q-gram analysis
and
urn models

Pierre Nicodème

École polytechnique, Palaiseau
Laboratoire d’Informatique LIX

November 2003
Approximate pattern matching
and the Jokinen-Ukkonen lemma

Def: q-gram any word of fixed size q

Edit operations over strings

- substitution $(l_1 \rightarrow l_2)$ $aabdd \rightarrow aadcc$
- insertion $(| \rightarrow l)$ $aa|dd \rightarrow aaecc$
- suppression $(l \rightarrow |)$ $aaedd \rightarrow aa|cc$

Edit distance $\delta(S_1, S_2)$ between two strings S_1 and S_2

- minimum number of edit operations transforming S_1 into S_2

Jokinen-Ukkonen 1991 (loose version)

if $|S_1| = m$ and $\delta(S_1, S_2) \leq k$, then at least $m + 1 - (k + 1)q$ of the $m - q + 1$ q-grams of S_1 occur in S_2
Example

\[S_1 = aaabaaab \]

\[S_2 = aaacaaaaa \]

\[m = 8, \quad \delta(S_1, S_2) = 2 \rightarrow k = 2 \]

\[2 - \text{grams}(S_1) = \{\{aa, aa, ab, ba, aa, aa, ab\}\} \]

\[Q_{S_1,S_2} = 2 - \text{grams}(S_1) \text{ present in } S_2 = \{\{aa, aa, aa, aa\}\} \]

Jokinen-Ukkonen

\[|Q_{S_1,S_2}| \geq m + 1 - (k + 1)q \]

\[4 \geq 8 + 1 - (2 + 1)2 = 3 \]

Beware of the asymmetry: \[|Q_{S_2,S_1}| = 5 \]

Application

When searching a pattern with errors in a text, slide over the text a window of same size as the pattern and discard windows which do not contain enough \(q \)-grams of the pattern.
Aim of this work

Study of two statistics of q-grams in random sequences:

- number of “repeated” q-grams (number of q-grams occurring at least twice, without counting multiplicities)
 \[
 S = \text{aaaabaaabbb}, \quad q = 2
 \]
 \[
 Q_{\text{repeated}} = \{aa, ab, bb\} \quad |Q| = 3
 \]

- number of common q-grams to two sequences, without counting multiplicities
 \[
 S_1 = \text{aaaabaaabbb}
 \]
 \[
 S_2 = \text{aaaacaaacbb}
 \]
 \[
 q = 2 \quad Q_{\text{common}} = \{aa, bb\} \quad |Q| = 2
 \]
 (Remark: symmetrical counting)

- Jokinen-Ukkonen statistics

Bernoulli non-uniform model for the sequences
A heuristic approach

Dependent model

FGSEWWTYU... OOUYJREFDKB

FGSEWWTYU...
GSEWWTYU...
SEWWTYU...
EWWWTYU...
...

Independent model

TTG
GSE
UHI
ROY
...

sequence length \(l = n + q - 1 \) \(\Rightarrow n \) q-grams

1. analyse the independent model

2. perform simulations for the dependent model and compare with the independent model
Repeated q-grams

Equivalent problems

Input: an alphabet $\Sigma (|\Sigma| = s)$, an integer q, a random sequence S of size $n + q - 1$

Dependent model

1. number of repeated q-grams
2. number of internal nodes at depth q of the suffix-tree build on S
3. number of self-intersections of a random walk of length n over the de Bruijn graph $B(s, q)$

Independent model

1. number of repeated q-grams
2. number of internal nodes at depth q of a trie build with n random keys over Σ
3. number of self-intersections of a random walk of length n over a complete graph $K(s^q)$
4. number of urns containing more than one ball in a system of s^q urns in which n balls are thrown
Suffix-trees

