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I. Algebraic functions: what they are.

I1I. Algebraic models of combinatorics:
e Context—free languages and specifications
o Trees
e Walks and kernel method
e Maps and quadratic method
° ---
ITI. Coeflicient asymptotics is essentially decidable!
e General algebraic functions
e Positive case
e Special systems: " Theorem

IV. Applications



I. Algebraic functions

What are they?



Two equivalent definitions:

e As solutions over C of
P(z,Y)=0

= an algebraic curve.

e As components of systems of equations

i

Y1 - \

\

= projection of an algebraic variety.

equation & system

Proofs: Nonconstructive: ldeals:
Constructive: Resultants;
Constructive’: Groebner bases.

yi =Pi(z0,. -

yr = P1(z;y1,. ..

, Yr)

, Yr)



Consider an algebraic curve

with

There are “usually” d distinct roots (finitely many
exceptions) that organize themselves into of an
analytic function (by Implicit Functions).

Exceptional points are multiple points and branch points.

Lemniscate: (22 + y%)? — (22 —9?) = 0.




ExAaMPLE. The Catalan curve

B=[+{0} xBxB
B(z) =1+ 2B(2)*

The two branches over the reals are

1 —+/1-—4z 1 —+/1-—4z
z z

And B(z) coincides with Y7 near 0.



Real part of the Catalan curve:

1+v1—-4z |

2z

——
02

-10

Combinatorics dictates initial conditions

B(z) =14 124222 +52° + 142* 4+ - ..

CONNECTION PROBLEM:



II. Algebraic Models of
Combinatorics

e context-free languages and specifications
e trees
e wlaks, excursions, ...

® maps



From constructions to equations over GF's

Combinatorial construction Generating Functions
A= Geq B A(z) :
— Z) =
| 1 —C(z2)

Geq is definable rec.: A =1+ A xC.

Definition. A context-free specification involves unions

and products only, possibly in recursive fashion.



Definition. A context-free specification involves unions

and products only, possibly in a recursive fashion.

E.g. Catalan domain: Bin Trees, Gen Trees,
Triangulations

In general defines a family of tree-like objects
— Trees with various types of nodes.

Definition. A contex-free language is the set of words

obtained as leaf labels in preorder traversal.
Unambiguous: unique reconstruction: word ~» tree.

Dyck paths, tree codes, parenthesis systems, generalized
Dyck paths and walks (Banderier,...)
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Theorem. The OGF of a context-free class or an

unambiguous context-free language is an algebraic
function.

A system of polynomials equations is obtained by the
symbolic dictionary.

11



ExAMPLE. Noncrossing graphs [F.Noy, Disc.
Math'99]

(tree) (forest)

(connected graph) (graph)
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Configuration / OGF Coefficients (exact / asymptotic)

Trees (EIS: A001764) z+ 22 + 323 +122% £ 5525 4 ...
3 2 1 3n — 3
T3 — 2T 4+ 22 =0 —( )
2n — 1 n —1
V3 27 .
27V mn3 4
Forests (EIS: A054727) 14+ 24222 4+ 723 +332% 418125 ...
n 1 n 3n — 25 — 1
F3 4+ (22 -2 —-3)F2 4+ (2+3)F—1=0 Z—( )( ' )
j=12n—7J N\ —1 n—j
0.07465 n
~ ———— (8.22469)
V7rn3
Connected graphs (EIS: A0D07297) z+ 22 4+ 423 +232% 4 1562° + - - .
2n—3 .
1 3n — 3 7 —1
c3 4+ C? -320+2:22=0 S ( )( )
n_lj:n—l n+ 3 j—n+4+1
2v6 — 32 n
~— (6\/5)
18V wn3
Graphs (EIS: A054726) 14 24222 41823 44824 1 35229 4+ ).
1 n—1 mN /2n — 2 — :
G2 + (222 =32 —2)G+3z+1=0 —Z(—1)3<')( .)2”_1 g
n ;=0 J n—1—73
140 — 992
~ \/ (6+4\/§)”
4V wn3
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Dyck words: parenthesis systems
a,:,(’; b:’)’

aaababbabbab

Cf. Stein-Waterman 1979, DNA secondary structures.

=+ S\
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Trees

(2: = allowed set of node degrees.

d(u) = Z u®
wel
T(z) = 2¢(T(2))
Lagrangean framework for T°

2P)T(2) = = [ (w)™

n

(2 finite = T is algebraic.

