
Counting by Coin Tossings

Philippe Flajolet

Algorithms Project, INRIA-Rocquencourt, 78153 Le Chesnay (France)
Philippe.Flajolet@inria.fr

Abstract. This text is an informal review of several randomized algo-
rithms that have appeared over the past two decades and have proved
instrumental in extracting efficiently quantitative characteristics of very
large data sets. The algorithms are by nature probabilistic and based on
hashing. They exploit properties of simple discrete probabilistic models
and their design is tightly coupled with their analysis, itself often founded
on methods from analytic combinatorics. Singularly efficient solutions
have been found that defy information theoretic lower bounds applicable
to deterministic algorithms. Characteristics like the total number of ele-
ments, cardinality (the number of distinct elements), frequency moments,
as well as unbiased samples can be gathered with little loss of informa-
tion and only a small probability of failure. The algorithms are applicable
to traffic monitoring in networks, to data base query optimization, and
to some of the basic tasks of data mining. They apply to massive data
streams and in many cases require strictly minimal auxiliary storage.

ASIAN’04, Chiang Mai, 2004. To appear in Lect. Notes Comp. Sc. [Sep. 27, 2004]

1 Approximate Counting.

Assume a blind man (a computer?) wants to locate a single black sheep amongst
a flock of N − 1 white sheep. The man can only ask an assistant questions with
a Yes/No answer. Like for instance: “Tell me whether the black sheep is amongst
sheep ranked between 37 and 53 from the left”. This is a variation on the theme of
“Twenty Questions”. Clearly, about log2 N ≡ lg N operations are both necessary
and sufficient. (The proof relies on the fact that with ` bits of information, you
can only distinguish between 2` possibilities, so that one must have 2` ≥ N ,
hence ` ≥ lg N .) This simple argument is of an information-theoretic nature. It
implies the fact that one cannot keep a counter (the “black sheep”) capable of
recording counts between 1 and N with less than lg N bits.

Assume that we want to run a counter known a priori to be in the range
1 . . N . Can one beat the information-theoretic lower bound? Yes and No! Not
if we require an exact count as this would contradict the information theoretic
argument. But, . . . Say we relax the constraints and tolerate an uncertainty on
the counts of at most 10% (say) in relative terms. The situation changes dramat-
ically. We now just need to locate our count amongst the terms of a geometric
scale, 1, A, A2, A3 . . . (till N), where A = 1.1. The problem then becomes that of
finding an interval in a collection of about logA N intervals. Information theory
then tells us that this cannot be effected in fewer than

lg logA N ≈ lg lg N + 2.86245

2

bits, but it also tells us that the “amount of information” contained in an approx-
imate answer is of that very same order. For instance, it is conceivable that an
algorithm could exist with which counts till N = 216 ≡ 65536 can be maintained
using 8 + 3 = 11 bits instead of 16.

This is the situation which Robert Morris encountered at Bell Labs in 1977.
He needed to maintain the logs of a very large number of events in small registers,
since the space available at the time was too small to allow exact counts to be
kept. A gain by a factor of 2 in memory against a degradation in accuracy
by some 30% was perfectly acceptable. How to proceed? Information theory
provides a theoretical possibility, not a solution.

Morris’s solution [23], known as the Approximate Counting Algorithm,
goes at follows. In its crudest (binary) version, you maintain a counter K that
initially receives the value K := 0. Counter K is meant to be a logarithmic
counter, in the sense that when the exact count is n, the value K of the counter
at that time should be close to lg n. Note that the single value that gets stored is
K, which itself only requires lg K ≈ lg lg n bits. Morris’ ingenious idea consists in
updating the counter K to its new value K? according to the following procedure:

K? = K + 1 with probability 2−K ; K? = K with probability 1 − 2−K .

As time goes, the counter increases, but at a smaller and smaller pace. Im-
plementation is especially easy given a (pseudo)random number generator of
sorts [21].

The notable fact here is the appeal to a probabilistic idea in order to increment
the counter. A plausible argument for the fact that K at time n should be close
to lg n is the fact that it takes 1 impulse for the counter to go from value 0
to value 1, then on average 2 more impulses to from 1 to 2, then on average 4
more impulses from 2 to 3, and so on. In other words, a value K = κ should be
reached after about

1 + 2 + 4 + · · · + 2κ−1 = 2κ − 1

steps. Thus, provided this informal reasoning is correct, one should have the
numeric and probabilistic approximation 2κ ≈ n. Then, the algorithm should
return at each instant n◦ = 2K as an estimate of the current value of n.

