
What kind of laws come from urns?

Brigitte CHAUVIN

INRIA Rocquencourt, Projet Algorithms

and

Université de Versailles St-Quentin, LMV

Joint work with Nicolas POUYANNE

Colloquium for Philippe Flajolet’s 60th birthday, December, 1-2, 2008

Pólya-Eggenberger urns with 2 colours

One urn, red and black balls

Replacement matrix R =

(
a b
c d

)
, a, b, c, d integers.

Composition vector UDT (n) =

(
red at time n

black at time n

)
; UDT (0) =

(
x0

y0

)

Pólya-Eggenberger urns with 2 colours

Replacement matrix R =

(
a b
c d

)
, a, b, c, d integers.

Composition vector UDT (n) =

(
red at time n

black at time n

)
; UDT (0) =

(
x0

y0

)

Question: Asymptotics of UDT (n)?

References

[1] G. Pólya Sur quelques points de la théorie des probabilités. Ann. Inst.
Henri Poincaré 1 (1931), 117–161.

[2] H.M. Mahmoud Pólya urn models. CRC Press, (2008)

[3] S. Janson Functional limit theorem for multitype branching processes
and generalized Pólya urns. Stochastic Processes and Applications, 110
(2004), 177–245.

[4] P. Flajolet, J. Gabarró, H. Pekari Analytic urns. Annals of
Probability, 33 (3) (2005), 1200–1233.

[5] N. Pouyanne An algebraic approach of Pólya processes (2005). Ann.
Inst. Henri Poincaré, Vol. 44, No. 2, 293–323.

Pólya-Eggenberger urns with 2 colours

One urn, red and black balls

Replacement matrix R =

(
a b
c d

)
, a, b, c, d integers.

Composition vector UDT (n) =

(
red at time n

black at time n

)
; UDT (0) =

(
x0

y0

)
Assumption

Balance: a + b = c + d := S
at time n = x0 + y0 + Sn.

R =

(
a b
c d

)
∼
(
S 0
0 m

)
m = σS = a− c = d− b

2 kinds of asymptotics:

• Gaussian: when σS < 1
2S “small” urn

UDT (n)− nv1√
n

D−→
n→∞

N (0,Σ2)

2 kinds of asymptotics:

• Gaussian: when σS≤1
2S “small” urn

UDT (n)− nv1√
n
√

log n

D−→
n→∞

N (0,Σ2)

2 kinds of asymptotics:

• Gaussian: when σS < 1
2S “small” urn

UDT (n)− nv1√
n

D−→
n→∞

N (0,Σ2)

• non Gaussian: when 1
2S < σS < S “large” urn

UDT (n) = nv1 + nσWDTv2 + o(nσ)

where

v1, v2 are deterministic vectors
WDT is a martingale’s limit
o() means a.s. and in any Lp, p ≥ 1
the moments of WDT can be recursively calculated.

2 kinds of asymptotics:

• Gaussian: when σS < 1
2S “small” urn

UDT (n)− nv1√
n

D−→
n→∞

N (0,Σ2)

• non Gaussian: when 1
2S < σS < S “large” urn

UDT (n) = nv1 + nσWDTv2 + o(nσ)

where

v1, v2 are deterministic vectors
WDT is a martingale’s limit
o() means a.s. and in any Lp, p ≥ 1
the moments of WDT can be recursively calculated.

Goal: distribution of WDT

Embedding

Continuous-time Markov process (UCT (t))t≥0

UCT (0) =

(
x0

y0

)
.

Exp(1) clock on each ball; independence of the clocks.

Branching:
→ if a red ball rings, replace it by a + 1 red balls and b black balls
→ if a black ball rings, replace it by c red balls and d + 1 black balls

0 < τ1 < · · · < τn < . . . are the jump times

(UCT (τn))n≥0
D
= (UDT (n))n≥0

Embedding

Continuous-time Markov process (UCT (t))t≥0

UCT (0) =

(
x0

y0

)
.

Exp(1) clock on each ball; independence of the clocks.