$S = abbabaa$

$q = 2$

$Q_{\text{repeated}} = \{ab, ba\}$

$|Q| = 2 =$ number of internal nodes at depth q
DE BRUIJN graphs

DE BRUIJN graph $B(s, q)$

Vertices: $V = \{0, 1, 2, \ldots, s^q - 1\}$

Edges: $E = \{(v_i, v_j)\}$ with

$v_j = s \times v_i \pmod{s^q} + x, \quad x = 0|1|2|\ldots|(s-1)$
Random walks over de Bruijn graphs

\[S = \text{abbaba} \quad q = 2 \]
\[S = \text{0110100} \]

\[Q_{\text{repeated}} = \{01, 10\} \]

\[|Q| = 2 = \text{number of vertices accessed more than once} \]
Trie and urns (indep. model)

keys = [00, 01, 00, 00, 10, 00] \quad Q_{\text{repeated}} = \{00\}

|Q| = 1 = number of nodes at depth q containing more than one key
equivalent to a system of 4 urns

key \leftrightarrow number of urn

key = w_{q-1}w_{q-2} \ldots w_0

Pr(urn_i) = Pr(key_i) = \prod_{0 \leq i \leq q-1} Pr(w_i)
Previous results

 enumeration of autocorrelations, missing words

- Szpankowski and Jacquet - 1994
 asymptotically, the distributions of path lengths of suffix-trees and of
 tries of same size are equal
 J. Fayolle - 2002, same result, but for the expectation

- Szpankowski and Sutinen - 1999
 phase transition in q-gram filtration

- urn models: numerous results
 Flajolet et al. - 2003
Analysis of the urn model

X_n random variable counting the number of urns without collisions when n balls are thrown in the system of $m = s^q$ urns

$Y_n = m - X_n$ counts urns with collisions

G.F.

$$F(z, u) = \sum \Pr(X_n = k) u^k \frac{z^n}{n!}$$

differentiations with respect to u

→ gen. functions of moments of X_n

→ extraction of nth Taylor coefficient and asymptotic evaluation
Poissonization

do not throw exactly \(n \) balls in the urns, but throw a random number of balls following a Poisson distribution.

The urns behave \textit{independently} of each other
Poissonization - Depoissonization

\(P_{p_i} \) balls in urn \(i \).

\[\Pr(\text{no collision}) = e^{-p_i z}(1 + p_i z). \]

\(u \) counts the urns without collisions

b.g.f. for urn \(i \) under the Poisson model

\[\phi_i(z, u) = e^{-p_i z}((1 + p_i z)u + e^{p_i z} - 1 - p_i z) \]

for the system of urns (Poisson again) \(\Phi = \prod \phi_i \)

\[\Phi(z, u) = e^{-z} \prod_{0 \leq i \leq m-1} (e^{p_i z} + (u - 1)(1 + p_i z)) \]

“exact” g.f.

\[F(z, u) = \sum f_n(u) \frac{z^n}{n!} \]

\[\Phi(z, u) = \sum_{n \geq 0} f_n(u) \frac{z^n}{n!} e^{-z} \iff f_n(u) = [z^n] n! e^z \Phi(z, u) \]

\[\Rightarrow F(z, u) = \prod_{0 \leq i \leq m-1} (e^{p_i z} + (u - 1)(1 + p_i z)) \]
Expectation and standard dev.

$$\mu_n = \mathbb{E}(X_n) \quad m_{n}^{(2)} = \mathbb{E}(X_n^2)$$

$$m(z) = \sum \mu_n z^n = \frac{\partial F(z, u)}{\partial u} \bigg|_{u=1}$$

$$m^{(2)}(z) = \sum m_{n}^{(2)} z^n = \frac{\partial}{\partial u} \left(\frac{\partial F(z, u)}{\partial u} \right) \bigg|_{u=1}$$

extract \([z^n]m(z)\) and \([z^n]m^{(2)}(z)\) + asymptotics

when \(n \times p_i \to \theta_i\)

$$\mu_n = \sum_i \left(e^{-\theta_i} (1 + \theta_i) + \frac{1}{2n} e^{-\theta_i} \theta_i^2 (1 - \theta_i) + O \left(\frac{1}{n^2} \right) \right) \quad \text{and} \quad \gamma_n = m - \mu_n$$

$$\sigma_n^2 = m_{n}^{(2)} - \mu_n^2 \approx \sum_i e^{-\theta_i} (1+\theta_i) (1 - e^{-\theta_i} (1 + \theta_i)) - \frac{1}{n} \left(\sum_i \theta_i^2 e^{-\theta_i} \right)^2$$
Poisson convergence (Chen-Stein)

number of empty urns: Barbour - Holst 1989

\[I_k = \begin{cases}
1 & \text{if urn } k \text{ empty} \\
0 & \text{elsewhere}
\end{cases} \quad W = \sum_k I_k \quad \mu = \mathbb{E}(W) \]

