

Algebraic Analytic Asymptotics

Philippe Flajolet, INRIA

The Seventh Seminar on Analysis of Algorithms

- ⇒ For COMBINATORIAL APPLICATIONS:
- ALGEBRAIC FUNCTIONS

$$P(z, Y) = 0$$

ASYMPTOTICS OF COEFFICIENTS

coeff.
$$[z^n]Y(z) \stackrel{?}{\approx} CA^n n^{p/q}$$

• by ANALYTIC METHODS, i.e., SINGULARITIES

Based on Fl-Sedgewick, 01/2001, http:algo.inria.fr/flajolet/Publications & B. Salvy, C. Chabaud.

- I. Algebraic functions: what they are.
- II. Algebraic models of combinatorics:
 - Context–free languages and specifications
 - Trees
 - Walks and kernel method
 - Maps and quadratic method
 - ...
- III. Coefficient asymptotics is essentially decidable!
 - General algebraic functions
 - Positive case
 - Special systems: Drmota-Lalley-Woods' Theorem
- IV. Applications

I. Algebraic functions	
What are they?	
3	

Two equivalent definitions:

As solutions over C of

$$P(z,Y) = 0$$

= an algebraic curve.

• As components of systems of equations

$$y_1$$
:
$$\begin{cases} y_1 &= \Phi_1(z; y_1, \dots, y_r) \\ \vdots &\vdots \\ y_r &= \Phi_1(z; y_1, \dots, y_r) \end{cases}$$

= projection of an algebraic variety.

Theorem. Elimination is always possible:

equation ⇔ system

Proofs: Nonconstructive: Ideals;

Constructive: Resultants;

Constructive': Groebner bases.

Consider an algebraic curve

$$P(z,y) = 0$$

with $d := \deg_y P(z, y)$.

There are "usually" d distinct roots (finitely many exceptions) that organize themselves into branches of an analytic function (by Implicit Functions).

Exceptional points are multiple points and branch points.

Lemniscate: $(z^2 + y^2)^2 - (z^2 - y^2) = 0$.

EXAMPLE. The Catalan curve

$$\mathcal{B} = [] + \{\odot\} \times \mathcal{B} \times \mathcal{B}$$
$$B(z) = 1 + zB(z)^2$$

The two branches over the reals are

$$Y_1 = \frac{1 - \sqrt{1 - 4z}}{2z}, \quad Y_2 = \frac{1 - \sqrt{1 - 4z}}{2z}$$

And B(z) coincides with Y_1 near 0.

Real part of the Catalan curve:

Combinatorics dictates initial conditions

$$B(z) = 1 + 1z + 2z^2 + 5z^3 + 14z^4 + \cdots$$

CONNECTION PROBLEM:

Which branch to choose?

Where does it lead to?

II. Algebraic Models of Combinatorics

- context-free languages and specifications
- trees
- wlaks, excursions, ...
- maps

The SYMBOLIC DICTIONARY

From constructions to equations over GF's

Combinatorial construction	Generating Functions
$\mathcal{A}=\mathcal{B}+\mathcal{C}$	A(z) = B(z) + C(z)
$\mathcal{A} = \mathcal{B} \times \mathcal{C}$	$A(z) = B(z) \cdot C(z)$
$\mathcal{A}=\mathfrak{Seq}~\mathcal{B}$	$A(z) = \frac{1}{1 - C(z)}$

 \mathfrak{Seq} is definable rec.: $\mathcal{A}=\mathbf{1}+\mathcal{A} imes\mathcal{C}$.

<u>Definition</u>. A context-free specification involves unions and products only, possibly in recursive fashion.

<u>Definition</u>. A context-free specification involves unions and products only, possibly in a recursive fashion.

E.g. Catalan domain: Bin Trees, Gen Trees, Triangulations

In general defines a family of tree-like objects

= Trees with various types of nodes.

<u>Definition</u>. A contex-free language is the set of *words* obtained as leaf labels in preorder traversal.

Unambiguous: unique reconstruction: word \sim tree.

Dyck paths, tree codes, parenthesis systems, generalized Dyck paths and walks (Banderier,...)

Theorem. The OGF of a context-free class or an unambiguous context-free language is an algebraic function. A system of polynomials equations is obtained by the symbolic dictionary.	