Singularities give useful information on parameters.
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Walks, bridges, meanders, excursions
[F.Banderier-01]

S a finite set of allowed + steps

P(u) = Z u®.

SES

Characteristic equation is

1 —2zP(u) =0.

Theorem. GF's of W, B, M, E are algebraic. and involve

rationally branches of charactersitic equation.

Meanders (z: length; u: final altitude)
F(z,u) =1+ 2P(u)F(z,u) — {u<"} (zP(u)F(z, u))
Kernel method solves a functional equations
(1 — 2zP(u)) = Lin. Comb. | ]

Excursions F'(z,0) = F(z)

Grammars (Labelle-Yeh) don’t give access to such a
decomposability.
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Maps

M(z,1) —uM
M(z,u) =14+ u*2M(z,u)? + uz &, )1 uM(z, u)
— 2z

d |
_> . // \l AR
/‘// s \ ”/ L ‘//
u4 —> zu5 + zu4 + zu3 + zu2 + zul.

Tutte's Quadratic method gives algebraic functions
Cf Schaeffer, ...
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II1. Coefficient Asymptotics
is decidable!
e Local analysis of singularities

e Global connections
— General case
— Positive functions

Special systems: positivity + irreducibility, DLW Thm
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Singularities
Darboux-Pélya method ~» singularity analysis [FIOd90]
A

C
()"

Y(z)NC-(l—%)_ — Y, ~

(under “Camembert” conditions).

Coefficient extraction and asymptotic approximation

commute!

Asymptotic of functions
—> Asymptotic of coefficients
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Coefficients asymptotics
—The problems

~» locate
~» determine

Is intrinsic for algebraic functions.
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Local analysis

P(2y) =0,  deg,(P)=d.

° . all roots are distinct; each is locally

continuable into an

e Exceptional point: two or more roots coincide

— : nothing happens, two™ branches meet,
but each is analytic; cf lemniscate

— Singularity: cannot distinguish determinations that are
analytic.

At any rate: exceptional points correspond to the presence
of multiple roots, hence they solve: P = 0, Py’ =0, e.g.,

0

Resultant,, (P(z,y), 8—yP(z,y); y) =0

Includes reduction in degree: pg(z) =0
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Ternary trees

> P:=T-1-z*xT"3;
3
P:=T-1-2T

> series(Root0f (P,T),z=0,10);
2 3 4 5

1+z+32z +12 2z + 55z + 273 z + ...

> resultant (P,diff(P,T),T);
2
-z (27 z - 4)

I

z
05 _9_4 _q_a —q.2 —q.l 0.1 0.2
f L L
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Newton—Puiseux

At an exceptional point, there should be asymptotic
cancellation: with Z =2z — 23 and Y =y — yo:

..._|_ZaYb_|_..._|_ZCYd_|_...:O
Try
Y x 7P/4
where
d—b
Ba—l—bzz—)c—l—d, b :
q q q a—=¢C

Theorem [Newton-Puiseux] At a singularity solutions

group themesleves into “cycles” that can be expanded
into fractional power series (Puiseux series):

y(z) = H((z )", Hw)= Y hu'

Next: Newton diagram
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Newton diagram

-0.4+

W~ )0~ 2®) — 2%y
24

near (0,0) and its Newton diagram.

P=(y—a°)

The real curve



Analytically

The real section of the Catalan curve (top). The complex
Catalan curve with a plot of &(y) as a function of

z = (R(2),3(2));
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0.15

01 035

A blowup of &(y) near the branch point at z =

N

y(z) — 00(1 — Z’/O')po/qo —|—Cl(o' — z)plql 4 ...

€0 —n, - _
~ g "y Po/20—1

F(—po/QO)
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EXAMPLE. Supertrees (Kemp’s multiD trees?)

Plz,y) =2y — 9>+ 22+ 1D y* —y + 2.

L B R R —. A
-06 -04 =6 02

This is “trees on trees”; y(z) = z + 22 + 323 +82* + .-

b(z) = (1 — V1 —422)/2; take y(z) := b(2b(2)) 2., ,-
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R = z(4z + 3)(4z — 1)°,

The translation z = % — Z,y=1+Y transforms P into

P(Z)Y) = iy‘* — ZY* —47Y3 —82Y? - 8ZY —4Z.

so that
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Coeflicients Asymptotics for Algebraic
Functions

Theorem Let f(z) be an alg. fun. (branch).
— One dominant singularity at a;:

NC¥1 Z dy n—l k/k ’

k>ko

where kg € Z and k is an integer > 2. — Several: a finite
linear combination of such plus exponentially smaller error
terms.

