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Combinatorial mathematics

Computer science: 
          data structures & algorithms

Information and communication theory

Models of physical sciences

Discrete structures in ...
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require quantification...
What is the “typical” profile of a tree? 

How well-connected is a graph?

Which patterns are “expected”?

Discrete structures ...
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Continuous mathematics helps!
Generating functions and singularities

Functional equations

Perturbative methods

Limit theorems from probability, ...

Cf: Analytic Combinatorics,  
F. & Sedgewick C.U.P. 2008

Free!
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A few snapshots:

1. A parking problem and hashing

2. Digital trees (tries)

3. Data compression

4. Multidimensional search

5. Arithmetic computations and cont’d fractions
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1. Parking & Hashing
The central rôle of generating functions
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HASHING (1)

Knuth [1973, p. 545]: “A man and his dozing wife drive by, and
suddenly she wakes up and orders him to park immediately. He
dutifully parks at the first available space . . . ”.

︸ ︷︷ ︸
m spaces

n balls

In computer science: place item x at a location h(x) computed from x

(or nearby).
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HASHING (2)

The quantity α :=
n

m
is the filling ratio.

As α increases, longer and longer ”islands” get formed.

20%

40%

60%

80%

Geometry of the randomly formed islands?

Total displacement (dissatisfaction)?
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HASHING (3): Generating functions

Fn = # ways to form an island with n balls and m = n + 1 cells.

Generating function: F (z) :=
∑

n≥0

Fn
zn

n!

Island: = ! +

F (z) = 1 +

∫ z

0

d

dz
(F (t) t) · F (t) dt

Solve: F ′ = (zF )′ · F =⇒F ′

F
= (zF )′ =⇒log F = zF =⇒ F = ezF

• Hashing: [Knuth 1962–3, 1973] [F. Poblete Viola, Algorithmica, 1998]
• Symbolic methods in enumeration: Stanley, Goulden–Jackson, Wilf, . . .
• Analytic Combinatorics book by F. & Sedgewick, CUP, 2008;
http://algo.inria.fr/flajolet/Publications/

9Thursday, June 26, 2008



HASHING (4): More generating functions

Use Lagrange Inversion Theorem to get Fn = (n + 1)n−1 .

Locate singularity at z = e−1 to find (implicit functions):

F (z) = e − e
√

2
√

1− ze + · · · .

Apply singularity analysis to get back asymptotics of Fn.

Singularity analysis (! later):

f (z) ∼
(

1− z

ρ

)−α (Conditions)
=⇒ coeff[zn]f (z) ∼ ρ−n nα−1

Γ(α)
FUNCTION COEFFICIENTS
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HASHING (5): Results

Theorem A. The distribution of island size from random point is

P(k) = (1− α)
(k + 1)k−1

(k − 1)!
αk−1

(
e−α

)k+1
.

α = 0.9 =⇒ 54% of elements are in islands of size ≥ 50.

Theorem B. The limit distribution of total displacement in full
tables scales: Dn ∝ n3/2; it is characterized by its moments:

E [Dr
∞] =

2
√

π

Γ ((3r − 1)/2)
Ωr ,

Ai′(z)

Ai(z)
∼

z→+∞

∞∑

r=0

Ωr (−1)r
z−(3r−1)

2r r !
.

Ai(z) is the Airy function: y ′′ − zy = 0,

Ai(z) =
1

2π

∫ ∞

−∞
e i(zt+t3/3) dt.
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“The limit distribution of total displacement in full tables scales:
Dn ∝ n3/2.”

A bivariate generating function F (z , q) with q ↔total displacement:

∂

∂z
F (z , q) =

F (z , q)− qF (qz , q)

1− q
· F (z , q).

Set up a dedicated calculus of commutations

Uh ≡ h(z , 1), ∂zh ≡
∂

∂z
h(z , q), ∂qh ≡

∂

∂q
h(z , q),

Moment pumping: reduce to the singular structure of U∂r
q, for

r = 1, 2, . . ., via a dedicated integral transform.