We have just exposed the binary version of the algorithm, which can at best
provide an estimate within a factor of 2 since the values it returns are by design
restricted to powers of 2. However, it is easy to change the base of the counter: it
suffices to replace 2 by a smaller number q typically chosen of the form q = 21/r.
Then, the new counter gets updated at basically r times the rate of the binary
counter. Its granularity is improved, as is, we may hope, the accuracy of the
result it provides.

So far, we have offered hand-waving arguments to justify the plausible ef-
fectiveness of the algorithm. It can be proved indeed for the base q algorithm
that n◦ := (qK − 1)/(q − 1) + 1 is strictly an unbiased estimator of the un-
known quantity n [the expected value of n◦ is n exactly], and that the chances

3

of a large deviation of the counter are small. (For instance, with a fair probabil-
ity, its deviation will not exceed twice the accuracy for which it was designed.)
The mathematical problem is not totally obvious since probabilistic decisions
pile one upon another. A complete analysis of the states of Morris’ Approxi-
mate Counting Algorithm was first published by the author in 1985; see [11].
The analysis combines regular languages from theoretical computer science, pure
birth processes, basic calculus, Euler’s partition identities, some identities due to
the German mathematician Heine in the nineteenth century (as later noted by
Prodinger [24]), as well as a use of the Mellin transform [13] otherwise familiar
from pure and applied mathematics.

The abstract process underlying Morris’ algorithm has a neat formulation.
It can be described as a stochastic progression in an exponentially harden-
ing medium. It appears to be closely related to recent probabilistic studies by
Bertoin-Biane-Yor [4] and by Guillemin-Robert-Zwart [17], the latter relative
to the transaction control protocol TCP—the additive-increase multiplicative-
decrease process known as AIMD. Other connections include the space efficient
simulation of non-deterministic computations by probabilistic devices, as was
observed by Freivalds already in the late 1970’s. Interestingly enough, the pure-
birth process underlying Approximate Counting also surfaces in the analysis of
a transitive closure algorithm for acyclic graphs; see Andrews-Crippa-Simon [2].
Such unexpected connections between various areas of the mathematical sciences
are fascinating.

2 Probabilistic and Log-Log Counting

Admittedly, nowadays, memory is not such a major concern, so that one might
be tempted to regard Morris’ algorithm as a somewhat old-fashioned curiosity.
This is not so. Morris’ ideas have had an important rôle by demonstrating that
complexity barriers can be bypassed by means of probabilistic techniques, as
long as a small tolerance on the quality of results is granted.

Consider now information flowing at a very high rate in a network. It is
impossible to store it and we do not have time to carry much computation on
the fly as we see messages or packets passing by. Can one still extract some global
information out of the flux of data? An example, which has motivated much of
the recent work of Estan, Varghese, and others is as follows. Imagine you have a
large volume of data (say, packet headers to fix ideas). Is it possible to estimate
the number of distinct elements? This is an important question in the context
of network security [7, 9] since several attacks may be detected at router’s level
by the fact that they generate an unusual number of distinct open connections
(i.e., source-destination pairs also known as “flows”).

Clearly, the solution that stores everything and sorts data afterwards is far
too costly in terms of both processing time and storage consumption. An elegant
solution is provided by a technique combining hashing and signatures. Say we
have a multiset1 M of elements and call cardinality the number of distinct ele-

1 A multiset is like a set but with repetitions allowed.

4

ments M contains. Suppose we have a “good” hash function h, which is assumed
to provide long enough strings of pseudorandom bits from actual data and ne-
glect the effect of collisions. Then the collection h(M) has repetitions that are of
the very same structure as those of M itself, safe for the important remark that
one may now assume the elements to be random real numbers uniformly drawn
on the interval [0, 1].