Branching:
→ if a red ball rings, replace it by a + 1 red balls and b black balls
→ if a black ball rings, replace it by c red balls and d + 1 black balls

0 < τ1 < · · · < τn < . . . are the jump times

(UCT (τn))n≥0
D
= (UDT (n))n≥0

Benefit: independence

Outline

Discrete urn UDT (n) −→ Continuous-time branching process UCT (t)
WDT WCT

Outline

Discrete urn UDT (n) −→ Continuous-time branching process UCT (t)
WDT WCT

connection: WCT = ξσWDT where ξ
D
= Γ(x0+y0

S)

Outline

Discrete urn UDT (n) −→ Continuous-time branching process UCT (t)
WDT WCT

connection: WCT = ξσWDT where ξ
D
= Γ(x0+y0

S)

↓
Independence properties
↓

Dislocation equations on WCT

Outline

Discrete urn UDT (n) −→ Continuous-time branching process UCT (t)
WDT WCT

connection: WCT = ξσWDT where ξ
D
= Γ(x0+y0

S)

↓
Independence properties
↓

Dislocation equations on WCT

↓
Differential system on the Fourier transform of WCT

Outline

Discrete urn UDT (n) −→ Continuous-time branching process UCT (t)
WDT WCT

connection: WCT = ξσWDT where ξ
D
= Γ(x0+y0

S)

↓
Independence properties
↓

Dislocation equations on WCT

↓
Differential system on the Fourier transform of WCT

↓
Resolution → distribution of WCT

Outline

Discrete urn UDT (n) −→ Continuous-time branching process UCT (t)
WDT WCT

connection: WCT = ξσWDT where ξ
D
= Γ(x0+y0

S)

↓
Independence properties
↓

Dislocation equations on WCT

↓
Differential system on the Fourier transform of WCT

↓
Resolution → distribution of WCT

(connection) ↓

Distribution of WDT

Dislocation equations

Simplification of the notations:

Xt := UCT (t) starting from (x0, y0) = (1, 0)
Yt := UCT (t) starting from (x0, y0) = (0, 1)

Dislocation equations

Simplification of the notations:

Xt := UCT (t) starting from (x0, y0) = (1, 0)
Yt := UCT (t) starting from (x0, y0) = (0, 1)

∀t > first splitting time τ1,Xt
D
= [a + 1]Xt−τ1 + [b]Yt−τ1

Yt
D
= [c]Xt−τ1 + [d + 1]Yt−τ1,

[] is a notation

Dislocation equations

Simplification of the notations:

Xt := UCT (t) starting from (x0, y0) = (1, 0)
Yt := UCT (t) starting from (x0, y0) = (0, 1)

∀t > first splitting time τ1,Xt
D
= [a + 1]Xt−τ1 + [b]Yt−τ1

Yt
D
= [c]Xt−τ1 + [d + 1]Yt−τ1,

[] is a notation
Take projections, renormalize, take the limit, t→ +∞:

WCT
(1,0)

not
= X

D
= e−mτ1

(
[a + 1]X + [b]Y

)

WCT
(0,1)

not
= Y

D
= e−mτ1

(
[c]X + [d + 1]Y

)

Dislocation equations

Simplification of the notations:

Xt := UCT (t) starting from (x0, y0) = (1, 0)
Yt := UCT (t) starting from (x0, y0) = (0, 1)

∀t > first splitting time τ1,Xt
D
= [a + 1]Xt−τ1 + [b]Yt−τ1

Yt
D
= [c]Xt−τ1 + [d + 1]Yt−τ1,

[] is a notation
Take projections, renormalize, take the limit, t→ +∞:

WCT
(1,0)

not
= X

D
= e−mτ1

(
[a + 1]X + [b]Y

)

WCT
(0,1)

not
= Y

D
= e−mτ1

(
[c]X + [d + 1]Y

)
Goal: ? distribution of X and Y ;

1. If you love Analytic Combinatorics:

Let an = IE(Xn) bn = IE(Y n)