(1) empty urn \(k \) by throwing the balls into the other urns
(2) coupling: after this operation

\[J_{ik} = \begin{cases}
1 & \text{if urn } i \text{ empty} \\
0 & \text{elsewhere}
\end{cases} \quad \Rightarrow J_{ik} \leq I_{ik} \ (i \neq k) \]
\[I_{ik} = I_i \ \forall k \]

\[\mathcal{L}(J_{1k}, \ldots, J_{mk}) = \mathcal{L}(I_{1k}, \ldots, I_{mk} \mid I_k = 1) \]

\[\Rightarrow d(W, \mathcal{P}_\mu) \leq \min(1, \mu) \left(1 - \frac{\text{Var}W}{\mu} \right) \]
Poisson convergence \((r\text{-collisions})\)

\[
I_k = \begin{cases}
1 & \text{if } \geq r \text{ balls in urn } k \\
0 & \text{elsewhere}
\end{cases}
\]

\[
W = \sum_k I_k \quad \mu = \mathbb{E}(W)
\]

If less than \(r\) balls in urn \(k\)

repeat until there are \(\geq r\) balls in urn \(k\)

for all urns \(i \neq k\)

for each ball in urn \(i\)

throw it into urn \(k\) with proba. \(p_k\)

Number of iterations finite with proba. \(1\)

Coupling + same proof as Barbour and Holst

\[
\Rightarrow d(W, \mathcal{P}_\mu) \leq \min(1, \mu) \left(1 - \frac{\text{Var}W}{\mu}\right)
\]
Dependent model

Th: the language of words containing e repeated q-grams is rational, for all e

1. consider the DE BRUIJN directed graph $B(s, q)$ as an automaton
 $(\Sigma, Q, 0, \delta, F = Q)$ where the states of Q (vertices) are naturally numbered from
 0 to $s^q - 1$ and all states are terminal

2. Consider $3s^q$ copies of $B(s, q)$ corresponding of all combinations of labelling
 with $\lambda = 0|1|2$ of the vertices of $B(s, q)$

3. Number the copies along the numbering of the states and the labels:
 $B_N(s, q) \Leftrightarrow$ label of vertex n is the nth digit of N in base 3.

4. build a (huge) automaton $(\Sigma, Q, 0_0, \Delta, Q)$
 where $Q = \{0, 1, \ldots, s^q - 1\} \times \{0, 1, \ldots, 3s^q - 1\}$ (notation $[n, N]$)
 by connecting the copies

 $$\begin{cases}
 \lambda = 0, 1 : \Delta([n, N_1], l) = [\delta(n, l), N_2] \ (N_2 = N_1 + 3^n) \\
 \lambda = 2 : \Delta([n, N_1], l) = [\delta(n, l), N_1]
 \end{cases}$$

5. mark with letter u all transitions changing a label from 1 to 2 (first repetition)

6. Chomski-Schützenberger algorithm for marked automata
Experimental comparisons - Exp

\[n = 300 \quad \Sigma = \{0, 1\} \quad s = 2 \quad q = 10 \]

solid lines: theoretical curve for the trie
dots: simulations
Experimental comparisons - Std. dev.

repeated q-grams

\[n = 300 \quad \Sigma = \{0, 1\} \quad s = 2 \quad q = 10 \]

theoretical σ - trie (solid line)
simulations for σ trie (blue circles)
simulations for σ suffix-tree (black circles)
Small p

\[n = 300 \quad s = 2 \quad q = 10 \]

\[(0.995 + 0.005u)^{300} = 0.2223 + 0.3351u + 0.2518u^2 + 0.1257u^3 + 0.047u^4 \ldots \]
Common q-grams to 2 sequences

Equivalent problems

Input: an alphabet Σ ($|\Sigma| = s$), an integer q, 2 random sequence S_1 and S_2 of size $n + q - 1$

