) \neq 0$ (+ *minor* technical conditions). Set

$$\mu = \frac{x_0 \Phi_x(x_0, 1, a_0)}{\Phi(x_0, 1, a_0)}$$
 and $\sigma^2 = \text{"long formula"}.$

Then then random variable X_n defined by $\mathbb{P}\{X_n=m\}=a_{n,m}/a_n$ satisfies a **central limit theorem** with

$$\mathbb{E} X_n \sim \mu n$$
 and $\mathbb{V} X_n \sim \sigma^2 n$.

Remark.
$$\mathbb{E} u^{X_n} = \sum_{m} \mathbb{P}\{X_n = m\} u^m = \frac{[x^n]A(x, u)}{[x^n]A(x, 1)}$$

Idea of the Proof.

$$A(x,u) = g(x,u) - h(x,u)\sqrt{1 - \frac{x}{\rho(u)}}$$

for certain analytic function g(x,u), h(x,u), and $\rho(u)$.

application of singularity analysis (Flajolet & Odlyzko)

$$\implies A_n(u) = [x^n] A(x, u) = \sum_{m > 0} a_{n,m} u^m \sim \frac{h(\rho(u), u) \cdot \rho(u)^{-n} \cdot n^{-3/2}}{2\sqrt{\pi}}$$

$$\implies \left| \mathbb{E} \, u^{X_n} = \frac{A_n(u)}{A_n(1)} \sim \frac{h(\rho(u), u)}{h(\rho(1), 1)} \left(\frac{\rho(1)}{\rho(u)} \right)^n \right|$$

⇒ central limit theorem by Quasi Power Theorem

Number of nodes of degree 3 in Cayley trees

$$R(x,u) = xe^{R(x,u)} + x(u-1)\frac{R(x,u)^2}{2}$$

$$x_0 = \frac{1}{e}, \quad r_0 = R(x_0) = 1.$$

⇒ central limit theorem with

$$\mathbb{E}\,X_n \sim rac{1}{2e}\,n$$
 and $\mathbb{V}\,X_n \sim \left(rac{1}{2e} - rac{1}{2e^2}
ight)n.$

Systems of functional equations

Suppose, that several generating functions

$$A_1(x,u) = \sum_{n,k} a_{1;n,k} u^k x^n, \dots, A_r(x,u) = \sum_{n,k} a_{r;n,k} u^k x^n$$

satisfy a system of non-linear equations

$$A_j(x,u) = \Phi_j(x,u,A_1(x,u),\ldots,A_r(x,u)),$$

where $\Phi_j(x, u, a_1, \dots, a_r)$ is non-linear in a_1, \dots, a_r for some j and has a power series expansion at (0,0,0) with non-negative coefficients (for all j).

Let $x_0 > 0$, $a_0 = (a_{0,0}, \dots, a_{r,0}) > 0$ (inside the region of convergence) satisfy the system of equations: $(\Phi = (\Phi_1, \dots, \Phi_r))$

$$\mathbf{a}_0 = \Phi(x_0, 1, \mathbf{a}_0), \quad 0 = \det(\mathbb{I} - \Phi_{\mathbf{a}}(x_0, 1, \mathbf{a}_0)).$$

Suppose further, that the **dependency graph** of the system $\mathbf{a} = \Phi(x, u, \mathbf{a})$ is **strongly connected**.

Then there exists analytic function $g_j(x,u), h_j(x,u)$, and $\rho(u)$ (that is **independent of** j) such that locally

$$A_j(x,u) = g_j(x,u) - h_j(x,u)\sqrt{1 - \frac{x}{\rho(u)}}.$$

If
$$A(x,u) = \sum_{n,k} a_{n,k} x^n u^k = F(x, u, A_1(x, u), \dots, A_j(x, u))$$
 (for some ana-

lytic function F satisfying certain conditions) then then random variable X_n defined by $\mathbb{P}\{X_n=m\}=a_{n,m}/a_n$ satisfies a **central limit theorem** with

$$\mathbb{E} X_n \sim \mu n$$
 and $\mathbb{V} X_n \sim \sigma^2 n$.

where μ and σ^2 can be computed.