Let F (T) :=
∑
n≥0

an
n!
T n G(T) :=

∑
n≥0

bn
n!
T n Laplace series

1. If you love Analytic Combinatorics:

Let an = IE(Xn) bn = IE(Y n)

Let F (T) :=
∑
n≥0

an
n!
T n G(T) :=

∑
n≥0

bn
n!
T n Laplace series

Dislocation equations
↓

Recursion on the moments

1. If you love Analytic Combinatorics:

Let an = IE(Xn) bn = IE(Y n)

Let F (T) :=
∑
n≥0

an
n!
T n G(T) :=

∑
n≥0

bn
n!
T n Laplace series

Dislocation equations
↓

Recursion on the moments

↓ (multinomial formula)
F (T) + mTF ′(T) = F (T)a+1G(T)b

G(T) + mTG′(T) = F (T)cG(T)d+1

+ initial conditions

2. If you like Probability, too:

Let F(x) = IE(eixX) G(x) = IE(eixY)

2. If you like Probability, too:

Let F(x) = IE(eixX) G(x) = IE(eixY)

Insert in the dislocation equation:

F(x) =
x

mx1+ 1
m

∫ x

0

Fa+1(t)Gb(t) dt

t1−1/m
, (x > 0)

2. If you like Probability, too:

Let F(x) = IE(eixX) G(x) = IE(eixY)

Insert in the dislocation equation:

F(x) =
x

mx1+ 1
m

∫ x

0

Fa+1(t)Gb(t) dt

t1−1/m
, (x > 0)

Derive: 
F(x) + mxF ′(x) = F(x)a+1G(x)b

G(x) + mxG ′(x) = F(x)cG(x)d+1

+ initial conditions

2. If you like Probability, too:

Let F(x) = IE(eixX) G(x) = IE(eixY)

Insert in the dislocation equation:

F(x) =
x

mx1+ 1
m

∫ x

0

Fa+1(t)Gb(t) dt

t1−1/m
, (x > 0)

Derive: 
F(x) + mxF ′(x) = F(x)a+1G(x)b

G(x) + mxG ′(x) = F(x)cG(x)d+1

+ initial conditions

Singular in 0

Resolution of the differential system F(x) + mxF ′(x) = F(x)a+1G(x)b

G(x) + mxG ′(x) = F(x)cG(x)d+1

Change of function, with xS(−Sw)m = 1.
f (w) = x

1
mF(x)

g(w) = x
1
mG(x),

Non singular differential system

(pf60)

 f ′ = fa+1gb

g′ = f cgd+1

Resolution of the differential system

(pf60)

 f ′ = fa+1gb

g′ = f cgd+1

First integral:

1

gm
− 1

fm
= Constant =

1

κm

Resolution of the differential system

(pf60)

 f ′ = fa+1gb

g′ = f cgd+1

First integral:

1

gm
− 1

fm
= Constant =

1

κm

g is a function of f :

g =
f(

1 +
(
f
κ

)m)1/m

Resolution of the differential system

(pf60)

 f ′ = fa+1gb

g′ = f cgd+1

First integral:

1

gm
− 1

fm
= Constant =

1

κm

g is a function of f :

g =
f(

1 +
(
f
κ

)m)1/m

Insert in (pf60):

f ′

fS+1
×
(

1 +

(
f

κ

)m) b
m

= 1 (+ boundary condition)

Resolution of the differential system (. . .) f ′

fS+1 ×
(

1 +
(
f
κ

)m) b
m

= 1

can be written

d

dw

(
I ◦ (

f

κ
)

)
= −κS with I ′(z) = −(1 + zm)

b
m

zS+1
.

Resolution of the differential system (. . .) f ′

fS+1 ×
(

1 +
(
f
κ

)m) b
m

= 1

can be written

d

dw

(
I ◦ (

f

κ
)

)
= −κS with I ′(z) = −(1 + zm)

b
m

zS+1
.