Apply singularity analysis to get (factorial) moments as
[zn]U∂r

qF (z , q). Airy function % quadratic relations.

Use: “convergence of moments =⇒ convergence of distributions”.

After [F.–Poblete–Viola, 1998]
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The Airy world

Ai(z) =
1

2π

∫ ∞

−∞
e i(zt+t3/3) dt;

Ai′(z)

Ai(z)
!

z→+∞

∑

r

Ωrz
−r · · ·

Airy coeffs

Graph
connectivity

Pathlength
in trees

Area in
paths
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Singularity Analysis: a technology

Under isolated singularities, transfer to coefficients is valid:
Base functions Z−α(log Z )β ;
O, o,∼–transfers, loglog’s &c.

Works for polylogarithms of various sorts
∑ log n√

n
zn &c.

Class closed under ∂ and
∫

; also Hadamard product #.

Sometimes adapts to natural boundaries.

[Wong–Wyman 1974], [F.–Odlyzko 1990], [F. 1999], [Fill–F.–Kapur 05],
[FFGPP, Elec. J. Comb. 2006], [F-Sedgewick, Analytic Combinatorics 2008]

Function Coefficients
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 2. Digital Trees       
Mellin transforms
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Digital trees aka tries (1)

The divide-and-conquer paradigm:

fn = tn +
∑

k

πn,k (fk + fn−k) .

The “trie” process = split on bits or on coin flips:

πn,k =
1

2n

(
n

k

)
.

Applications: organising and sorting bit strings; electing a leader;
communicating over a distributed channel, and many more.

0 1

16Thursday, June 26, 2008



What is the shape of a typical tree built on n items?

Size is linear, O(n), with high probability.

Height is logarithmic, O(log n).

[Knuth, TAOCP, 1973], [Vallée 2001], [Szpankowski 2001], [F. 2006], . . .

Luc Devroye
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Digital trees (2): Generating functions & Mellin transforms

To a sequence of tolls or costs associate a Poisson generating
function:

fn ! ϕ(z) := e−z
∞∑

n=0

fn
zn

n!
.

The fundamental D&C recurrence becomes a functional equation:

ϕ(z) = τ(z) + 2ϕ
(z

2

)

cost toll + sub-costs.

Introduce Mellin transforms:

ϕ!(s) :=

∫ ∞

0
ϕ(x)x s−1 dx

to get a solvable equation for tree-size (τ(x) = 1− (1 + x)e−x):

ϕ!(s) = −(s + 1)Γ(s)

1− 21+s
.
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Mellin transforms have two major properties (for us):

Harmonic sum property:

∑

(λ,µ)

λg(µx)
M−→

(∑
λµ−s

)
· g"(s).

Mapping property:

Asymptotics of f ←→ Singularities of f ".

Size : ϕ!(s) = − (s + 1)Γ(s)

1− 21+s
has complex poles, implies fluctuations.

Theorem: Mean size is asymptotic to
2n

log 2
(n + P(log2 n)).

[Wong 1990]
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3. Data Compression 
The Lempel-Ziv algorithm

& functional equations
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Compression by dictionary (1)

Text:
“The square of the hypotenuse of a right triangle is equal to the sum of

the squares on the other two sides.”

Static dictionary:
1=the, 2=square, 3=of

Compressed text:
“1 2 3 1 hypotenuse 3 a right triangle is equal to 1 sum 3 1 2s on 1 o1r

two sides.”

Lempel-Ziv compression: a way to build a text-dependent
dictionary on-line.

The “deja-vu” principle
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Lempel-Ziv compression:

Segment the text (from left to right) into “phrases”.

New phrase = longest earlier-seen phrase plus 1 character.

Encode rank of earlier-seen phrase by its rank.

|a|      |ab|    |abr|    |abra|abrac|

1          6         8           11    12
0a        1b       6r           8a    11c           

The “deja-vu”
 principle
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Compression (2): an implementation and a model

Organize the “phrases” into a tree:

Follow branch and find longest matching phrase.
Occupy next vacant node.