Example. **Noncrossing graphs** [F.Noy, Disc. Math'99]

Configuration / OGF	Coefficients (exact / asymptotic)
Trees (<i>EIS</i> : A001764)	$z + z^2 + 3z^3 + 12z^4 + 55z^5 + \cdots$
$T^3 - zT + z^2 = 0$	$\frac{1}{2n-1}\binom{3n-3}{n-1}$
	$\sim \frac{\sqrt{3}}{27\sqrt{\pi n^3}} (\frac{27}{4})^n$
Forests (<i>EIS</i> : A054727)	$1 + z + 2z^2 + 7z^3 + 33z^4 + 181z^5 \cdots$
$F^{3} + (z^{2} - z - 3)F^{2} + (z + 3)F - 1 = 0$	$\sum_{j=1}^{n} \frac{1}{2n-j} {n \choose j-1} {3n-2j-1 \choose n-j} $ $\sim \frac{0.07465}{\sqrt{\pi n^3}} (8.22469)^n$
Connected graphs (<i>EIS</i> : $\mathbf{A007297}$)	$z + z^2 + 4z^3 + 23z^4 + 156z^5 + \cdots$
$C^3 + C^2 - 3zC + 2z^2 = 0$	$\frac{1}{n-1} \sum_{j=n-1}^{2n-3} {3n-3 \choose n+j} {j-1 \choose j-n+1}$
	$\sim \frac{2\sqrt{6} - 3\sqrt{2}}{18\sqrt{\pi n^3}} \left(6\sqrt{3}\right)^n$
Graphs (<i>EIS</i> : A054726)	$1 + z + 2z^2 + 8z^3 + 48z^4 + 352z^5 + \cdots$
$G^2 + (2z^2 - 3z - 2)G + 3z + 1 = 0$	$\frac{1}{n} \sum_{j=0}^{n-1} (-1)^{j} {n \choose j} {2n-2-j \choose n-1-j} 2^{n-1-j}$
	$\sim \frac{\sqrt{140 - 99\sqrt{2}}}{4\sqrt{\pi n^3}} \left(6 + 4\sqrt{2}\right)^n$

Dyck words: parenthesis systems a='(';b=')'

aaababbabbab

Cf. Stein-Waterman 1979, DNA secondary structures.

$$\mathcal{D} = \varepsilon + \nearrow^{\underline{\mathcal{D}}} \searrow \mathcal{D}$$

Trees

 Ω : = allowed set of node degrees.

$$\phi(u) := \sum_{\omega \in \Omega} u^{\omega}$$

$$T(z) = z\phi(T(z))$$

Lagrangean framework for ${\cal T}$

$$[z^n]T(z) = \frac{1}{n} [w^{n-1}]\phi(w)^n.$$

 Ω finite $\Longrightarrow T$ is algebraic.

Singularities give useful information on parameters.

Walks, bridges, meanders, excursions

[F.Banderier-01]

 ${\cal S}$ a finite set of allowed \pm steps

$$P(u) = \sum_{s \in \mathcal{S}} u^s.$$

Characteristic equation is

$$1 - zP(u) = 0.$$

<u>Theorem</u>. GF's of W, B, M, E are algebraic. and involve rationally branches of charactersitic equation.

Meanders (z: length; u: final altitude)

$$F(z,u) = 1 + zP(u)F(z,u) - \{u^{<0}\} \left(zP(u)F(z,u)\right).$$

Kernel method solves a functional equations

$$F(z, u) (1 - zP(u)) = \text{Lin. Comb.} [F_0(z), \dots, F_{c-1}(z)]$$

Excursions F(z,0) = E(z)

$$E(z) = \frac{(-1)^{c-1}}{z} u_1(z) u_2(z) \cdots u_c(z).$$

Grammars (Labelle-Yeh) don't give access to such a decomposability.

Maps

$$M(z, u) = 1 + u^2 z M(z, u)^2 + uz \frac{M(z, 1) - u M(z, u)}{1 - z}.$$

Tutte's Quadratic method gives algebraic functions Cf Schaeffer, ...

III. Coefficient Asymptotics

is decidable!

- Local analysis of singularities
- Global connections
 - General case
 - Positive functions

Special systems: positivity + irreducibility, DLW Thm

Singularities

Darboux-Pólya method → singularity analysis [FIOd90]

A DICTIONARY

$$Y(z) \sim \frac{C}{\Gamma(\alpha)} \cdot \left(1 - \frac{z}{\rho}\right)^{-\alpha} \implies Y_n \sim \frac{C}{\Gamma(\alpha)} \rho^{-n} n^{\alpha - 1}.$$

(under "Camembert" conditions).

Coefficient extraction and asymptotic approximation commute!

$$([z^n] \approx \sigma(z)) \approx ([z^n]\sigma(z)).$$

Asymptotic singular scale of functions

→ Asymptotic scale of coefficients

Local analysis

$$P(z, y) = 0,$$
 $\deg_y(P) = d.$

- Regular point: all roots are distinct; each is locally continuable into an analytic function element.
- Exceptional point: two or more roots coincide
- Multiple point: nothing happens, two⁺ branches meet,
 but each is analytic; cf lemniscate
- Singularity: cannot distinguish determinations that are analytic.

