UPMC, Master Informatique STL-M2 Analyse d'algorithmes Devoir à rendre le 1er Décembre 2004

Problème I

On utilise ici des symboles consistants pour un langage \mathcal{L} , sa série génératrice ordinaire L(z), et la suite (l_n) des coefficients correspondants.

Soit $\mathcal{A} = \{a, b\}$ un alphabet à deux lettres. On considère les langages suivants:

- $-\mathcal{W} = \{a, b\}^*$ est le langage de tous les mots;
- $-\mathcal{E}$ est le langage des mots contenant autant de a que de b: $\mathcal{E} = \{\epsilon, ab, ba, aabb, bbaa, abab, \ldots\};$
- $-\mathcal{P}$ est le sous ensemble des mots w de E tels que dans tout prefixe de w le nombre de a est toujours supérieur ou égal au au nombre de b: $\mathcal{P} = \{\epsilon, ab, aabb, abab, \ldots\}$;
- $-\mathcal{Q}$ est le langage obtenu à partir de \mathcal{P} en echangeant le rôle des lettres a et b.

On pourra représenter un mot par une ligne polygonale partant de (0,0), la lettre a étant codée par l'ajout du vecteur (1,1) et la lettre b par l'ajout de (1,-1).

Dans la suite il n'est pas nécessaire de détailler les calculs intermédiaires et on peut s'appuyer sur un système de calcul formel pour l'obtention des résulats.

- Q1. Justifier que le langage \mathcal{P} vérifie l'equation $\mathcal{P} = \text{Seq}(a \cdot \mathcal{P} \cdot b)$. En déduire P(z). Montrer que pour toute série f(z), $[z^{2n}]f(z^2) = [z^n]f(z)$. Expliciter le coefficient $P_{2n} = [z^{2n}]P(z)$.
- **Q2.** Montrer que $\mathcal{E} = \text{Seq}((a \cdot \mathcal{P} \cdot b) \cup (b \cdot \mathcal{Q} \cdot a))$ et en déduire E(z) ainsi que E_{2n} . Évaluer exactement et estimer asymptotiquement le quotient P_{2n}/E_{2n} .

Donner une interprtation de ce quotient dans le cadre d'un dépouillement de scrutin : deux candidats A et B sont en lice, et lors du dépouillement, la lettre a (resp. b) correspond à un bulletin de vote en faveur du candidat A (resp. B).

Q3. Soit $E_{n,k}$ le nombre de mots de \mathcal{E}_n ayant exactement k préfixes (de longueur entre 1 et n) qui sont dans \mathcal{E} , et $E(z,u) = \sum_{n,k} E_{n,k} z^n u^k$. (Graphiquement, il s'agit des lignes polygonales touchant k fois l'axe horizontal.)

Montrer que $E(z, u) = 1/(1 - uz^2(P(z) + Q(z))).$

Exprimer, en fonction de E(z, u), l'espérance μ_{2n} du nombre de fois où les deux candidats sont à égalité au cours du dépouillement, sachant qu'ils recueillent finalement un même nombre de bulletins.

Donner un équivalent asymptotique de μ_{2n} en utilisant d'une part les expressions exactes des coefficients, et d'autre part l'analyse de singularité.

Q4. Pour un scrutin particulier $w = w_1 \cdots w_{2n} \in \mathcal{E}$, soit $\chi[w]$ la valeur du premier indice j avec $0 \leq j < 2n$ tel que $w_1 \cdots w_{j+1}$ comporte plus de b que de a; on pose $\chi[w] = 2n$ si un tel indice n'existe pas. On mesure donc la durée de la période initiale où le nombre de bulletins pour A domine le nombre de bulletins pour B (le candidat A est en tête). Par exemple, $\chi[baab] = 0$, $\chi[aabbbba] = 4$, $\chi[aaababbb] = 8$. Soit F(z, v) la série bivariée qui mesure le paramètre χ :

$$F(z,v) := \sum_{w \in \mathcal{E}} z^{|w|} v^{\chi(|w|)}.$$

Déterminer l'expression de F(z, v) et en déduire la valeur exacte et asymptotique de la durée moyenne de la période initiale pendant laquelle le candidat A est en tête.

Problème II

Q1. Le nombre de manières de placer les n éléments $\{1, 2, ..., n\}$ dans k urnes distinguées, avec chaque urne contenant un nombre pair de boules (possiblement égal à 0), vaut

$$G_{n,k} = n! [z^n] (\cosh z)^k$$

où $\cosh(z) = (e^z + e^{-z})/2$.

Montrer que $(\cosh z)^k$ se développe en une combinaison linéaire finie d'exponentielles de la forme $e^{\alpha z}$. Exprimer $G_{n,k}$.

Q2. Soit $f(z) = \sum_n f_n z^n / n!$ une série génératrice exponentielle, et $\widetilde{f}(z) = \sum_n f_n z^n$ la série ordinaire correspondante. Déterminer $\widetilde{f}(z)$ lorsque $f(z) = e^{\alpha z}$, $f(z) = \cosh(z)$ et $f(z) = ze^z$.

Montrer que la transformation $f \mapsto \widetilde{f}$ est linéaire.

Déterminer la série génératrice ordinaire $\tilde{f}(z)$ correspondant à $f(z) = (\cosh(z))^k$ sous forme de décomposition en éléments simples.

Obtenir un équivalent asymptotique de $G_{2n,k}$ lorsque k est fixé et n tend vers l'infini.

Q3. Deux cavités appelées A et B contenant au total k particules (distinctes) sont en communication par un trou très fin. A chaque seconde, une particule passe de A à B ou inversement. Au temps 0, la cavité A est vide et la cavité B est pleine.

Donner la série génératrice des fonctions de $\{1, \ldots, n\}$ dans $\{1, \ldots, k\}$ telles que l'image inverse de tout $j \in [1, k]$ soit de taille paire.

On postule que toutes les évolutions possibles en n étapes sont équiprobables. Relier le problème aux questions précédentes.

Justifier par la méthode de votre choix que la série génératrice exponentielle de toutes ces évolutions vaut e^{kz} .

Déterminer un équivalent asymptotique en grand temps de la probabilité que la cavité A soit vide au bout de n étapes.

Q4. La série génératrice exponentielle des évolutions qui aboutissent à avoir r particules dans la cavité A vaut $\binom{k}{r}(\cosh z)^{k-r}(\sinh z)^r$. Justifier ce résultat.

Déterminer les deux premiers termes du développement asymptotique $(n \to +\infty)$ de l'espérance E_n de la variable aléatoire représentant le nombre d'atomes contenus dans l'urne A au temps n; déterminer ainsi a quelle vitesse on se "rapproche de l'équilibre". (Suggestion: former une série bivariée où u marque les différentes valeurs possible de r.)