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Patterns in Trees

Cayley Trees: rooted labelled trees

1 1
R:o+O*R+§O*R*R+§*oR*R*R+...




Patterns in Trees

Generating functions
rn ... humber of rooted labelled trees with n nodes

n

n>1

1 1
R:o+o*R+§o*R*R—|—§o*R*R*R+...

R(zx) =2+ 2R(xz) + %a:R(x)Q + %xR(x)?’ + ...

R(x) = reft(@)
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Cayley’s formula (derived with Lagrange inversion)

rn=n! = [u" "1 = pn1
n

tn, ... Nnumber of unrooted labelled trees with n nodes (= ry,/n)
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Probabilistic Model

Every unrooted labelled tree 7 with n nodes is equally likely

1
nn—2

P{r occurs} =
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Pattern M
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Occurence of a pattern M
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Occurence of a pattern M : ;
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Occurence of a pattern M : ;
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Occurence of a pattern M : ;
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Patterns in Trees

Occurence of a pattern M i z iIn a labelled tree
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Theorem (Chyzak & D. & Klausner & Kok, CPC '08)
M ... be a given finite tree.
Xn ... number of occurences of of M in a labelled tree of size n

—> X,, satisfies a central limit theorem with

EXn~upun and VX, ~ on.

©n > 0 and o2 > 0 depend on the pattern M and can be computed
explicitly and algorithmically and can be represented as polynomials
(with rational coefficients) in 1/e.
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Sum of weakly dependent random variables
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Sum of weakly dependent random variables




Functional equations

Q

Number of nodes of degree 3 O/\\C

— number of nodes of out-degree 2

rn,m ... humber of rooted labelled trees with n nodes and m nodes of
out-degree 2

xn
R(x,u) = Z Tnm— U
o, n!

1 1
R:o+o*R+§o*R*R—I—§o*R*R*R+...

R(x,u) =z 4+ zR(z,u) +[u %mR(m, u)2 + %mR(m) u)3 + ..

R(x,u) = zu

R(xz,u)? n R(zu) R(z,u)?
Ol “° Ol




Functional equations

Recursive structure leads to functional equation for gen. func.:

Al(z,u) = P(x,u, A(x,u))




Functional equations

Theorem (Bender, Canfield, Meir & Moon, D.)

Suppose that |A(x,uv) = (z,u, A(x,u))|, where ®(z,u,a) has a power
series expansion at (0,0, 0) with non-negative coefficients and
¢aa(x7u7a) # O

Let g > 0, ag > O (inside the region of convergence) satisfy the system
of equations:

ag = P(xg,1,ag9), 1= Pu(xp,1,a0)|

Then there exists analytic function g(x,u), h(x,u), and p(u) such that
locally

X

p(u) |

A(xz,u) = g(x,u) — h(m,u)\/l —




Functional equations

Idea of the Proof.

Set F(x,u,a) = ®(x,u,a) —a. Then we have

F(xg,1,a09) =0
Fo(xp,1,a09) =0
Fr(zo,1,a0) # 0
Faa(z0,1,a0) # O.
Weierstrass preparation theorem implies that there exist analytic func-
tions H(xz,u,a), p(xz,u), g(x,u) with H(zg,1,a9) # 0, p(xg,1) = q(xp,1) =
O and

F(z,u,a) = H(z,u,a)((a — ag)® + p(z,u)(a — ag) + q(z,u)).



Functional equations

F(z,u,a) =0 <= (a-— ao)2 + p(z,u)(a —ag) + g(xz,u) = 0.

Consequently

GO w?(w,u)?

A(x,u) = ag 5 4

o Q($7u>

X

p(u)

~

= |g(x,u) — h(a:,u)\/l —

where we write

p(x, u)?
4

—q(z,u) = K(z,u)(z — p(u))

which is again granted by the Weierstrass preparation theorem and we

set

p(x,u)

g9(z,u) = ag —

and  h(z,u) = \/—K(a:,u)p(u).



Functional equations

A Central Limit Theorem for Functional Equations

Suppose that |A(x,uv) = (z,u, A(x,u))|, where ®©(z,u,a) has a power
series expansion at (0, 0,0) with non-negative coefficients and ®4q(x, u,a) #=
0 (+ minor technical conditions). Set

ZUOCDx(ZC(), 17 CLO)
®(z0,1,a0)

and o° = “long formula”.

/JJ:

Then then random variable X,, defined by |P{X, = m} = anm/an| Sat-
isfies a central limit theorem with

EXnp~upun and VX, ~ on.

. 28« i ==



Functional equations

Idea of the Proof.

A(x,u) = g(x,u) — h(a:,u)\/l —

p(u)

for certain analytic function g(x,u), h(x,u), and p(u).

application of singularity analysis (Flajolet & Odlyzko)

u).u) - U —n,n—3/2
—  Ap(u) = [t"A(z,u) = Y anmu™ ~ h(p(u),u) - p(u)

m>0 2/

—> |Eu

Xn _ An(u)  h(p(u), u) <p(1)>n
An(1)  h(p(1),1) \p(u)

—> central limit theorem by Quasi Power Theorem




Functional equations

Number of nodes of degree 3 in Cayley trees

R(z,u)?

