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Theorem (Angluin et al., 2007). A 
predicate is computable in the basic 
population protocol model if and only if 
it is semilinear.
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Aim: to compute a number p, i.e. to converge to a 
given proportion p of blue balls.

Example. The protocol pictured on the right 
computes p=2-√2=0.58... . More precisely, 

Theorem (Ph. Ch., Bournez et al.). The stationary 
distribution of the proportion of blue balls 
converges to p, when the number N of balls goes 
to ∞. The error term is O(N-1/2).
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Each configuration can be encoded by a 
vector x=(x1,x2, ... ,xN) ∈ {0,1}N, in which

xi = 1{ball n°i is in the left chamber} .
Moving ball n°i amounts to change entry n°
i of x.
Moving a random ball, amounts to jump 
from vertex x, along a random edge of the 
hypercube H={0,1}N.
Since H is a regular graph, the uniform 
distribution is the stationary distribution for 
this random walk.
Thus the binomial distribution (N,0.5) is 
stationary for the Markov chain X.
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Theorem (Flajolet et al., 2006). For a balanced urn model, the generating 
function of histories starting from state (a0,b0) and ending at (a,b) after n steps, 

is given by 

in which X and Y are solutions of 
with initial conditions  (x0,y0).
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is an Ornstein–Uhlenbeck process. It admits a Gaussian 
stationary distribution. The stationary variance is given by:

Any solution Yt of the SDE:

An Ornstein–Uhlenbeck process Yt has closed-form 
representation in terms of the Brownian motion B(t):
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There exist 27 rules, described by triplets (a,b,c) 
in {0,1,2}3. In the example, (a,b,c)=(1,1,2).
Let p denote the unique root in (0,1), of the 
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Theorem (Ph. Ch., Bournez et al.). Among the 26 
possible rules, one is trivial, 10 converge to 0 or 
1. For the 16 other rules, the stationary 
distribution of the proportion of blue balls is 
concentrated around p, when the number N of 
balls goes to ∞. The error term is O(N-1/2).



Bibliography

Physics
Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem, Paul Ehrenfest and Tatiana Ehrenfest, 
Physikalische Zeitschrift 8 (1907), no. 9, 311–314.
On the theory of Brownian Motion, G.E.Uhlenbeck and L.S.Ornstein, Phys.Rev. 36:823–41, 1930
Random walk and the theory of Brownian motion, Mark Kac, Am. Math. Monthly 54 (1947), 369–391.

Urn models
Polya Urn Models, Hosam Mahmoud, 2008.
Functional limit theorems for multitype branching processes and generalized Pólya urns, Svante Janson, 
Stochastic Processes and Applications 110 (2004), no. 2, 177–245.
Limit theorems for triangular urn schemes, Svante Janson, PTRF 134 (2006), 417–452.
Some exactly solvable models of urn process theory, Philippe Flajolet, Philippe Dumas, and Vincent Puyhaubert, 
DMTCS proc. XX, 2006, 57–116.

Population protocols
An introduction to population protocols, James Aspnes and Eric Ruppert, Bull. EATCS, vol. 93, 106–125, 2007.
On the Convergence of Population Protocols When Population Goes to Infinity, Philippe Chassaing, Olivier 
Bournez, Johanne Cohen, Lucas Gerin and Xavier Koegler, 2008.
A simple protocol for fast robust approximate majority, Dana Angluin, James Aspnes, and David Eisenstat, in 
Proc. Distributed Computing, 21st International Symposium, pages 20–32, 2007


