January 20, 2003

Analytic Urns

Philippe Flajolet, INRIA Rocquencourt, F.

With Kim Gabarro and Helmut Pekari, Barcelona
General: BALLS and one or more URNS.

Two kinds of models

- **“Balls-and-bins”:** Throw balls at random into a number of urns.

 = Random allocations. Basic in the analysis of hashing algorithms; also SAT problem, cf V. Puyhaubert.

- **“Urn models”:** One urn contains balls whose nature may randomly change according to ball drawn and finite set of rules.
Here: URNS with BALLS of TWO COLOURS

<table>
<thead>
<tr>
<th>Type I</th>
<th>Type II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>White</td>
</tr>
</tbody>
</table>

RULES are given by a 2×2 Matrix

The composition of the urn at time 0 is fixed. At time n, a ball in the urn is randomly chosen and its colour is inspected (thus the ball is drawn, looked at and then placed back in the urn): if it is black, then α black and β white balls are subsequently inserted; if it is white, then, γ black balls and δ white balls are inserted.

\[
\begin{array}{c|cc}
\text{drawn} & \text{added} \\
\downarrow & B & W \\
B & \alpha & \beta \\
W & \gamma & \delta .
\end{array}
\]
• Drawing with replacement = \[
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}
\].

• Drawing without replacement = \[
\begin{pmatrix}
-1 & 0 \\
0 & -1
\end{pmatrix}
\].

• Laplace’s “melancholic” model (1811): if a ball is drawn, it is repainted black no matter what its colour is.
\[
\begin{pmatrix}
0 & 0 \\
1 & -1
\end{pmatrix}
\]

• Ehrenfest & Ehrenfest = Über zwei bekannte Einwände gegen das Boltzmannsche II-Theorem, 1923. Irreversibility contradicts Ergodicity. Exchanges of basic balls (“atoms of heat”) between two urns, one cold and one hot:
\[
\begin{pmatrix}
-1 & 1 \\
1 & -1
\end{pmatrix}
\]

Bernoulli (1768), Laplace (1812).
• Polya Eggenberger model. A ball is drawn at random and then replaced, together with \(s \) balls of the same colour.

\[
\begin{pmatrix}
s & 0 \\
0 & s
\end{pmatrix}
\]

A model of positive influence. Closed form.

• “Adverse influence” model

\[
\begin{pmatrix}
0 & s \\
s & 0
\end{pmatrix}
\]

Used in epidemiology, etc.

• The special search tree model

\[
\begin{pmatrix}
-2 & 3 \\
4 & -3
\end{pmatrix}
\]

Here case of a 2×2-matrix

$$
\begin{pmatrix}
\alpha & \beta \\
\gamma & \delta
\end{pmatrix}
$$

with constant row-sum $\heartsuit \heartsuit$

$$
s := \alpha + \beta = \gamma + \delta.
$$

At time n size t_n satisfies $t_n = t_0 + sn$.

Constant increment s

A problem with three parameters + two initial conditions.

♠ Kotz, Mahmoud, Robert (2000) show “pathologies’ in some of the other cases.

Huge literature: Math. Reviews

TITLE=urn : Number of Matches=186’’
Lead to amazingly wide variety of behaviours, special functions, and limit distributions.

Methods

- Difference equations and explicit solutions.
- Same but with probability generating functions.
- Connection with branching processes.
- Stochastic differential equations (KMR)
- Martingales (Gouet)

Here: A frontal attack:
- PDE of snapshots at time n
- Usual solution for quasilinear PDE
- Bivariate GF and singularity perturbation

Conformal mapping argument, Abelian integrals over Fermat curves $z^h + y^h = 1$

+ Special solutions with elliptic functions
Part I

The $\mathcal{T}_{2,3}$ model—basic equations

\[
\begin{pmatrix}
-2 & 3 \\
4 & -3
\end{pmatrix}
\]

- Insertions in a 2–3 tree: 2–node \mapsto 3–node; 3–node \mapsto (2–node + 2–node).