I(z) =

∫
[z,z∞)

(1 + um)
b
m
du

uS+1

Resolution of the differential system (. . .) f ′

fS+1 ×
(

1 +
(
f
κ

)m) b
m

= 1

can be written

d

dw

(
I ◦ (

f

κ
)

)
= −κS with I ′(z) = −(1 + zm)

b
m

zS+1
.

and

↓ I(z) =

∫
[z,z∞)

(1 + um)
b
m
du

uS+1

I
(
f(w)
κ

)
= C0 − κSw, with C0 a negative real constant.

Resolution of the differential system (. . .) f ′

fS+1 ×
(

1 +
(
f
κ

)m) b
m

= 1

can be written

d

dw

(
I ◦ (

f

κ
)

)
= −κS with I ′(z) = −(1 + zm)

b
m

zS+1
.

and

↓ I(z) =

∫
[z,z∞)

(1 + um)
b
m
du

uS+1

I
(
f(w)
κ

)
= C0 − κSw, with C0 a negative real constant.

↓ Let J be the inverse function of I

f (w) = κJ
(
C0 − κSw

)

Resolution of the differential system (. . .) f ′

fS+1 ×
(

1 +
(
f
κ

)m) b
m

= 1

can be written

d

dw

(
I ◦ (

f

κ
)

)
= −κS with I ′(z) = −(1 + zm)

b
m

zS+1
.

and

↓ I(z) =

∫
[z,z∞)

(1 + um)
b
m
du

uS+1

I
(
f(w)
κ

)
= C0 − κSw, with C0 a negative real constant.

↓ Let J be the inverse function of I

f (w) = κJ
(
C0 − κSw

)
F(x) = κx−

1
mJ
(
C0 + κS

S x
− S
m

)

Consequences of

F(x) = κx−
1
mJ
(
C0 + κS

S x
− S
m

)
many...

Consequences of

F(x) = κx−
1
mJ
(
C0 + κS

S x
− S
m

)
many...

Ex 1:

F(x) ∼
x→+∞

κJ(C0)x
− 1
m

The Fourier transform of X is not integrable. The existence of a density does
not come from there.

Consequences of

F(x) = κx−
1
mJ
(
C0 + κS

S x
− S
m

)
many...

Ex 1:

F(x) ∼
x→+∞

κJ(C0)x
− 1
m

The Fourier transform of X is not integrable. The existence of a density does
not come from there.

Ex 2:
X is not stable

Proof. Insert the Fourier transform of a stable distribution in the differential
equation and see the contradiction.

More on these distributions:

Define more general continuous-time R2-valued Markov processes.

Initial condition: (x0, y0) ∈ R+ × R+

Activities α and jumps governed by matrix R =

(
a b
c d

)
State vector Ux0,y0,α,R(t),

renormalized → martingale

−→
t→∞

Wx0,y0,α,R with the property:

for every n ∈ N,

Wx0,y0,α,R = [n]Wx0
n ,

y0
n ,α,R

.

W is infinitely divisible

More on these distributions:

Define more general continuous-time R2-valued Markov processes.

Initial condition: (x0, y0) ∈ R+ × R+

Activities α and jumps governed by matrix R =

(
a b
c d

)
State vector Ux0,y0,α,R(t),

renormalized → martingale

−→
t→∞

Wx0,y0,α,R with the property:

for every n ∈ N,

Wx0,y0,α,R = [n]Wx0
n ,

y0
n ,α,R

.

W is infinitely divisible

Remember: WCT = ξσWDT

↑ ↑
unimodal non unimodal

Replacement matrix R =

(
9 2
1 10

)
Starting from 1 red ball and 0 black ball; Figure = WDT

1

−3

4

7

5

3

9

500

6

10

8

1 500

2

11

0

1 000 2 000 2 500

Replacement matrix R =

(
9 2
1 10

)
Starting from 1 red ball and 1 black ball; Figure = WDT

0

0

48

80

32

1 000500

64

24

16

8

40

1 500 2 000

72

10−4

56

2 500

Replacement matrix R =

(
6 1
2 5

)
Starting from 9 red balls and 9 black balls; Figure = WDT

4 0002 0000

8

80

10−4

6 000

32

16

48

72

88

40

24

64

56

0

