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motivation
This work is a part of a larger program on developing machinery for
reading asymptotics of the coefficients of multivariate generating
functions similar to that perfected by Philippe in univariate case.
His work was and remains a source of motivation and inspiration for
us.
All faults are still ours.
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In large random spatial objects one can observe sometimes a
peculiar phenomenon, separation into regions with different local
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motivation

In large random spatial objects one can observe sometimes a
peculiar phenomenon, separation into regions with different local
statistics.
The simplest way to explain what we mean is to look at some
examples:

This is a colorful representation of a random matching in a special
planar graph, Aztec diamond.



large Aztec diamonds

Remarkably, a large random tiling
exhibits emergence of order:



large Aztec diamonds

Remarkably, a large random tiling
exhibits emergence of order:

The Arctic Circle Theorem states
that outside a (1 + ǫ) enlargement
of the inscribed circle the
orientations of the dominos are
converging in probability to a
deterministic brick wall pattern
(yielding monochrome regions),
while inside a (1 − ǫ) reduction of
the inscribed circle the measure
has positive entropy. (Propp,
Kuperberg, Shor, Jokusch,...)
They proved in several different
ways the Arctic Circle
phenomenon and found the
densities of each color within the
circle, the temperate zone.



Random Groves

Consider another random object, the (cube) groves introduced by
Speyer, Carroll, Petersen. Cube groves are random subgraphs of
triangular lattices.
Here is an example:



Arctic Circles in random groves
Coloring differently the triangles with edges in each direction, we can
visualize large random groves. They, like Aztec Diamond tilings,
exhibit different regions!

Speyer and Peterson proved that the orientations are frozen outside
the inscribed circle. But what are the densities inside? That was
unknown that far.



arctic regions in diabolo fortress tilings

One more example of the frozen/moderate regions:

Discovered and analyzed by Jim Propp and collaborators. The shape
of the frozen region was conjectured by Cohn and Pemantle, proved
by Kenyon and Okounkov using variational principle.
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Let us describe what is depicted here.
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This is a fancy way to represent a random matching, or dimer
configuration on the right graph (fortress).



fortresses

Let us describe what is depicted here.

This is a fancy way to represent a random matching, or dimer
configuration on the right graph (fortress).
Some combinatorial magics (invented first by Jim Propp) yields exact
generating functions for the probabilities of particularly oriented
edges (not for faint-hearted, though fits on 2 pages).
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Generating functions provide one with a clean interface between
combinatorics and probability or statistical physics. Combinatorialists
learned how to deduce them. Our task is to extract asymptotics from
them.
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Let pkln be the probability to have red domino (red triangle) at position
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generating functions
Generating functions provide one with a clean interface between
combinatorics and probability or statistical physics. Combinatorialists
learned how to deduce them. Our task is to extract asymptotics from
them.
Let pkln be the probability to have red domino (red triangle) at position
(k , l) in n-th random tiling of Aztec diamond or n-th random grove or
n-th fortress, and set

F (x , y , z) =
∑

k,l,n

pklnxky lzn.

Then

Fa(x , y , z) =
z/2

(1 − yz)(1 − z
2 (x + x−1 + y + y−1) + z2)

for Aztec diamonds and

Fg(x , y , z) =
2z2

3(1 − z)(1 + xyz − 1
3 (x + y + z + xy + xz + yz))

for groves.



asymptotics

The fact that the coefficients pkln are probabilities imply that the
asymptotic information about the behavior of p along the ray

n → ∞, k/n → u, l/n → v

is encoded in the local geometry of the pole divisor near (1, 1, 1):
pole divisor is the variety

A = {Q = 0},

where Q is the denominator of the rational function

F =
P(x , y , z)

Q(x , y , z)
.



pole divisor
Let us look at A near the point (1, 1, 1). Here is the pole varieties:

for the Aztec diamond
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and for the random groves

1.5

1.0 y

0.5

0.5

0.75

0.75

z

x

1.0

1.0

1.25

1.25

1.5

1.5

0.5

In both cases there are two components near (1, 1, 1): a smooth one
({yz = 1} in the Aztec diamond case; {z = 1} for groves), and a
quadratic singularity, intersecting the smooth component in the real
domain.



geometry near (1, 1, 1)

In fact, the asymptotics of pkln is
already reflected in the geometry
of the pole divisor near (1, 1, 1).
Consider the principal
homogeneous part of the singular
component of {Qg = 0} near
(1, 1, 1): in coordinates

u := x − 1, v := y − 1, w := z − 1

it is given by

qg = w(uv + uw + vw).



geometry near (1, 1, 1)

In fact, the asymptotics of pkln is
already reflected in the geometry
of the pole divisor near (1, 1, 1).
Consider the principal
homogeneous part of the singular
component of {Qg = 0} near
(1, 1, 1): in coordinates

u := x − 1, v := y − 1, w := z − 1

it is given by

qg = w(uv + uw + vw).