At any rate: exceptional points correspond to the presence of multiple roots, hence they solve: P=0, $P_y^\prime=0$, e.g.,

$$\operatorname{Resultant}_y\left(P(z,y),\frac{\partial}{\partial y}P(z,y);\,y\right)=0$$

Includes reduction in degree: $p_d(z) = 0$

Ternary trees

>
$$P:=T-1-z*T^3;$$

$$P := T - 1 - z T$$

> series(RootOf(P,T),z=0,10);

$$1 + z + 3 z + 12 z + 55 z + 273 z + \dots$$

> resultant(P,diff(P,T),T);

$$-z$$
 (27 z - 4)

Newton-Puiseux

At an exceptional point, there should be asymptotic cancellation: with $Z=z-z_0$ and $Y=y-y_0$:

$$\cdots + Z^a Y^b + \cdots + Z^c Y^d + \cdots = 0$$

Try

$$Y \propto Z^{p/q}$$

where

$$\frac{p}{q}a + b = \frac{p}{q}c + d,$$
 $\frac{p}{q} = \frac{d-b}{a-c}.$

<u>Theorem</u> [Newton-Puiseux] At a singularity solutions group themesleves into "cycles" that can be expanded into fractional power series (Puiseux series):

$$y(z) = H((z - z_0)^{1/r}), \qquad H(w) = \sum_{j=-m}^{\infty} h_j w^j.$$

Next: Newton diagram

Newton diagram

The real curve

$$P = (y - x^{2})(y^{2} - x)(y^{2} - x^{3}) - x^{3}y^{3}$$

near (0,0) and its Newton diagram.

Analytically

Conditions of singularity analysis are automatically

The real section of the Catalan curve (top). The complex Catalan curve with a plot of $\Im(y)$ as a function of $z=(\Re(z),\Im(z));$

A blowup of $\Im(y)$ near the branch point at $z=\frac{1}{4}$.

$$y(z) = c_0(1 - z/\sigma)^{p_0/q_0} + c_1(\sigma - z)^{p_1q_1} + \cdots$$

Each singular element translates into

$$\approx \frac{c_0}{\Gamma(-p_0/q_0)} \sigma^{-n} n^{-p_0/q_0 - 1}$$

EXAMPLE. Supertrees (Kemp's multiD trees?)

$$P(z,y) = zy^4 - y^3 + (2z+1)y^2 - y + z.$$

This is "trees on trees"; $y(z)=z+z^2+3z^3+8z^4+\cdots$; $b(z)=(1-\sqrt{1-4z^2})/2$; take $y(z):=b(zb(z))_{z^2\mapsto z}$.

$$P(z,y) = zy^4 - y^3 + (2z+1)y^2 - y + z.$$

$$\mathcal{R} = z(4z+3)(4z-1)^3,$$

The translation $z=\frac{1}{2}-Z, y=1+Y$ transforms P into

$$\tilde{P}(Z,Y) = \frac{1}{4} \frac{Y^4}{4} - ZY^4 - 4ZY^3 - 8ZY^2 - 8ZY - 4Z.$$

$$y(z) = 1 - 2\sqrt[4]{\frac{1}{4} - z} + \cdots$$

so that

$$[z^n]y(z) \sim \frac{1}{\sqrt{8}\Gamma(\frac{3}{4})} 4^n n^{-5/4},$$

Coefficients Asymptotics for Algebraic Functions

Theorem Let f(z) be an alg. fun. (branch).

— One dominant singularity at α_1 :

$$f_n \sim \alpha_1^{-n} \left(\sum_{k \ge k_0} d_k n^{-1-k/\kappa} \right),$$

where $k_0 \in \mathsf{Z}$ and κ is an integer ≥ 2 . — Several: a finite linear combination of such plus exponentially smaller error terms.

PROOF. Newton-Puiseux expansion + singularity analysis.

Folklore. E.g. F'87, on Ambiguity and Transcendence"

QUESTION. How to determine which exceptional points are relevant? *Connection problem!*

Special cases: Trees, Meir and Moon; $\sqrt{\text{-sing \&c.}}$

Excursions: F-Banderier; √-sing

- → General: Decision procedure for equations
- + modification for positive functions.
- → Semi-general: Positive Irreducible systems.

Drmota-Lalley-Woods' structural theorem: also

-singularity.

Resultants.