Let us now examine the elements once hashed. Given the uniformity as-
sumption, we expect the following patterns in values to be observed, with the
corresponding frequencies as described in this table:

.1 · · · .01 · · · .001 · · · .0001 · · ·
1
2

1
4

1
8

1
16

Let ρ(x) be the rank of the first bit 1 in the representation of x (its hashed value,
rather). If hashed values are uniform and independent, the event ρ(x) = k will
occur with probability 1

2k . The quantity,

R := max
k∈N

[

ρ = 1, ρ = 2,. . . , ρ = k are all observed

]

, (1)

is then expected to provide a good indication of the logarithm of the unknown
cardinality of M and 2R should, roughly speaking, estimate the cardinality n =
||M||. Note that the algorithm needs to maintain a bitmap table, which records
on the fly the values of ρ that are observed. (A word of 32 bits is typically
adequate.) By construction, the algorithm depends only on the underlying set
and it is in no way affected by replications of records: whether an element occurs
once or a million times still results in the same operation of setting a flag in the
bitmap to 1.

The complete algorithm was published in the period 1983–1985 by Flajo-
let and Martin [14, 15]. The motivation at the time was query optimization in
database systems. Indeed, such data tend to have a lot of replications (think
of the collection of towns in which employees of an organization reside). In
this context, computing an intersection of two multisets A ∩ B (towns of your
own company’s employees and of employees of your partner’s company) benefits
greatly of knowing how many distinct elements A and B may have since then
the suitable nearly optimal strategy may be set up. (Options include sorting,
merging, hashing, looking up elements of A in B after an index has been set up,
and so on).

With respect to the crude binary version outlined above, the actual algorithm
named Probabilistic Counting differs in two respects:

— A general technique known as stochastic averaging emulates the effect of m
simultaneous observations at the sole expense of a hash function calculation
and a simple “switch”. The purpose is to increase the accuracy from about
one binary order of magnitude for a single bitmap to O(1/

√
m) for stochastic

averaging. The idea consists in computing the basic observable (1) in each
of the m = 2` groups determined by the first ` bits of hashed values, then
averaging, and finally scaling the estimate by m.

5

— The algorithm as described so far would be biased. A very precise proba-
bilistic analysis (using inclusion-exclusion, generating functions, and Mellin
transforms) makes it possible to effect the proper corrections and devise an
algorithm that is asymptotically unbiased.

Without entering into the arcanes of the analysis, the reader can at least get a
feeling of what goes on by contemplating the magical constant [10, p. 437],

ϕ :=
eγ

√
2

∞
∏

m=1

(

2m + 1

2m

)ε(m)
.
= 0.7735162909,

where γ is Euler’s constant and ε(m) = ±1 indicates the parity of the number
of 1–bits in the binary representation of m. This constant, provided by a Mellin
analysis, enters the design of the algorithm as it corrects a multiplicative bias
inherent in the raw parameter (1). In this way, the following proves to be pos-
sible: To estimate the cardinality of large multisets (up to over a billion distinct
elements) using m words of auxiliary memory, with a relative accuracy close to

α =
0.78√

m
. (2)

Marianne Durand and I recently realized that one could even do a bit bet-
ter, namely: To estimate the cardinality of large multisets (up to several billion
distinct elements) using m short bytes (< 8 bits) of auxiliary memory, with a
relative accuracy close to

α =
1.30√

m
. (3)

Rather than maintaining a bitmap table (of one word) out of which the new
observable (previously R) is computed, we choose as “observable” an integer
parameter of the file:

S := max
x∈M

ρ(x).

This quantity is stored in binary, so that only lg S bits are needed. Since S is
itself a logarithmic estimator, its storage only requires lg lg N bits. Now, with a
full byte (8 bits), one could estimate cardinalities till about 228 ≈ 1077, which is
of the order of the number of particles in the universe. Taking each memory unit
to be of 5 bits then suffices for counts till N = 225 ≈ 4 · 109, i.e., four billions.
When experiments are repeated, or rather “emulated” by means of stochastic
averaging, precision increases (in proportion to 1/

√
m if m is the number of

memory units). This gives rise to the LogLog Counting algorithm. There
is a slight theoretical loss in accuracy as the constant 0.78 of (2) relative to
Probabilistic Counting is replaced by a slightly larger value, the formulæ being

α =
1.30√

m
and α =

1.05√
m

, (4)

depending on implementation choices. (The first formula repeats (3); the second
one is relative to the variant known as SuperLogLog). However this effect is