- Fringe-balanced 2–3 tree analogous to median-of-three quicksort.

Mahmoud (1998); Panholzer–Prodinger (1998)
Evolution is:

\[X_1 = 2; \quad X_n - X_{n-1} = \begin{cases} -2 & \text{with probability } \frac{X_{n-1}}{n} \\ +4 & \text{with probability } 1 - \frac{X_{n-1}}{n} \end{cases} \]

Let \(p_{n,k} = \mathbb{P}(X_n = k) \), \(p_n(u) := \sum_k p_{n,k} u^k \), and

\[F(z, u) := \sum_{n \geq 1} p_n(u) u^n = \sum_{n,k} p_{n,k} u^k z^n, \]

whose elicitation is our main target.

Lemma: PDE satisfied by BGF of probabilities is

\[(u^5 z - u) \frac{\partial F}{\partial z} + (1 - u^6) \frac{\partial F}{\partial u} + u^5 F + u^3 = 0. \]

Proof. Each \(p_n \) is determined from previous one by \(\partial_u \) = a differential recurrence. Gives PDE for bivariate generating function \(F \).

Take \(p_0(u) \) that satisfies PDE and write \(G := p_0(u) + F(z, u) \). then, we get a **homogeneous PDE**.

\[(u^5 z - u) \frac{\partial G}{\partial z} + (1 - u^6) \frac{\partial G}{\partial u} + u^5 G = 0. \]

with

\[p_0(u) = (1 - u^6)^{1/6} \int_0^u t^3 (1 - t^6)^{-7/6} \, dt. \]
Quasilinear first-order PDE's are reducible to ODEs.

\[A(z, u, G) \frac{\partial G(z, u)}{\partial z} + B(z, u, G) \frac{\partial G(z, u)}{\partial u} + C(z, u, G) = 0 \]

1. Look for a solution in implicit form \(X(z, u, G) = 0 \).

\[A(z, u, w) \frac{\partial X}{\partial z} + B(z, u, w) \frac{\partial X}{\partial u} - C(z, u, w) \frac{\partial X}{\partial w} = 0. \]

2. Consider the ordinary differential system

\[\frac{dz}{A} = \frac{du}{B} = - \frac{dw}{C}. \]

The solution of two "independent" ordinary differential equations, e.g.,

\[\frac{du}{B} = - \frac{dw}{C} \quad \text{and} \quad \frac{dz}{A} = \frac{du}{B}, \]

leads to two families of integral curves,

\[U(u, z, w) = C_1 \quad \text{and} \quad V(u, z, w) = C_2. \]

3. The generic solution of the PDE is provided by

\[X(z, u, w) = \Phi(U(u, z, w), V(u, z, w)), \]

for arbitrary bivariate \(\Phi \). Solving for \(w \) in \(X(z, u, w) = 0 \) provides a relation \(w = R_{\Phi}(z, u) \). General solution is

\[G(z, u) := R_{\Phi}(z, u). \]
\[(u^5z - u)\frac{\partial G}{\partial z} + (1 - u^6)\frac{\partial G}{\partial u} + u^5G = 0.\]

Consider
\[
\frac{du}{1 - u^6} = \frac{dz}{u^5z - u} = -\frac{dw}{u^5w}.
\]

- \(du \leftrightarrow dw\) first integral by separation:
 \[w(1 - u^6)^{-1/6} = C_1.\]

- \(du \leftrightarrow dz\) variation of constant:
 \[z(1 - u^6)^{1/6} + \int_0^u \frac{t}{(1 - t^6)^{5/6}}\, dt = C_2.\]

Bind the two integrals by arbitrary \(\Phi\) & \(w \equiv G\)

\[
\Phi \left(\frac{G}{(1 - u^6)^{1/6}}, z(1 - u^6)^{1/6} + \int_0^u \frac{t}{(1 - t^6)^{5/6}}\, dt\right) = 0,
\]

Solve for \(G\), introducing arbitrary \(\psi\):

\[G(z, u) = \delta(u)\psi(\delta(u)z + I(u)), \quad I(u) := \int_0^u \frac{t}{(1 - t^6)^{5/6}}\, dt,
\]

with \(\delta(u) := (1 - u^6)^{1/6}\).
Initial conditions identify ψ.