PROOF. Newton-Puiseux expansion + singularity analysis.
Folklore. E.g. F'87, on

Special cases: Trees, Meir and Moon; \/‘—sing &c.
Excursions: F-Banderier; \/‘—sing

~> Decision procedure for equations

+ modification for positive functions.

~> : Positive lrreducible systems.
. also

\/‘—singularity.
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Resultants.

GivenP:aoxf—k--- andQ:bOxm_;_...-

ap a1 a9 s 0 0
0 ap ay --- 0 0
O 0 O Qay_ a
R(P,Q,z) = det e
bp by by --- 0 0
0 by by 0 0
o 0 0 -+ by_1 by

If P and @ have roots «; and S;:

—aobo H — f35) —az)nHQ ;) = emb Hpﬁj-

R(P(z), P = ayg 1_[(04Z — ay).

i7]

If P is made monic, separation distance between roots is

§:= (R(P(z), P'(z),))* ")
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Algorithm ACA (Algebraic Coeff. Asympt.) P(z,y) =0

1. Preparation. Discriminant R = R(P, P,,y);

Compute exceptional set = = roots of R

Determine, by Newton-Puiseux, expansions of all branches, for
a € =U{0}.

|dentify sought Y (z) from initial conditions.

2. Dominant singularities.

Arrange Z in layers, Z1, 22, ... according to |a;
Examine each by

matching Y (z) and the local expansion y, at a point
between 0 and o; use and

Iterate with successive layers till p = r.o.c. is detected.

3. Collection. Translate each singular element by singularity
analysis.

Yet to be implemented!!!
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Algorithm ROCPAF (radius of conv., positive alg. fun.)
Y >0 ([z"]Y >0); P(2,Y)=0.

Prigsheim’s Theorem: a positive dominant singularity.

Use SORTING of real branches based on local Puiseux
expansions and a plane sweep.
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Non-crossing forests, With

> # EXCEPTIONAL SET
> factor(resultant(P,diff (P,y),y));
3 2 3
-z (4-8z +5z -322)

> fsolve(%,z,complex);
-1.930283307, 0, O, O, .1215851069, 3.408698200

> P:=y~3+(272-2z-3) xy~2+(z+3) xy-1;

3 2 2
P:=y +(z -z-3)y +(z+3)y-1

> # PUISEUX EXPANSION AT O by GFUN (!)
> algeqtoseries(P,z,y,6);

2 8/3 1/2 4/3
[1+z+2z +0(z ), 1-2z + 0(z ),

1/2 4/3
1 + z + 0(z )]

> algeqtoseries(subs(z=z+sqrt(2),P),y,4): evalf(});

2
.2593842053 - .1136868103 z + .05214226099 z - ...
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Non-crossing graphs: (a) a random connected graph of size 50;
(b) the real algebraic curve corresponding to non-crossing forests.

£ - Root of 5z% — 822 —3224+4=0

1
B = 3—7\/228 — 981& — 5290£2 = 0.14931

B ( 1 ) 1
F, = WP (14+0(2)), w== =8.22469
2V n3 (n) 13
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The Drmota-Lalley-Woods Theorem

Theorem [DLW]. Assume positive irreducible system.

All y; have same dominant singularity p.
3 functions h; analytic at the origin such that

vi=h; (VI=2/p)  (z=p").

All other dominant sing. of the form pw’, with w root of
unity—this, iff strongly periodic.

Asymptotics of the form (single sing.)

[z”]yj(z) ~p " den_l_k/2

k>1
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Proof (DLW)

Linearize by differentiating a certain number of times.
“Everybody” must have the same r.o.c by irreducibility.

Look at of nonlinear transformation <13;
properties apply.

Look at what goes and exclude any behaviour
other than

Explains the ubiquitous A"n=3/2.
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What else?
e Implement in a Computer Algebra Package [Chabaud]

e Find more structural theorems, extending DLW to
reducible cases.

e Find “good subclasses”
— Trees, Walks, Maps are OK
— Others??

e Limit laws

— Gaussian-ness by perturbation and quasipowers: find
“good” elegant conditions

— Classify possible nongaussian laws: cf Pemantle; cf

stable laws [BaFIScSa01] etc.
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