Dependency graph: $G_{\Phi} = (V, E)$

$$V$$
 ... vertex set = $\{A_1, A_2, \ldots, A_r\}$

E ... (directed) edge set:

$$(A_i, A_j) \in E :\iff A_i(x, u)$$
 depends on $A_j(x, u)$ $\iff \Phi_i$ depends on A_j $\iff \frac{\partial \Phi_i}{\partial a_j} \neq 0.$

$$G_{\Phi}$$
 is stongly connected $\Longleftrightarrow \Phi_{\mathbf{a}} := \left(rac{\partial \Phi_i}{\partial A_j}
ight)$ irreducible

$$\det ig(\mathbb{I} - \Phi_{\mathbf{a}}(x_0, 1, \mathbf{a}_0) ig) = 0 \quad \Longleftrightarrow \quad \Phi_{\mathbf{a}} \text{ has dominant eigenvalue 1}$$

Fact

 Φ_a irreducible

 \Longrightarrow Every principle submatrix of Φ_a has smaller dominant eigenvalue (Perron-Frobenius theory for non-negative matrices)

Idea of the proof (reduction to a single equation)

$$\mathbf{a} = (A_1, \dots, A_r) = (A_1, \overline{\mathbf{a}}), \ \Phi = (\Phi_1, \dots, \Phi_r) = (\Phi_1, \overline{\Phi})$$

$$\mathbf{a} = \Phi(\mathbf{a}, x, u) \iff \begin{aligned} A_1 &= \Phi_1(A_1, \overline{\mathbf{a}}, x, u), \\ \overline{\mathbf{a}} &= \overline{\Phi}(A_1, \overline{\mathbf{a}}, x, u) \end{aligned}$$

The second system has dominant eigenvalue < 1 $\Longrightarrow \overline{\mathbf{a}} = \overline{\mathbf{a}}(x, u, A_1)$ is **analytic**

Insertion of this analytic solution into the first equation:

$$A_1 = \Phi_1((A_1, \overline{\mathbf{a}}(x, u, A_1), x, u) = G(A_1, x, u)$$

leads to single equation.

Occurence of a pattern ${\mathcal M}$

in a labelled tree

Partition of trees in classes (out-degree different from 2)

Recurrences $A_3 = xA_0A_2 + xA_0A_3 + xA_0A_4$

$$A_j(x) = \sum_{n,k} a_{j;n} \frac{x^n}{n!}$$

 $a_{j:n}$... number of trees of size n in class j

Recurrences $A_3 = x_{\mathbf{u}}A_0A_2 + x_{\mathbf{u}}A_0A_3 + x_{\mathbf{u}}A_0A_4$

$$A_j(x, \mathbf{u}) = \sum_{n,k} a_{j;n,m} \frac{x^n}{n!} \mathbf{u}^m$$

 $a_{j;n,m}$... number of trees of size n in class j with m occurrences of $\mathcal M$

$$A_{0} = A_{0}(x, u) = x + x \sum_{i=0}^{10} A_{i} + x \sum_{n=3}^{\infty} \frac{1}{n!} \left(\sum_{i=0}^{10} A_{i}\right)^{n},$$

$$A_{1} = A_{1}(x, u) = \frac{1}{2}xA_{0}^{2},$$

$$A_{2} = A_{2}(x, u) = xA_{0}A_{1},$$

$$A_{3} = A_{3}(x, u) = xA_{0}(A_{2} + A_{3} + A_{4})u,$$

$$A_{4} = A_{4}(x, u) = xA_{0}(A_{5} + A_{6} + A_{7} + A_{8} + A_{9} + A_{10})u^{2},$$

$$A_{5} = A_{5}(x, u) = \frac{1}{2}xA_{1}^{2}u,$$

$$A_{6} = A_{6}(x, u) = xA_{1}(A_{2} + A_{3} + A_{4})u^{2},$$

$$A_{7} = A_{7}(x, u) = xA_{1}(A_{5} + A_{6} + A_{7} + A_{8} + A_{9} + A_{10})u^{3},$$

$$A_{8} = A_{8}(x, u) = \frac{1}{2}x(A_{2} + A_{3} + A_{4})^{2}u^{3},$$

$$A_{9} = A_{9}(x, u) = x(A_{2} + A_{3} + A_{4})(A_{5} + A_{6} + A_{7} + A_{8} + A_{9} + A_{10})u^{4},$$

$$A_{10} = A_{10}(x, u) = \frac{1}{2}x(A_{5} + A_{6} + A_{7} + A_{8} + A_{9} + A_{10})^{2}u^{5}.$$

Final Result for
$$\mathcal{M} = \mathcal{M}$$

Central limit theorem with

$$\mu = \frac{5}{8e^3} = 0.0311169177\dots$$

and

$$\sigma^2 = \frac{20e^3 + 72e^2 + 84e - 175}{32e^6} = 0.0764585401...$$

Perspectives

Further Applications

- Contextfree languages
- Planar graphs (with Giménez & Noy)
- Random walks on graphs (Woess)
- Random Boolean formulas (Woods, Chauvin & Flajolet & Gittenberger & Gardy)

• ...

Generalizations

- General dependency graph
- Infinite systems of equations

• ...