Theorem 1. Define the quantities

\[
\delta(u) = (1 - u^6)^{1/6}, \quad I(u) = \int_0^u \frac{t}{(1 - t^6)^{5/6}} \, dt, \quad J(u) = \int_0^u \frac{t^3}{(1 - t^6)^{7/6}} \, dt.
\]

(1)

Then, the bivariate generating function of the probabilities is

\[
G(z, u) = \delta(u) \psi(z\delta(u) + I(u)),
\]

(2)

where ψ is the function defined parametrically for $|u| < 1$ by

\[
\psi(I(u)) = J(u).
\]

(3)
Dominant singularities of ψ?

The diagram that summarizes ψ is

$$
\begin{aligned}
\text{u} & \\
\text{z} = I(u) & \xrightarrow{\psi} & \psi(z) = J(u).
\end{aligned}
$$

The radius of analyticity of ψ is

$$
\rho = I(1), \quad I(u) := \int_0^u \frac{t}{(1 - t^6)^{5/6}} \, dt.
$$

Proof: There is local (analytic) invertibility of $I(u)$ along $(0, \rho)$. Thus ψ is analytic along $(0, \rho)$.

We have $\psi(z) = G(z, 0)$ which has nonnegative coeffs and is Pringsheim.

We have $I(1) < \infty$ while $J(1) = \infty$. Thus ρ is a singularity.

By Eulerian Beta integrals:

$$
\rho \equiv I(1) = \frac{1}{6} B\left(\frac{1}{6}, \frac{1}{3}\right) = \frac{1}{6} \frac{\Gamma(1/3)\Gamma(1/6)}{\Gamma(1/2)} \approx 1.40218 21053 25454.
$$

$$
\left(\frac{\psi_{47}}{\psi_{50}}\right)^{1/3} \approx 1.40218 21053 25456.
$$
Local expansions near $u = 1$ plus symmetries of the problem are compatible with:

Proposition 1. There are no singularities of $\psi(z)$ on $|z| = \rho$ other than $\rho, \rho \omega, \rho \omega^2$ that are simple poles. Precisely, let

$$S(z) = \frac{1}{\rho - z} + \frac{1}{\rho \omega - z} + \frac{1}{\rho \omega^2 - z} = \frac{3z^2}{\rho^3 - z^3}.$$

The function

$$\psi(z) - S(z)$$

is analytic in a disc $|z| < R$ for some R satisfying $R > \rho$. (One can take $R = 2\rho$.)

Why singularities of ψ, BTW?

$$G(z, u) = \delta(u)\psi(z\delta(u) + I(u)), \quad \psi(I(u)) = J(u).$$

Set $u = 0$ and estimate $[z^n]\psi(z)$: Get extremely large deviations, all balls of one colour.

Know approximately $[z^n]G(z, u) = \text{PGF of distribution} \sim \text{LIMIT LAW}.$

Set u to value $\neq 1$ and get \text{LARGE DEVIATIONS}.

And a good deal more...
Part II
The $\mathcal{T}_{2,3}$ model—elliptic structure

Recall: an elliptic function is a doubly periodic meromorphic function in \mathbb{C}.

Historically: Integration over a conic $\int Q(z, y)$ where $y = \sqrt{P(x)}$ and $\deg P = 1, 2$, yields functions like \arctan, \arcsin and hyperbolic counterparts. Such functions satisfy $\arctan(z) \equiv \arctan(z) + k\pi$ so that inverses are simply periodic. This is a way to (re)build trigonometry from integrals over conics.

