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Abstract. This note! proposes a natural combinatorial setting for results
stated by Pdlya regarding the enumeration of ‘diagonally convex lattice poly-
gons’ also known as parallelogram polyominoes, staircase polyominoes. A brief

bibliographical update is also provided.

July 31, 1991

In 1969, Pélya published a four page note [11] listing several results relative to
the enumeration of lattice polygons, by now often referred to as polyominoes. Pdlya’s
statements were in fact results entered into his diary in 1938 [11, footnote 2]. They
concern both vertically convex and diagonally convex polygons.

(A lattice polygon is a simple closed polygonal line whose vertices are in Z? and
whose edges are parallel to the z,y axes. A polygon is convex with respect to the
direction d if any line parallel to d intersects the domain enclosed by the polygonal
line in one segment.)

For vertically convex polygons (polygons convex according to the 90° direction)
counted according to area, Pdlya gives the generating function

) g(1—q)°
1 —5q+ Tq% — 4¢3’
a result that was independently derived by Klarner who published several proofs,

see [9, p. 32] and Stanley’s discussion in [12].
Diagonally convex polygons (i.e., polygons convex according to the —45° direc-

tion) are also referred to as parallelograms or staircase polyominoes. They are
related to general convex polygons, and by now a fairly extensive literature ex-
ists with roots in recreational mathematics, enumerative combinatorics, theoretical
computer science or statistical physics.

Polya gives a bivariate generating function for diagonally convex polygons counted
according to both perimeter and area. I am not aware of any published proof by

1Research was done while the author was visiting the Department of Mathematics, The Uni-
versity of Melbourne, Parkville, Victoria 3052, Australia.
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FIGURE 1. A festoon linking the origin to the point (12,9), with
area -3.

Pélya’s of his results?. The question of supplying a proof was posed to me by Tony
Guttmann and Richard Brak in Melbourne, and I am also indebted to them for
several stimulating discussions on the subject. I propose here an extremely simple
and elegant argument which is almost certainly that employed by Pdlya. In sup-
port of this claim, note that ‘standard’ arguments tend to give ordinary generating
functions, while the argument described below leads naturally to a Laurent series,
which is precisely the form of Pélya’s result. Actually, the argument gives a little
bit more than Pélya’s original statement.

Let Ci, n 1 denote the number of diagonally convex lattice polygons having area
k, comprising 2m steps parallel to the z-axis and 2n steps parallel to the y-axis.
The corresponding trivariate generating function is

Cla,y;0)= > Conpz™y"¢".

m,n,k

Theorem 1. The trivariate generating function of diagonally convex polygons counted
according to height, width, and area satisfies

(2)
Cla,yi)+Cle,yig ) +e+y=1-| > xmyn<m+”) <m+”)
q gt

m
m,n>0

where (m:;”)q denotes the q-Gaussian binomual coefficient,

(m—I—n) B (L= g)(L—g%) (1= ™)
LT A-oi-¢

m ) (L=gm) - (L=q)(L—g?) - (L —qn))

2This is confirmed by inspection of the Math. Reviews.
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F1GURE 2. The eight components that arise from the decomposi-
tion of the example festoon of Figure 1

PrROOF. (i). Festoons and polygons. The argument rests on the fact that if C'is

a generating function (GF) for combinatorial objects of some sort, then
1
3 = ——
(3) 1-C
is the GF for arbitrary sequences of objects of the type counted by C, see for
instance [7]. In particular, if F' can be determined directly, then the GF for the
components, C', is given by
1

4 C=1-—.
(4) =

Define a lattice path in the plane Z x Z as a path that starts at (0,0) and is
formed with either horizontal (0,41) steps or vertical (+1,0) steps. A festoon is
an ordered pair of paths which have a common end point. The first path will be
referred to as the +path, the second path as the —path.

The essence of the argument is that festoons (F') and polygons (C') have GF’s
that are linked by the relations (3,4).

(#i). The GF of festoons. Define the area below a path as the number of unit
squares between the path and the z-axis in the usual way. As is well known [7], the
GF of paths ending at a point (m,n) counted according to area is the ¢-binomial

COGfﬁCith,
n q

Define the area of a festoon as the difference of the areas of its +path and its —path.
The GF of festoons ending at point (m,n) is

)00,

Thus, the trivariate GF of festoons with variables # and y marking the end point
coordinates and ¢ marking area is

m nfmt+tn m+n
Flz,yq)=> «™y ( N ) ( N ) :
m,n q g~

(#it). The GF of polygons. Create two twin copies of the set of polygons, and call
them +polygons and —polygons: in a +polygon, the upper side and the lower side

are marked with a ‘4’ and a ‘—’ respectively; in the —polygons, this is reversed.
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Define the area of an oriented polygon as a signed quantity that is positive or
negative depending on whether one has a +polygon or a —polygon.