6

ghfffghfghgghggggghghheehfhfhhgghghghhfgffffhhhiigfhhffgfiihfhhh

igigighfgihfffghigihghigfhhgeegeghgghhhgghhfhidiigihighihehhhfgg

hfgighigffghdieghhhggghhfghhfiiheffghghihifgggffihgihfggighgiiif

fjgfgjhhjiifhjgehgghfhhfhjhiggghghihigghhihihgiighgfhlgjfgjjjmfl

Fig. 1. The LogLog Algorithm with m = 256 condenses the whole of Shakespeare’s
works to a table of 256 “small bytes” of 4 bits each. The estimate of the number
of distinct words in this run is n

◦ = 30897 (the true answer is n = 28239), which
represents a relative error of +9.4%.

completely offset by the fact that LogLog’s memory units (from words to small
bytes) are smaller by a factor of about 4 than the words that Probabilistic
Counting requires. Globally, Probabilistic Counting is about 3 to 5 times more
accurate than Probabilistic Counting, for a fixed amount of global storage.

In summary, LogLog counting creates a signature from a multiset of data
and then deduces a cardinality estimator. That signature only depends on the
set of distinct values underlying the multiset of data input to the algorithm.
It consists of m small-byte registers, resulting in an accuracy of ≈ 1/

√
m. For

instance, m = 1024 corresponds to a typical accuracy of 3% and its maintenance
necessitates under a kilobyte of auxiliary memory. In Figure 1 (taken from [6]),
we give explicitly the four line signature by which the number of distinct words in
all of Shakespeare’s writings is predicted to be 30,987 (the true answer is 28,239).
The algorithm offers at present the best accuracy/memory trade-off known.

Yet other observables are conceivable. For instance, Giroire (2004, unpub-
lished) has recently succeeded in analysing a class of algorithms based on min-
ima, where the observable is now a collection of some of the smallest hashed
values.

The algorithms discussed above involve a fascinating interplay between the-
ory and practice. Analysis of algorithms intervenes at several crucial stages. First
in order to correct the bias of raw observables suggested by probabilistic intuition
and back of an envelope calculations; next to estimate variance and limit prob-
ability distributions, thereby quantifying the risk of “large deviations”, which
means abnormally inaccurate estimates. The LogLog algorithm for instance re-
lies on maxima of geometric random variables, exponential generating functions,
analytic depoissonization (Jacquet-Szpankowski [20, 26]), and once again Mellin
transforms.

3 Sampling

Yet another algorithm originally designed for cardinality estimation in data bases
and due to Wegman around 1980 turns out to regain importance in the modern
context of approximate queries and sketches in very large data bases [3].

Once more, a multiset M is given. Say we would like to extract a sample of s
distinct value. In other words, we are sampling the domain of values, the set,
that underlies M. Such a sample may be used to design adaptive data structures

7

or to gather useful statistics on the “profile” of data, like approximate quantiles:
think of the problem of estimating the median salary in a population, given
aggregated heterogeneous files presenting unpredictably repeated entries.

First, as usual, there is a simple-minded algorithm that proceeds by keep-
ing at each stage, as data flows, the exact set (without repetitions) of distinct
elements encountered so far and finally extracting the desired sample of size s.
This algorithm suffers from a storage complexity that is at best proportional to
the cardinality of M and of a time complexity that is even nonlinear if sorting
or index trees (B–trees) are used. The method may be improved a bit by fixing
a priori a sampling factor p, say p = 1

1024 = 2−10. This is Straight Sampling:
Elements are hashed and only elements whose hashed value starts with a se-
quence of 10 zeros are filtered in and kept as a distinct set in a temporary file;
at the end, resample the p-sample and obtain the needed collection of size s.
The algorithm has become probabilistic. It will be reasonably behaved provided
the cardinality of M is well in excess of 1/p (precisely, we need p||M|| � s),
and the storage complexity will decrease by a factor of about 1/1000 (not bad!).
However, if the nature of the data is a priori completely unknown and p has
not been chosen in the right interval, the algorithm may fail dramatically by
oversampling or undersampling. For in instance, in the case of only n = 500
different records and p = 1/1000, it is more than likely that no element at all is
selected so that no sample of whatever size is obtained.