Integration over a cubic or a quartic $y = \sqrt{P(x)}$ with $\deg P = 3, 4$, which are topologically “doughnuts” leads to double periodicity. Such things occur when rectifying the ellipse hence the name elliptic integrals and elliptic functions for inverses.

$$\sum 1/(z - \omega)^3$$
For a parameterized curve, \(\psi(I(u)) = J(u) \), examine all possible paths in the \(u \)-plane, and the corresponding determinations of \(I(u) \). Reflect on

\[
\psi \left(\int_{1}^{u} \frac{dt}{t} \right) = u,
\]

which defines \(\psi(\log u) = u \), that is, \(\psi(z) = e^z \).

Here:

\[
\psi(I(u)) = J(u)
\]

\[
I(u) = \int_{0}^{u} \frac{t \, dt}{(1-t^6)^{5/6}}, \quad I(u) = \int_{0}^{u} \frac{t^3 \, dt}{(1-t^6)^{7/6}}.
\]

The curve is \(t^6 + y^6 = 1 \) and has genus 10.

Go step by step.

- **The elementary triangle**
- **The fundamental triangle**
The region R_0 (left) and a rendering of the six-sheeted Riemann surface \mathcal{R} of $\delta(u) \equiv (1 - u^6)^{1/6}$ for u near 1 (right).

Because of double parameterization, taking u in a half-plane suffices.
Lemma 1. The function ψ maps the interior of $(R_0 \cap H)$ in a one-to-one manner on the interior of the equilateral triangle T with vertices $\rho, \rho \omega, \rho \omega^2$, where $\omega := e^{2i\pi/3}$.

Proof. Folds angles in an appropriate way... Start with Elementary triangle.

The “elementary triangle” T_0 (right) is the image of the basic sector S_0 (left) via the mapping $u \mapsto I(u)$.

The “fundamental triangle” T (right) is the image of the slit upperhalf plane $(R_0 \cap H)$ (left) via the mapping $u \mapsto I(u)$.
Three **elementary triangles** assemble to form a fundamental triangle

![Diagram](image)

\[\zeta^2, \zeta, 0, 1 \quad \Rightarrow \quad \rho \omega \equiv I(\zeta), \rho \equiv I(1), \rho \omega^2 \equiv I(\zeta^2) \]

Based on \(I(\zeta u) = \omega I(u) \), where \(\zeta^6 = 1, \omega^3 = 1 \).

Another view of the image of \((R_0 \cap H)\) by \(I(u) \) giving the fundamental triangle \(T \): a representation of the images of rays emenating from 0 and of circles centred at 0.
Lemma 2. The function ψ is analytic (holomorphic) in the disk $|z| < 2\rho$ stripped of the points $\rho, \rho \omega, \rho \omega^2$. (The function admits these three points as simple poles, as asserted in Prop. 1.)

Rotated copies of the fundamental triangle around $\rho, \rho \omega, \rho \omega^2$ shown against the circle of convergence of $\psi(z)$.

Proof. Laces around $u = 1$ and changes of variables: $I(1) - I(u) \sim 6^{1/6}(1 - u)^{1/6}$.
The full story and the elliptic connection

A lattice Λ with generators $\xi, \eta \in \mathbb{C}$:

$$\Lambda(\xi, \eta) = \{ n_1 \xi + n_2 \eta \mid n_1, n_2 \in \mathbb{Z} \}.$$

The Weierstraß zeta function relative to Λ is classically defined as

$$\zeta(z; \Lambda) := \frac{1}{z} + \sum_{w \in \Lambda \setminus \{0\}} \left(\frac{1}{z - w} + \frac{1}{w} + \frac{z}{w^2} \right).$$