Dependent model

1. number of repeated q-grams
2. number of bicolor nodes at depth q when superposing colored suffix-trees build on S_1 and S_2
3. number of intersections of two random walk of length n over the de Bruijn graph $B(s, q)$

Independent model

1. number of repeated q-grams
2. number of bicolor nodes at depth q when superposing two colored tries build each with n random keys over Σ
3. number of intersections of two random walks of length n over a complete graph $K(s^q)$
4. number of urns with bicolor collisions in a system of s^q urns in which n black and n white balls are thrown
Previous results

asymptotically, all words of size \(\log(n)/H\) are present in a text of size \(n\)

\((H\) Renyi-entropy of the alphabet\)

\(H = \log \omega_{\min}\) where \(\omega_{\min}\) is the minimum of the probability of the letters of the alphabet
Analysis of the urn model

- g.f. and moments

 double poissoinization-depoissonization

 \[F(z, t, u) = \prod_{0 \leq i \leq s^q - 1} \left(e^{p_i(z + t)} + (u - 1)(e^{p_i z} + e^{p_i t} - 1) \right) \]

 \(z \) black balls, \(t \) white balls \(u \) bicolor collisions

 \[\mu_n = m - [z^n t^n] \frac{\partial F(z, t, u)}{\partial u} \bigg|_{u=1} \]

 \[= m - \sum_i \left(e^{-\theta_i} (2 - e^{-\theta_i}) - \frac{\theta_i^2 e^{-\theta_i}}{n} (1 - e^{-\theta_i}) \right) + o(1) \]

 \[\sigma_n^2 \approx \sum_i e^{-\theta_i} (2 - e^{-\theta_i}) \left(1 - e^{-\theta_i} (2 - e^{-\theta_i}) \right) \]

 \[- \frac{2}{n} \left(\left(\sum_i \theta_i e^{-\theta_i} (1 - e^{-\theta_i}) \right)^2 - \sum_i \theta_i^2 e^{-2\theta_i} (1 - e^{-\theta_i})^2 \right) \]

- Poisson convergence

 Chen-Stein + coupling (reverse Barbour-Holst)
Experimental comparisons - Exp

nb. common q-grams

trie (independent) - urn model

sbci

0.2 0.4 0.6 0.8 1

Pr(0)

n = 300 \quad \Sigma = \{0, 1\} \quad s = 2 \quad q = 10

solid lines: theoretical curve for the trie
dots: simulations

nb. common q-grams

suffix-tree (dependent)
Experimental comparisons - Std. dev.

common q-grams

$n = 300 \quad \Sigma = \{0, 1\} \quad s = 2 \quad q = 10$

theoretical σ - trie (solid line)
simulations for σ trie (blue circles)
simulations for σ suffix-tree (black circles)
Cost of summations

\[\Sigma = \{1, 2, 3, 4\}, \ s = |\Sigma| \quad m = s^q \]

group urns by families of urns with equal probability

\[|w| = q, \quad |w_i| = q_i \] number letters equal to \(i \),

\[q = q_1 + q_2 + q_3 + q_4 \]

\[\text{population of } (q_1, q_2, q_3, q_4) = \frac{q!}{q_1! q_2! q_3! q_4!} \]

Number of families \(C_{q,s} \) (cost of summation)

\[C_{q,s} = \text{compositions with } s \text{ summands } \geq 0 \text{ of } q \]

\[= \text{compositions with } s \text{ summands } > 0 \text{ of } q+s \]

\[C_s(z) = \left(\frac{z}{1-z} \right)^s \]

\[C_{q,s} = [z^{q+s}] \left(\frac{z}{1-z} \right)^s = \binom{q+s-1}{s-1} \]

ADN: \(C_{10,4} = 286 \quad \text{Proteins: } C_{3,20} = 1540 \)
Computing the moments (repeated q-grams)

The values of q_1 to q_{i-1} have been computed previously when Procedure Calcsum is entered and $d = s - i$.
$s = |\Sigma|$ and q are handled as global constants.