Wegman’s remedy is known as Adaptive Sampling. This elegant algo-
rithm is described in the article that analyses it [12]. Assume again a sample
of s distinct values is wanted. Fix a parameter b, called the bucket size, com-
mensurate with s, e.g, b = 5

2s, and prepare to manage a running list of distinct
elements whose length is ≤ b. The algorithm maintains a parameter called the
sampling depth, δ whose value will get incremented as the algorithm proceeds;
the sampling probability p is also a variable quantity bound to δ by the condition
p = 2−δ. The algorithm runs then as follows:

Start with δ = 0 and accordingly p = 1. All the distinct elements seen are
stored into the bucket until the bucket overflows (b+1 distinct elements have
been found). At this stage, increase the sampling depth by 1, setting δ := δ+1
and p := 1

2p. Then eliminate from the bucket all elements whose hashed
value does not start with one initial zero: this has the effect of stochastically
splitting the bucket and dividing its content by a factor close to 2. Resume
and only consider from this point on, elements whose hashed value is of the
form 0 · · ·, discarding the others. Repeat the following cycle: “increase-depth,
decrease-sampling-ratio, and split-bucket” after each overflow occurs.

This algorithm is closely related to an important data structure known as
the digital tree or “trie” (pronounce like”try”) and its analysis benefits from
techniques known for about three decades in analysis of algorithms [18, 22, 25,
26]. Let M be the (random) number of elements contained in the bucket once
all elements have been scanned. It turns out that the bucket (conditioned upon
the particular value of M) contains an unbiased sample. If b/2 suitably exceeds
the desired sample size s, then, with high probability, one has M > s, so that

8

a subsample of size s can be extracted from the M elements that are available.
This subsample is unbiased. Et voila!

The Adaptive Sampling algorithm also serves as a cardinality estimator, and
this appears to have been the primary motivation for its design. Indeed, as is
intuitively plausible, the quantity M ·2δ = M/p (with p, δ given their final values)
turns out to be an unbiased estimator of the cardinality of M. Analysis based
on generating functions and Mellin transforms shows that the accuracy is now

α =
1.20√

b
,

which is slightly less favorable than previous solutions. The algorithm however
has the advantage of being totally unbiased, including in its nonasymptotic
regime.

At this stage, we should mention yet another algorithm for cardinality estima-
tion. It is due to K-Y. Whang et al. [28] and is sometimes called Hit Counting.
Its ideas are somewhat related to sampling. Say again we want to estimate the
number of distinct elements in a file and this number is known in advance not
to exceed a certain bound ν. Hash elements of M and keep the skeletton of a
hash table of size (say) m := ν

5 in the following manner: a bit is set to 1 for each
cell that is hit at least once during the hashing process. (This technique is akin
to the famous Bloom filters.) The observable that is chosen is the proportion
E of empty (not hit) cells at the end of the procedure. Let n be the unknown
cardinality of M; a Poisson approximation shows that the mean proportion of
empty cells (0-bits in the skeletton) at the end is about e−n/m. Thus, based on
the approximate equality E ≈ e−n/m, propose n◦ = m log E as an estimator of
the unknown cardinality n. The algorithm works fine in theory, it is extremely
accurate for small values of n, but its memory cost, which is of O(n) bits, be-
comes exorbitant for massive data sets. At least, Hit Counting can be recycled
within the LogLog algorithm [5]: this permits to correct nonlinearities present
in the case of very low cardinalities when the full asymptotic regime of LogLog
counting is not yet attained.

Returning to sampling, we note that the problem of sampling with multi-
plicities (i.e., one samples k positions out of n) looks simpler, but sophisticated
algorithms can be developed; see Vitter’s reference work [27].

4 Frequency moments

The amount of literature on the topic of estimating characteristics of very large
data sets has exploded over the past few years. In addition to databases and
networking, data mining has come into the picture. Hashing remains a prime
randomization technique in this context and statistical observations made on
hashed values can again provide very accurate information of various sorts.

An influential paper by Alon, Matias, and Szegedy [1] has proposed an im-
portant conceptual framework that includes many highly interesting quantitative
characteristics of multisets, while encompassing the maintenance of approximate

9

counters and the estimation of cardinalities. Let M be a multiset and let V be the
underlying set, that is, the set of distinct values that elements of M assume. Let
fv be the frequency (number of occurrences) of value v in M. The rth frequency
moment is defined as

Fr(M) :=
∑

v∈V

fr
v .

Thus maintaining a counter of the number of nondistinct elements of M (with
multiplicity counted) is equivalent to determining F1, for which Approximate
Counting is applicable. Similarly, the problem of estimating cardinalities is ex-
pressed in this framework as that of obtaining a good approximation to F0,
a problem addressed by algorithms Probabilistic Counting, LogLog, Adaptive
Sampling, and Hit Counting discussed above.