Theorem 2. The ψ-function of the $T_{2,3}$ model initialized with 2 balls of the first type ($a_0 = t_0 = 2$) is exactly

$$\psi(z) = \frac{1}{\rho \sqrt{3}} \left(-\zeta \left(\frac{z - \rho}{\rho \sqrt{3}} \right) + \zeta \left(-\frac{1}{\sqrt{3}} \right) \right), \quad \rho := \frac{1}{6} \frac{\Gamma(1/3)\Gamma(1/6)}{\Gamma(1/2)} (4),$$

where $\zeta(z) := \zeta(z; \Lambda_{\text{hex}})$ is the Weierstraß zeta function of the hexagonal lattice:

$$\Lambda_{\text{hex}} := \left\{ n_1 e^{i\pi/6} + n_2 e^{-i\pi/6} \mid n_1, n_2 \in \mathbb{Z} \right\}.$$
Proof.

- Follow all paths and examine $I(\gamma(u))$: any point $z \in \mathbb{C}$ is reachable.

- There is a pole of ψ at lattice points and residue is -1 since determinations of $\delta(u)$ in I, J are the same.

- By Liouville, $\psi(z)$ and ζ coincide (up to normalization).
A path in the \(z \)-plane from 0 to \(P \) and the contour \(\gamma \) above the \(u \)-plane that realizes it via \(u \mapsto z = I(u) \).
Part III

Probabilistic consequences

Extract coeffs in simple fractions:

Corollary 1. For the $\mathcal{T}_{2,3}$ model, the probability generating function $p_n(u) = \mathbb{E}(u^{X_n})$ admits an exact formula valid for all $n \geq 2$,

$$p_n(u) = \sum_{n_1,n_2=-\infty}^{+\infty} \left(K(u) + \frac{\rho \sqrt{3}}{\delta(u)} (n_1 e^{i \pi / 6} + n_2 e^{-i \pi / 6}) \right)^{-n-1},$$

where

$$K(u) := \frac{1}{\delta(u)} \int_u^1 \frac{t}{\delta(t)^5} dt, \quad \delta(u) = (1 - u^6)^{1/6}.$$

Note: when $u \approx 1$, this is like $K(u)^{-n-1}$.
The Quasi-powers framework.

Classics are:

(Laplace) Given a random variable X, define its characteristic function aka Fourier transform as

$$
\phi_X(t) := \mathbb{E}(e^{itY}) = \sum_k \mathbb{P}(Y = k)e^{itk} = \varphi(e^{it}).
$$

If $S_n = X_1 + \cdots + X_n$ with i.i.d. X_j, then:

$$
\phi_{S_n}(t) = (\phi_X(t))^n.
$$

(Lévy et al.) Fourier inversion is continuous: convergence of F.T.’s

$$
\lim_{n \to \infty} \phi_{Y_n}(t) = \phi_Z(t) \quad \text{pointwise}
$$

implies $Y_n \Rightarrow Z$ in distribution.

(Berry-Esseen) Uniform distance on F.T. furthermore gives bounds on uniform distance on distribution functions.
A Sedgewick plot of $\{\mathbb{P}(x_n = k)\}_{k=0}^{n-1}$ for $n = 24 \ldots 96$ (the horizontal axis is normalized to $n + 1$).
Gaussian laws in analytic combinatorics

Classically $S_n = X_1 + \cdots + X_n$, where X_j have mean and variance. Calculation shows that

$$\log \mathbb{E} \left[\exp \left(it \frac{S_n - n\mu}{\sigma \sqrt{n}} \right) \right] \xrightarrow{n \to \infty} -\frac{t^2}{2}.$$

Hence Central Limit Theorem.

A “good” uniform approximation $p_n(u) \sim a(u) \cdot B(u)^n$ for $u \approx 1$ (complex neighbourhood) is called QuasiPowers approximation.