Clearly, every festoon is decomposable (see Figure 2) as a sequence of elementary
components that are of one of the following four types: a horizontal unit step; a
vertical unit step; a +polygon; a —polygon. There results the relation

(5) Flr,y;9)=(1—2—y—C(x,y;9) — Cla,y;07 )

This completes the proof of the theorem. O

The number of festoons comprising a total number of 2p steps is

()= (%)

by Vandermonde convolution. The corresponding GF is

Fz 1) = i (2;)#’ - ﬁ

p=0

Thus, the GF of polygons counted according to perimeter is by a specialization of
Theorem 1,

C(z,z;1) = %(1—2,2—\/1—4,2)
= 2242845204 1425 44225 413227 + O(28),
which is a generating function for the Catalan numbers.

Corollary 1 (Pdlya). The number of parallelogram polygons of perimeter 2n is
giwen by the Catalan number

1/2n—-2

n ( n—1 ) '

Corollary 2 (Pdélya). The bivariate generaling function of parallelogram polygons
by perimeter and area satisfies
1
14+ Pi(q@)z + Pa(q)z% 4+ Ps(q)z3 + - -

where Po(g) = Y n_, (;})jqr(n—rx

Clz,2;9)+ Clz, 257 )+ 22 = 1

Despite its unusual form as a Laurent series, Polya’s symmetrical GF s an an-
swer to the counting problem for parallelogram polygons. For instance it implies a
counting algorithm to determine the number of polygons of area ¢ that has poly-
nomial time complexity; in this way, we determine easily the first few values,

C1,1;9)=q¢+2¢>+4¢3+9¢* +20¢° + 46 ¢° + 105 ¢7 + 242 ¢® + 557 ¢°

+1285 g9 + 2964 ¢'1 + 6842 ¢*% + 15793 ¢*3 + 36463 ¢** + O(¢*?).
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Subsequent researchers have concentrated on standard generating functions. Klarner
and Rivest [9] found a GF for polygons counted according to area that involves g—
Bessel functions,

(6)

q 7 q°

o 2 T 2 2\2 3\
C(1,15q) = 1—qq (1-9) (1qng) (1-9)?(l—gq )(16(1—Q) .
1- — + + -

(1-¢?* (1-9(1-¢) (1-9¢?(0-¢)*(1-¢)
Admittedly, such forms are better suited to asymptotic analysis than Laurent series,
and Bender [1] proved

[¢"] C(1,1; q) ~ 0.29745 - 2.30913859330",

by considering singularities of the GF (6).

The counting technique employed by [1, 9] is that of ‘adding a new slice’, and it
is shown there to provide a GF which takes into account area, height, and sizes of
the left and right borders.

Delest and Viennot [4] introduced a —45° scan that transforms a parallelogram
into a well parenthesized expression (‘Dyck word’), and they derive in this way
a GF which takes into account both width and height. This approach has been
extended by Fédou [5], and further by Bousquet—Mélou [2] in order to include area.
In relation to the continued fraction approach of [6], one derives the representation,

Clz,y;q) = T 3
1= (o4 y)a— Ze

5
ryq
1—(z+y)q” —

7
L= (x+y)g® — 2L

Independently motivated by statistical physics problems, Brak and Guttmann
[3] as well as Lin and Tzeng (see [10]) have obtained GF’s according to area and
perimeter. The general approach is a recurrence based on the length of the leftmost
side, combined with an ‘Ansatz’ for solving g-linear recurrences with coefficients
linear in ¢™.

All the generating functions based on area and obtained by these various ap-
proaches are refinements of the Klarner and Rivest generating function (6), and
they involve one form or another of g—Bessel function. Perimeter generating func-
tions, for reasons well accounted for by Delest and Viennot, are plainly algebraic.

Finally, there are by now many papers dealing with the enumeration of a va-
riety of convex polygons, and the reader is advised to consult a recent survey by
Guttmann [8] for an extensive bibliography.
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