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Question: Asymptotics of U1 (n)?
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Pdlya-Eggenberger urns with 2 colours

One urn, red and black balls
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eplacement matrix (c J

) a,b, c, d integers.

DT # red at time n \ DT/ [ o
Composition vector [/ (# black at time ) U™ (0) = ( Yo )

Assumption
# at time n = xy + yp + Sn.

Balance: a +b=c+d:= S

a b S 0
R_<cd>N<Om> m=ocS=a—c=d-—2>
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e non Gaussian: when %S <oS<S “large” urn

UPT(n) = nvy + n? WP, + o(n?)

where

V1, Uy are deterministic vectors

WPT is a martingale’s limit

o( ) means a.s. and inany I/ p > 1

the moments of W7 can be recursively calculated.
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e non Gaussian: when %S <oS<S “large” urn

UPT(n) = nvy + n°WP 0, + o(n?)

where

V1, Uy are deterministic vectors

WPT is a martingale’s limit

o( ) means a.s. and inany I/ p > 1

the moments of W7 can be recursively calculated.

Goal: distribution of W11



Embedding

Continuous-time Markov process (U7 (t));>¢

UCT(0) = (;0) )

Exp(1) clock on each ball; independence of the clocks.

Branching:
— if a red ball rings, replace it by a + 1 red balls and b black balls
— if a black ball rings, replace it by c red balls and d + 1 black balls

O<m<---<T, <... are the jump times

U Tz = (UPT(0))nz0




Embedding

Continuous-time Markov process (U7 (t));>¢

UCT(0) = (ig )

Exp(1) clock on each ball; independence of the clocks.

Branching:
— if a red ball rings, replace it by a + 1 red balls and b black balls
— if a black ball rings, replace it by c red balls and d + 1 black balls

O<m<---<T, <... are the jump times

U Tz = (UPT(0))nz0

Benefit: independence
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Discrete urn U1 (n) ——  Continuous-time branching process U7 ()
WDT WOT
connection: W¢T = copy P where ¢ 2 [(faEi)
l
Independence properties
l
Dislocation equations on W¢T
l
Differential system on the Fourier transform of W7
l

Resolution — distribution of W¢7T

(connection) |

Distribution of W21




Dislocation equations

Simplification of the notations:

X, = UT(t) starting from (z9,y0) = (1,0)
Y, == UYT(t) starting from (29, yo) = (0, 1)
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Dislocation equations

Simplification of the notations:

X, = U“T(t) starting from (z9, ) = (1,0)
Y, = UYT(t) starting from (29, yo) = (0, 1)

Vit > first splitting time 77,

| | is a notation
Take projections, renormalize, take the limit, ¢ — —+o0:

.

ng) wx 2 oemmn ([a + 1]X + [b]Y)

W(%f) Wy B gmmn ([C]X + [d + 1]Y)

\

Goal: 7 distribution of X and Y":
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1. If you love Analytic Combinatorics:

Let a,=EX") b,=IEY")
Let F(T):= Do gm G(T):=» —T" Laplace series

n n
n>0 n>0

Dislocation equations

l

Recursion on the moments

| (multinomial formula)
( F(T) +mTF(T) = F(T)"'G(T)"

{ G(T) +mTG(T) = F(T)G(T)"!

s initial conditions
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2. If you like Probability, too:
Let Flz) = IE(e”X) G(z) = ]E<emy)

Insert in the dislocation equation:

o dt
Fa)=—r [ #0005 @>0

ma

Derive:

( F(x) +maF (x) = F(x)" G (z)

{ G(x) +maG(x) = Flx)G(x)H!

|+ initial conditions
Singular in 0



Resolution of the differential system

{ ‘7:(33> + ma:]—"’(:z:) — J’-'(a:)aﬂg(g;)b
G(z) +maG'(x) = F(x)G(x)H!

Change of function, with 2°(—Sw)™ = 1.

Non singular differential system

f/ _ fa—i—lgb
(pf60) {
g/ _ fcgd+1
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Resolution of the differential system

f/ _ fa—l—lgb
(p.f60)
g/ _ fcgd+1
First integral:
1 1
— — Constant = —
gm fm Km
g is a function of f:
_ /
g —

Insert in (pf60):

f "
X (1 + (—) ) =1 (+ boundary condition)

fS+1
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Resolution of the differential system (...) fgf;l X (1 + (

can be written

Sl

=~

dw " ZS+1

a (Io (i)> — S with  I'(z) = C(L42m) |

b du
I(2) = | my L
(2) /[Z’ZOO)( + u™) 5




e
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Resolution of the differential system (...) f«Sf'H X (1 + (

can be written

b
d f S . / (1 + Zm)m
- (I o (;)) = —kr>  with [I'(z)=— g
and
by du
l I(z) = / (14+u")m
. RS

1 (f(w)) = C() — /{Sw, with Cj a negative real constant.
! Let J be the inverse function of [
flw)=kJ (Ch— K w)

Fl(x) = k] (CO + %x_%>
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not come from there.



Consequences of

S

Flx) = Kz (Co + %:E_W>

many...

Ex 1:

Flx) ~ HJ(C())I_%

Tr——+00

The Fourier transform of X is not integrable. The existence of a density does
not come from there.

Ex 2:

X Is not stable

PROOF. Insert the Fourier transform of a stable distribution in the differential
equation and see the contradiction.



More on these distributions:
Define more general continuous-time R*-valued Markov processes.
Initial condition: (g, 1)) € Ry x R,
Activities v and jumps governed by matrix R = (CCL 2)
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t—>—o>o 0,40, R with the property:

for every n € N,

n

WLL‘(),y(),OJ,R — [n] on 7%;OC,R'

W is infinitely divisible




More on these distributions:

Define more general continuous-time R*-valued Markov processes.
Initial condition: (g, 1)) € Ry x R,

Activities v and jumps governed by matrix R = (CCL 2)

State vector U, 4, a.r(1),

renormalized — martingale

> Wagar with the property:

for every n € N,

n

WLL‘(),y(),OJ,R — [n] on 7%;OC,R'

W is infinitely divisible

Remember: Wt = copw PT
1 1

unimodal non unimodal
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Starting from 1 red ball and 1 black ball; Figure = WP7
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Replacement matrix R = ( g é )

Starting from 9 red balls and 9 black balls; Figure = WP1

107

0 2000 4 000 6 000