From Bender, F.-Soria, Hwang (1995), one has:
— Moments result from differentiation (complex an.)
— Convergence to Gaussian distribution (erf)
— Speed of convergence is $\frac{1}{\sqrt{n}}$.
— Some large deviation estimates: probability of being far from mean at cn for $c \neq \mu$ is exponentially small.
Corollary 2 (Gaussian limit). For the $T_{2,3}$ model, the random variable X_n representing the number of balls of the first type at time n is asymptotically Gaussian with speed of convergence to the limit $O(n^{-1/2})$,

$$\mathbb{P}\left(\frac{X_n - \mathbb{E}(X_n)}{\sqrt{\operatorname{Var}(X_n)}} \leq x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} \, dy + O\left(\frac{1}{\sqrt{n}}\right).$$

Proof. From lattice sum, in complex neighbourhood $u \approx 1$:

$$p_n(u) = K(u)^{-n-1}(1 + O(2^{-n})).$$

Note that $K(u)^{-1}$ plays the rôle of a probability characteristic function but it isn’t!

$$K(u)^{-1} \approx 0.713 + 0.254u^2 + 0.090u^4 - 0.086u^6 + 0.022u^8 + \cdots.$$
The shape of moments.

In the literature, only a few moments are computed via (unpleasant?) recurrence manipulations from probabilities and original rec. Here: everything is almost as though

\[p_n(u) = K(u)^{-n-1}. \]

\[P_1(\nu) = \frac{4\nu}{7}, \quad P_2(\nu) = \frac{4\nu}{637}(52\nu + 17), \]
\[P_3(\nu) = \frac{8\nu}{84721}(1976\nu^2 + 1938\nu - 11063). \]

Corollary 3 (Moments). For the \(\mathcal{T}_{2,3} \) model, exact polynomial forms for moments of any order are available: the factorial moments satisfy

\[\mathbb{E}((X_n)^r) = P_r(n + 1), \quad n \geq 6r, \]

where the \(P_r \) are polynomials generated by

\[e^{vL(h)} = \sum_{r=0}^{\infty} \frac{h^r}{r!} P_r(\nu) \quad \text{and} \quad L(h) = -\log K(1 + h). \]

Rota: polynomials of “binomial type” satisfying various convolution relations.
Large deviations.

From dominant poles of ψ, corresponding to $u = 0$:

Corollary 4 (Extreme large deviations). The probability that, in the $\mathcal{T}_{2,3}$ model, all balls are of the first colour satisfies

$$[z^{3n+2}]\psi(z) \sim 3\rho^{-3n-3} \left(1 + O(A^{-n})\right),$$

for any $A < 8$.

Moreover:

Corollary 5 (Large deviations). Let α be a number of the open interval $(0, \frac{4}{7})$. One has

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(X_n \leq \alpha \cdot n) = -\rho(\alpha),$$

where the rate function ρ is determined by

$$\rho(\alpha) = \log (\lambda_0^\alpha K(\lambda_0)),$$

and λ_0 depending on α is the implicitly defined root $u \in (0, 1)$ of

$$\frac{uK'(u)}{K(u)} + \alpha = 0.$$
Proof is standard for probabilists. Assume
\[p_n(u) \approx B(u)^n, \text{ where } B(u) \text{ increases from } c_0 \text{ to } 1 \text{ as } u \in (0, 1). \]

One has Cauchy aka saddle-point bounds:

\[[u^k]p_n(u) \leq \frac{p_n(u_0)}{u_0^k} \approx \frac{B(u_0)^n}{u_0^k}. \]

Adopt the best \(u_0 \) (which must exist by some convexity prop.) and get an exponentially small upperbound. Cramér aka “shifting the mean”: apply a form of CLT near \(u_0 \) to conclude that the upperbound is also a lowerbound.
Left: a Sedgewick plot of $\{-\frac{1}{n} \log \mathbb{P}(X_n = k)\}_{k=0}^{n+1}$ for $n = 24 \ldots 96$ (the horizontal axis is normalized to $n + 1$); right: a comparison against the large deviation rate (thick line).
Related work

Gaussian law by moments: (Bagchi & Pal 1985). Here global expression for moment polynomials + speed of convergence.

Elliptic connection related to (Panholzer & Prodinger 1998) via specific approach $y''' = \cdot y'^2 + \cdot$. Here: much more general, for whole class.