Procedure Calcsum (f, d, n, ϕ):

\[i = s - d \quad u = \sum_{k=1}^{i-1} q_k \]

If $d > 1$ Then

For j To $s - u$ Do

\[q_i = j \quad f = \text{Calcsum}(f, d - 1, n, \phi) \]

End of for

Else

\[q_s = q - \sum_{k=1}^{s-1} q_k \]

\[f = f + \frac{q_i!}{q_1!q_2!...q_s!} \phi(\theta_{q_1},...q_s, n) \]

End of if

Return (f)
End of procedure

\[\theta_{q_s} = \theta_{q_1,...q_s} = n \times \omega_1^{q_1} \omega_2^{q_2} \ldots \omega_s^{q_s} \]

\[\phi_1 = \left(e^{-\theta_{q_s}} (1 + \theta_{q_s}) + \frac{1}{2n} e^{-\theta_{q_s}} \theta_{q_s}^2 (1 - \theta_{q_s}) \right) \]

\[\mu_n = m - \text{Calcsum}(0, s, n, \phi_1) \]
\[n_1 = n_2 = 1000, \quad q = 12, \quad \Sigma = \{0, 1\} \quad p_0 = p_1 = 0.5 \]

50000 simulations

\(K \) number of common 12-grams

Plot of the normalized variable \(\hat{K} \) versus \(\mathcal{N}(0, 1) \)
\[n_1 = n_2 = 1000, \ q = 12, \ \Sigma = \{0, 1\} \quad p_0 = 0.1 \quad p_1 = 0.9 \]

50000 simulations

\(K \) number of common 12-grams

Plot of the normalized variable \(\hat{K} \) versus \(\mathcal{N}(0, 1) \)
Jokinen-Ukkonen statistics
(common q-grams)

urn model

\(z \) counts black balls, \(p_i = \Pr(\text{black ball falls in urn } i) \)

\(t \) counts white balls, \(x_i = \Pr(\text{white ball falls in urn } i) \)

double poissonization-depoissonization, g. f. for one urn: \(e^{p_i z} \times e^{x_i t} \)

\(u \) counts the total number of black balls that are present in urns containing at least one white ball

\[
\begin{bmatrix}
1 & (p_1 z) & \ldots & \frac{(p_i z)^i}{i!} & \ldots \\
(x_1 t) & u(p_1 z)(x_1 t) & \ldots & \frac{u^i (p_i z)^i}{i!} (x_1 t) & \ldots \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
\frac{(x_i t)^j}{j!} & u(p_i z)(x_i t)^j & \ldots & \frac{u^i (p_i z)^i}{i!} (x_i t)^j & \ldots \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
\end{bmatrix}
\]

\[
F(z, t, u) = \prod_{0 \leq i \leq s^q - 1} e^{p_i u z + x_i t} - e^{p_i u z} + e^{p_i z} = \sum f_{kab} u^k z^a t^b
\]

\(f_{kab} = \Pr(k \text{ black balls in urns with at least 1 white ball}) \)

when \(a \) white and \(b \) black balls are thrown).
Expectation and Standard Deviation

\[p_i = x_i, \quad a = b = n \]
\[n \rightarrow \infty, \quad n \times p_i \rightarrow \theta_i \]

\[\kappa_i = \sum_i \theta_i \left(1 - e^{-\theta_i} \left(1 - \frac{\theta_i^2}{2n} \right) \right) \]

\[\mu_n \approx \sum_i \kappa_i \]

\[\sigma_n^2 \approx \sum_i \kappa_i (\theta_i - \kappa_i) - \frac{1}{n} \left(\left(\sum_i \theta_i (1 - e^{-\theta_i}) \right)^2 + \left(\sum_i \theta_i^2 e^{-\theta_i} \right) \right) \]
Experimental comparisons - Exp

\[n = 300 \quad \Sigma = \{0, 1\} \quad s = 2 \quad q = 10 \]

solid lines: theoretical curve for the trie
dots: simulations
Experimental comparisons - Std. dev.

common q-grams (Jok.-Ukk.)

\[
\begin{align*}
\text{Pr}(0) & = n = 300 & \Sigma = \{0, 1\} & s = 2 & q = 10 \\
\text{theoretical } \sigma - \text{trie (solid line)} & \\
\text{simulations for } \sigma \text{ trie (blue circles)} & \\
\text{simulations for } \sigma \text{ suffix-tree (black circles)}
\end{align*}
\]