The quantity F2, a sort of variance, when suitably normalized, provides an
indication of the amount by which the empirical distribution of elements of M

differs from the flat (uniform) distribution. Its estimation can be approached
from

φ2 :=

(

∑

x∈M

ε(x)

)2

, (5)

where ε(x) is ±1 and can be determined by translating the first bit (say) of
the hashed value h(x). This estimator is however subject to great stochastic
fluctuations when several experiments are performed using various bits of hashed
values, so that the estimated values are much less accurate than in the cases of F0

and F1.
The quantities Fr for r > 2 are intrinsically hard to estimate in the absence

of any a priori assumption on the frequency profile of M. Of great interest is
F∞, which is taken to mean

F∞ := lim
r→∞

F 1/r
r ,

as this is the frequency of the most frequent element in the multiset M. The
determination of this quantity is crucial in many networking applications [8], as
it is part of the general problem known as Mice and Elephants : in a large flux
of data, how to recognize the ones that occupy most of the bandwidth?

The quantities Fr when r lies in the interval (0, 2) can be estimated by
resorting to stable laws of probability theory. This is a brilliant idea pioneered by
Piotr Indyk [19] that relates to active research in the area of dimension reduction
in statistics and computational geometry. For our purposes, we may take a stable
law of index α to be the law of a random variable X whose characteristic function
(Fourier transform) is

E
(

eitX
)

= e−|t|α .

Such laws exist for α ∈ (0, 2). Given a multiset M compute the quantity (compare
with (5))

φr :=
∑

x∈M

ε(x), (6)

10

where each ε(x) now obeys a stable law of parameter r and is determined via
hashing from x itself. We have also, with previous notations,

φr :=
∑

v∈V

fvε(v).

Now a fundamental property of stable laws is that if the Xj are r–stable and
independent, then

∑

j

λjXj

(distribution)
= ξZ, with ξ =

∑

j

|λj |r

1/r

,

and Z being itself r–stable. There results from the last two displayed equations
the possibility of constructing an estimator for Fr when r ∈ (0, 2). It suffices to
devise an estimator of the multiplier of an r–stable law: in the literature, this
is usually based on medians of experiments; it has not been investigated yet
whether logarithmic techniques might be competitive.

The fact that F0 can be approached as limη→0 Fη attaches the problem of
cardinality estimation (F0) to this circle of ideas, but a precise assessment of
practical complexity issues seems to be still lacking and the corresponding algo-
rithm does not seem to outperform our earlier solutions.

Let us mention finally that the Fr can be used for parametric statistics pur-
poses. If the data in the multiset M are known to be drawn according to a family
of distributions (Dθ) (say a class of generalized Zipf laws), then the Fr which
are computationally easily tractable (in linear time and small storage) may be
used to infer a plausible value of θ best suited to a multiset M.

5 Conclusion

Simple probabilistic ideas combined with suitable analysis of the intervening
probabilistic and analytic phenomena leads to a class of algorithms that per-
form counting by coin flippings. The gains attained by probabilistic design are
in a number of cases quite spectacular. This is also an area where practice merges
agreeably with theory (discrete models, combinatorics and probability, generat-
ing functions, complex analysis and integral transforms); see the manuscript of
the forthcoming book by Flajolet & Sedgewick [16] for a systematic exposition.
The resulting algorithms are not only useful but also much used in databases,
network management, and data mining.

Acknowledgements. I am grateful to the organizers of ASIAN’04 (the Ninth Asian
Computing Science Conference held at Chiang Mai in December 2004) for their kind
invitation. Many thanks in particular to Ms Kanchanasut, “Kanchana”, for pushing me
to write this text, for her patience regarding the manuscript, her numerous initiatives,
and her constant support of French–Thai cooperation in this corner of science.

11

References

1. Alon, N., Matias, Y., and Szegedy, M. The space complexity of approximating
the frequency moments. Journal of Computer and System Sciences 58, 1 (1999),
137–147.

2. Andrews, G. E., Crippa, D., and Simon, K. q-series arising from the study of
random graphs. SIAM Journal on Discrete Mathematics 10, 1 (1997), 41–56.

3. Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J. Models
and issues in data stream systems. In Proceedings of Symposium on Principles of
Database Systems (PODS) (2002), pp. 1–16.

4. Bertoin, J., Biane, P., and Yor, M. Poissonian exponential functionals, q-
series, q-integrals, and the moment problem for log-normal distributions. Tech.
Rep. PMA-705, Laboratoire de Probabilitś et Modèles Aléatoires, Université
Paris VI, 2002.

5. Durand, M. Combinatoire analytique et algorithmique des ensembles de données.
PhD thesis, École Polytechnique, France, 2004.

6. Durand, M., and Flajolet, P. LogLog counting of large cardinalities. In
Annual European Symposium on Algorithms (ESA03) (2003), G. Di Battista and
U. Zwick, Eds., vol. 2832 of Lecture Notes in Computer Science, pp. 605–617.

7. Estan, C., and Varghese, G. New directions in traffic measurement and ac-
counting. In Proceedings of SIGCOMM 2002 (2002), ACM Press. (Also: UCSD
technical report CS2002-0699, February, 2002; available electronically.).

8. Estan, C., and Varghese, G. New directions in traffic measurement and ac-
counting: Focusing on the elephants, ignoring the mice. ACM Transactions on
Computer Systems 21, 3 (2003), 270–313.

9. Estan, C., Varghese, G., and Fisk, M. Bitmap algorithms for counting active
flows on high speed links. Technical Report CS2003-0738, UCSD, Mar. 2003.
Available electronically. Summary in ACM SIGCOMM Computer Communication
Review Volume 32 , Issue 3 (July 2002), p. 10.

10. Finch, S. Mathematical Constants. Cambridge University Press, New-York, 2003.

11. Flajolet, P. Approximate counting: A detailed analysis. BIT 25 (1985), 113–134.

12. Flajolet, P. On adaptive sampling. Computing 34 (1990), 391–400.

13. Flajolet, P., Gourdon, X., and Dumas, P. Mellin transforms and asymptotics:
Harmonic sums. Theoretical Computer Science 144, 1–2 (June 1995), 3–58.

14. Flajolet, P., and Martin, G. N. Probabilistic counting. In Proceedings of
the 24th Annual Symposium on Foundations of Computer Science (1983), IEEE
Computer Society Press, pp. 76–82.

15. Flajolet, P., and Martin, G. N. Probabilistic counting algorithms for data
base applications. Journal of Computer and System Sciences 31, 2 (Oct. 1985),
182–209.

16. Flajolet, P., and Sedgewick, R. Analytic Combinatorics. 2004. Book in
preparation; Individual chapters are available electronically.

17. Guillemin, F., Robert, P., and Zwart, B. AIMD algorithms and exponential
functionals. Annals of Applied Probability 14, 1 (2004), 90–117.

18. Hofri, M. Analysis of Algorithms: Computational Methods and Mathematical
Tools. Oxford University Press, 1995.

19. Indyk, P. Stable distributions, pseudorandom generators, embeddings and data
stream computation. In Proceedings of the 41st Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS) (2000), pp. 189–197.

12

20. Jacquet, P., and Szpankowski, W. Analytical de-Poissonization and its appli-
cations. Theoretical Computer Science 201, 1-2 (1998), 1–62.

21. Knuth, D. E. The Art of Computer Programming, 3rd ed., vol. 2: Seminumerical
Algorithms. Addison-Wesley, 1998.

22. Knuth, D. E. The Art of Computer Programming, 2nd ed., vol. 3: Sorting and
Searching. Addison-Wesley, 1998.

23. Morris, R. Counting large numbers of events in small registers. Communications
of the ACM 21, 10 (1977), 840–842.

24. Prodinger, H. Approximate counting via Euler transform. Mathematica Slovaka
44 (1994), 569–574.

25. Sedgewick, R., and Flajolet, P. An Introduction to the Analysis of Algorithms.
Addison-Wesley Publishing Company, 1996.

26. Szpankowski, W. Average-Case Analysis of Algorithms on Sequences. John Wiley,
New York, 2001.

27. Vitter, J. Random sampling with a reservoir. ACM Transactions on Mathemat-
ical Software 11, 1 (1985).

28. Whang, K.-Y., Vander-Zanden, B., and Taylor, H. A linear-time probabilis-
tic counting algorithm for database applications. ACM Transactions on Database
Systems 15, 2 (1990), 208–229.