R(x,u) = pelt(@u) 4 z(u—1) 5

1
To=—_, To= R(zg) = 1.

— central Ilimit theorem with

1 1 1
KX, ~— and VX ~<———) .
" 26n " De  2¢2 "



Functional equations

Systems of functional equations

Suppose, that several generating functions

A1(x,u) = Zalm,kukazn, oo S Ar(xyu) = Zar;mkuka@n
n,k nak

satisfy a system of non-linear equations

Ai(z,u) = Pi(z,u, A1(z,u),..., Ar(z,u))

~

where ®,(z,u,a1,...,ar) is non-linear in ay,...,ar for some j and has
a power series expansion at (0,0,0) with non-negative coefficients (for

all 7).

Let 9 > 0, ag = (ap,0,---,ar0) > 0 (inside the region of convergence)
satisfy the system of equations: (® = (Pq,...,P))

ag = ®(zg,1,a9), 0 =det(l— Pa(zp,1,a9)|




Functional equations

Suppose further, that the dependency graph of the system
a= ®(z,u,a) is strongly connected.

Then there exists analytic function g;(z,u),h;j(z,u), and p(u) (that is
independent of j) such that locally

T

p(u) |

Ai(z,u) = gj(z,u) — hj(a:,u)\/l —

If |A(z,u) = Zan,kaﬁnuk = F(z,u, A1(z,u),...,Aj(z,u))| (for some ana-
n,k
lytic function F satisfying certain conditions) then then random variable
Xp defined by |P{X,, = m} = an,m/an|Satisfies a central limit theorem

with

EXnp~un and VX, ~ on.

where 1 and o2 can be computed.



Functional equations

Dependency graph: G = (V, E)

V ... vertex set = {A1,As,..., Ar}
E ... (directed) edge set:

(A;,Aj) € E <= A;j(xz,u) depends on A;(z,u)
<— P, depends on Aj

oD,

<
8aj

£ 0.

G Is stongly connected <— ®, := <

Ob;

J

) irreducible




Functional equations

det (]I — P,(xp, 1,ao)) =0 <= Pz has dominant eigenvalue 1

Fact

$, irreducible

—> Every principle submatrix of 5 has smaller dominant eigenvalue

(Perron-Frobenius theory for non-negative matrices)



Functional equations

Idea of the proof (reduction to a single equation)

a=(Aq1,....,A,) = (A1,a), D= (Pq1,...,P,) = (@1,6)

A = P1(Ag,a,z,u),

a— @(a,x,u) < a :$(A172_1,$,’U,)

T he second system has dominant eigenvalue <1
—> a = a(x,u,| A1) is analytic

Insertion of this analytic solution into the first equation:

A = P1((Ar,a(z,u, A1), z,u) = G(A1, z,u)

leads to single equation.



Combinatorics on Pattern in Trees

Occurence of a pattern M i z iIn a labelled tree




Combinatorics on Pattern in Trees

Partition of trees in classes (L1 ... out-degree different from 2)




Combinatorics on Pattern in Trees

Recurrences | Az = xAgAos + tAgA3 + cAQA,

?‘%: :/‘ +£§%;:/‘
a % B —
SR NP

n

€T
Aj(z) = Z%’;ng
n.k )

aj., ... humber of trees of size n in class j



Combinatorics on Pattern in Trees

Recurrences | A3 = xuAgAos + xuAgAsz + xuAgAg

5 5

a:.’I’L

Aj(z,u) =) ajnm E“m

aj:p.m --- Number of trees of size n in class j with m occurences of M



Combinatorics on Pattern in Trees

10 00 "
AO:Ao(aZ,u)ICU—FwZAZ'—FCB Z 1 (ZA) )

1=0 n= 377’I
1
Al = A1(z,u) = 5:&42,

Ay = Ax(z,u) = xApgAz,
Az = Az(z,u) = zAg(A2 + Az + Ag)u,
Ag = Ag(z,u) = 2Ag(As + Ag + A7 + Ag + Ag + A1g)u?,

1
Ag = Ag(x,u) = ExA%u

Ag = Ag(z,u) = zA1 (A2 + Az + Ag)u?,
A7 = A7(z,u) = 241 (As + Ag + A7 + Ag + Ag + A10)u’,

Ag = Ag(z,u) = Sa(Aa + A3 + A0)%u?,

Ag = Ag(z,u) = x(Ax + Az + A4)(As + Ag + A7 + Ag + Ag + A1o)u”,
1

A10 = Ar0(z,u) = Jw(As + Ag + A7 + Ag + Ag + A10)%u.
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o

Final Result for M =

Central limit theorem with

5

= — =0.0311169177...
H 8e3

and
> 20e3+ 72e? + 84e — 175

= 0.0764585401....
32¢6

o



Perspectives

Further Applications
e Contextfree languages
e Planar graphs (with Giménez & Noy)
e Random walks on graphs (Woess)

e Random Boolean formulas (Woods, Chauvin & Flajolet & Gitten-
berger & Gardy)

o ...
Generalizations
e General dependency graph

e Infinite systems of equations
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