4

! ! ! ! !

a a a ab b r b r

ab

0

1 2 3

c
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Compression (3): tree analysis

Take the tree from the root: split n → 〈1, K , n − 1− K 〉 with

Pn(K = k) ≡ πn,k =
1

2n−1

(
n − 1

k

)
.

Get fundamental generating function schema with p + q = 1:

∂
∂z ϕ(z) = τ(z) + ϕ (pz) + ϕ (qz) .

Mellin transform gives:

Theorem. Path length ∼ n

H
log n; H = p log

1

p
+ q log

1

q
is entropy.

[Knuth 1973], [F–Sedgewick 1986], [Szpankowski 2001]. . .

probabilities
p, q
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Compression (4): results

Theorem. Lempel-Ziv achieves entropy; know redundancy & fluct.
From [Jacquet, Szpankowski, and Louchard, 1995+]

Study the bivariate differential–difference equation

∂
∂z ϕ(z , u) = ϕ (pz , u) ϕ (qz , u) .

and get that PATH-LENGTHn is asymptotically normal.

“Invert” the relation TREE-SIZE ↔ PATH-LENGTH.

Saddle-point (analytic) depoissonization

Newton series and Nörlund integrals in relation to Mellin

26Thursday, June 26, 2008



4. Multidimensional Search
Differential equations and singularities
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Quadtrees (1)

Theorem A. Cost a fully specified search is asymptoticaly normal

with mean ∼ 2

d
log n.

F (z , u) = 1 + 23u

∫ z

0

dx1

x1(1− x1)

∫ x1

0

dx2

1− x2

∫ x2

0
F (x3, u)

dx3

1− x3
.

Theorem B. Mean cost a partial match search is # n
1+
√

17
2 .

• Singularities of linear ODEs and perturbation + singularity analysis.

[F-Gonnet-Puech-Robson, 1993], [F-Lafforgue 94], [F-Labelle-Laforest-Salvy
1998], [Hwang* 2000+]

Gaston Gonnet
28Thursday, June 26, 2008



Quadtrees (2): the “holonomic” framework

Holonomic functions aka differentiably finite aka D–finite:

satisfy linear differential equations with polynomial coefficientss;

have coefficients satisfying P–recurrences;

are s.t. the vector space of all partial derivatives is
finite-dimensional over C(x , y , z , . . .).

Stanley–Lipschitz–Zeilberger theory:

contain algebraic and hypergeometric functions;

closed under +,×,
∫

, ∂,Diag, algebraic substitution, &c

Zeilberger: specifiable by a finite amount of information.

• Identity is decidable.
• Asymptotics of coefficients is (largely) decidable.

[Petkovšek, Wilf, Zeilberger A = B, 1996]
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5. Arithmetic computations
A glimpse of transfer operators...
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The Euclidean algorithm

Hensley, Baladi, and Vallée [1994+]:

The dynamics of continued fractions depends on the Ruelle/transfer
operator

Gs [f ](x) :=
∑

n≥1

1

(n + x)2s
f

(
1

n + x

)
;

gives also the dynamics of the (discrete) Euclidean algorithm.

Theorem A. Euclid’s algorithm is Gaussian!

• A large number of variations: binary GCD, nearest integer GCD,
least/most significant bits, . . .

[D. Mayer 1971], [Hensley 1994], [Vallée 1998], [Dolgopyat 1998]

[Baladi–Vallée 2005], [Vallée 2006],. . .
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Comparing and sorting numbers with Euclid

Theorem B.The average cost of the HAKMEM algorithm for
comparing two numbers is

Theorem C.The mean cost of sorting n numbers based on
continued fractions is

[F. Vallée 2000]

The order of Q(n) depends on the 
Riemann hypothesis!
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Many algorithms and models of 
computational sciences a priori live in a 
discrete world;

but continuous mathematics is highly 
relevant.

Encounters with many old and some new 
maths: asymptotic and complex analysis... 
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