Consider the projectivization of
variety {qh = 0}:

Blue is the projectivization of the
quadric {uv + uw + vw = 0}, red

line is for {w = 0}.



geometry near (1, 1, 1)

In fact, the asymptotics of pkln is
already reflected in the geometry
of the pole divisor near (1, 1, 1).
Consider the principal
homogeneous part of the singular
component of {Qg = 0} near
(1, 1, 1): in coordinates

u := x − 1, v := y − 1, w := z − 1

it is given by

qg = w(uv + uw + vw).

Construct its projective dual:

Under duality, lines go to points;
points to lines; quadrics to

quadrics.



geometry near (1, 1, 1)

In fact, the asymptotics of pkln is
already reflected in the geometry
of the pole divisor near (1, 1, 1).
Consider the principal
homogeneous part of the singular
component of {Qg = 0} near
(1, 1, 1): in coordinates

u := x − 1, v := y − 1, w := z − 1

it is given by

qg = w(uv + uw + vw).

The dual variety reflects the shape
of asymptotic support of p:

Support is the convex hull of the
quadric and the point

corresponding to {w = 0}.
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In fact, a much more precise result can be derived.



precise asymptotics
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Assume that the essential singularity governing the asymptotics of
pkln is locally a quadratic cone Q and a smooth stratum with the
tangent plane H at the critical point, intersecting the quadratic cone
transversally in the real domain (as it happens in the case of Aztec
diamond tilings and cube groves)



precise asymptotics

In fact, a much more precise result can be derived.
Assume that the essential singularity governing the asymptotics of
pkln is locally a quadratic cone Q and a smooth stratum with the
tangent plane H at the critical point, intersecting the quadratic cone
transversally in the real domain (as it happens in the case of Aztec
diamond tilings and cube groves)
Then the asymptotics in the direction

k/n → u, l/n → v , n → ∞

such that the plane
Xu,v = {ux + vy = z}

does not intersect the quadratic cone in the real domain, is given by



Precise asymptotics
is given by

1
2πi

log
(t1 − t3)(t2 − t4)
(t1 − t4)(t2 − t3)

,

where t1, t2 are the point of intersection of the line PX with the
quadric PQ in CP1, and t3, t4 are the (real) points of intersections of
PH with PQ:
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(Depicted are: the quadric PQ i.e. a Riemann sphere, with its real
part represented as the equator; (projective) line PX , real as well and
imaginary PH.)



precise asymptotics
Translating this all back to our respective problems, we obtain the
final results: as k/n → u, l/n → v , n → ∞, pkln tends to

for Aztec diamonds
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for cube groves:
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diabolo data

The pole variety near the point
(1, 1, 1) looks like this:
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Its principal homogeneous part is
a cone over a (reducible)
projective curve,

(−400 + 200u2w2 + 200v2w2+

18u2v2 − 9u4 − 9v4)(1 + v),
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Curve 1                 

Its component are a projective
line, and a singular curve (with 2
double points) which becomes
elliptic upon normalization.



some corresponding points/lines

and the dual to which is given by the octic curve
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some corresponding points/lines

some corresponding points/lines:
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explanations

The theory behind these correspondences involves

• Some multidimensional complex analysis (contour deformation)

• A bit of hard-core calculus (Fourier transforms for distributions)

• Theory of hyperbolic polynomials (all polynomials we saw are
hyperbolic for a reason)

• Topology (resulting contours of integration are somewhat
unusual cycles in somewhat unusual homology groups)

• Some complex geometry again...
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...and the more we play in this sandbox, the more toys we find.



explanations

The theory behind these correspondences involves

• Some multidimensional complex analysis (contour deformation)

• A bit of hard-core calculus (Fourier transforms for distributions)

• Theory of hyperbolic polynomials (all polynomials we saw are
hyperbolic for a reason)

• Topology (resulting contours of integration are somewhat
unusual cycles in somewhat unusual homology groups)

• Some complex geometry again...

...and the more we play in this sandbox, the more toys we find.

TBC!