Given $P = a_0 x^{\ell} + \cdots$ and $Q = b_0 x^m + \cdots$:

If P and Q have roots α_j and β_j :

$$\mathcal{R} = a_0^{\ell} b_0^m \prod_{i,j} (\alpha_i - \beta_j) = a_0^m \prod_i Q(\alpha_i) = (-1)^{\ell m} b_0^{\ell} \prod_j P(\beta_j).$$

$$\mathcal{R}(P(x), P'(x), x) = a_0^{\ell} \prod_{i \neq j} (\alpha_i - \alpha_j).$$

If P is made monic, separation distance between roots is

$$\delta := \left(\mathcal{R}(P(x), P'(x), x) \right)^{2/(n(n-1))}.$$

Algorithm ACA (Algebraic Coeff. Asympt.) P(z, y) = 0

1. Preparation. Discriminant $R = \mathcal{R}(P, P'_y, y)$;

Compute exceptional set $\Xi = \text{roots of } R$

Determine, by Newton-Puiseux, expansions of all branches, for $\alpha \in \Xi \cup \{0\}$.

Identify sought Y(z) from initial conditions.

2. Dominant singularities.

Arrange Ξ in layers, Ξ_1, Ξ_2, \ldots according to $|\alpha|$; Examine each candidate $\sigma \in \Xi_1$ by matching Y(z) and the local expansion y_σ at a point between 0 and σ ; use separation distance and truncation estimates.

Iterate with successive layers till $\rho = \text{r.o.c.}$ is detected.

3. Collection. Translate each singular element by singularity analysis.

Yet to be implemented!!!

Algorithm ROCPAF (radius of conv., positive alg. fun.) $Y \gg 0$ ($[z^n]Y \geq 0$); P(z,Y) = 0.

Prigsheim's Theorem: a positive dominant singularity.

Use **SORTING** of real branches based on local Puiseux expansions and a plane sweep.

Non-crossing forests, With Maple/Gfun

```
> # EXCEPTIONAL SET
> factor(resultant(P,diff(P,y),y));
          -z (4 - 8 z + 5 z - 32 z)
> fsolve(%,z,complex);
-1.930283307, 0, 0, 0, .1215851069, 3.408698200
> P:=y^3+(z^2-z-3)*y^2+(z+3)*y-1;
   P := y + (z - z - 3) y + (z + 3) y - 1
> # PUISEUX EXPANSION AT O by GFUN (!)
> algeqtoseries(P,z,y,6);
                       1/2 4/3
               8/3
[1 + z + 2z + 0(z), 1 - z + 0(z),
        1/2 4/3
   1 + z + 0(z)
> algeqtoseries(subs(z=z+sqrt(2),P),y,4): evalf(%);
                                          2
.2593842053 - .1136868103 z + .05214226099 z - ...
```


Non-crossing graphs: (a) a random connected graph of size 50; (b) the real algebraic curve corresponding to non-crossing forests.

$$\xi : \text{Root of } 5z^3 - 8z^2 - 32z + 4 = 0$$

$$\beta = \frac{1}{37} \sqrt{228 - 981\xi - 5290\xi^2} \doteq 0.14931$$

$$F_n = \frac{\beta}{2\sqrt{\pi n^3}} \omega^n \left(1 + O(\frac{1}{n})\right), \qquad \omega = \frac{1}{\xi} \doteq 8.22469$$

The Drmota-Lalley-Woods Theorem

$$\{y_j = \Phi_j(z, y_1, \dots, y_m)\}, \quad j = 1, \dots, m.$$

Theorem [DLW]. Assume positive irreducible system.

All y_i have same dominant singularity ρ .

 \exists functions h_j analytic at the origin such that

$$y_j = h_j \left(\sqrt{1 - z/\rho} \right) \qquad (z \to \rho^-).$$

All other dominant sing. of the form $\rho\omega^j$, with ω root of unity—this, iff strongly periodic.

Asymptotics of the form (single sing.)

$$[z^n]y_j(z) \sim \rho^{-n} \left(\sum_{k \ge 1} d_k n^{-1-k/2} \right).$$

Proof (DLW)

Linearize by differentiating a certain number of times. "Everybody" must have the same r.o.c by irreducibility.

Look at Jacobian of nonlinear transformation $\vec{\Phi}$; Perron-Frobenius properties apply.

Look locally at what goes and exclude any behaviour other than square-root type.

Explains the ubiquitous $A^n n^{-3/2}$.

What else?

- Implement in a Computer Algebra Package [Chabaud]
- Find more structural theorems, extending DLW to reducible cases.
- Find "good subclasses"
- Trees, Walks, Maps are OK
- Others??
- Limit laws
- Gaussian-ness by perturbation and quasipowers: find "good" elegant conditions
- Classify possible nongaussian laws: cf Pemantle; cf stable laws [BaFIScSa01] etc.