Large deviations seem to be new.

Local limit laws? Probably true. Want to apply saddle point, need bounding technique.

<table>
<thead>
<tr>
<th>Category</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counting</td>
<td>$u = 1$</td>
</tr>
<tr>
<td>Moments</td>
<td>$u = 1 \pm \frac{1}{\infty}$</td>
</tr>
<tr>
<td>Large deviations</td>
<td>$u = [1 - \eta, 1 + \eta]$</td>
</tr>
<tr>
<td>Central limit</td>
<td>$u = 1 + \Box$</td>
</tr>
<tr>
<td>Local limit</td>
<td>$</td>
</tr>
</tbody>
</table>
Consider general case of urns with replacement, i.e., $\alpha < 0$, $\beta < 0$.

\[
\begin{pmatrix}
-a & a + s \\
b + s & -b
\end{pmatrix}
\]

A 3-parameter family
Plus initially a_0 black; b_0 white.
Ideas:

- Look at the *enumerative* version.
- Set up PDE for bivariate generating function via operator $e^{z\Gamma}$.
- Get a \(\psi \)-function parameterized by Abelian integrals over Fermat curve \(x^h + y^h = 1 \).
- Determine singularities by looking at geometry of conformal maps of basic domains.
- Generally, non-elliptic solutions, but:
 - Gaussian limit with speed of convergence;
 - Extreme large deviations;
 - Large deviation rate

Recycles most of \(\mathcal{T}_{2,3} \) case but without double periodicity at this level of generality.
The operator approach

Number balls in order of appearance $1, 2, 3, \ldots$

choose 2 \hspace{1cm} choose 5 \hspace{1cm} choose 8 \hspace{1cm} choose 9
\[1_I, 2_I, 3_{II}, 4_{II}, 5_{II}, 6_I, 7_I, 8_I, 9_I, 7_I, 9_I, 10_{II}, 11_{II}, 12_{II} \]

$s = a + b$; at time n, after action, size is t_n;
$t_0 = a_0 + b_0$ is given;

\[t_n = t_0 + sn. \]

Thus

\[H_n = t_0(t_0 + s) \cdots (t_0 + ns). \]

Let $H_{n,k}$ be number of histories of length n leading to k: Black (Type I) balls and

\[H(z, u) := \sum_{n,k} H_{n,k} u^k \frac{z^n}{n!}. \]
Combinatorial marking \equiv differentiation

Represent a particular history h with k black balls and ℓ white balls as $u^k v^\ell$.

Evolution chooses a black ball and acts; e.g., for $\mathcal{T}_{2,3}$:

$$u^k v^\ell \mapsto k u^k v^\ell \mapsto k u^{k-2} v^{\ell+3}.$$

Similarly for white balls. Cleverly introduce:

$$\Gamma := u^{-1} v^3 \frac{\partial}{\partial u} + u^4 v^{-2} \frac{\partial}{\partial v}.$$

Then $\Gamma u^k v^\ell$ describes all the successors of $h \cong u^k v^\ell$.

All evolutions of length n are generated by $\Gamma^n u^{a_0} v^{b_0}$, and a trivariate version of H is

$$\hat{H}(z, u, v) := e^{z\Gamma} \circ u^{a_0} v^{b_0}.$$
The basic PDE

- By general principles:

\[\partial_z (e^{z\Gamma} f) = \Gamma e^{z\Gamma} f, \quad \partial_z \hat{H} = \Gamma \circ \hat{H}. \]

- By homogeneity, any term \(m = u^\alpha v^\beta z^n \) has \(\alpha + \beta = sn + t_0: (\theta_u + \theta_v - s\theta_z)m = t_0 m \), where \(\theta_u \equiv u\partial_u \).

In summary, system of PDEs:

\[\left\{ \begin{array}{l}
\partial_z \hat{H} = \Gamma \circ \hat{H} \\
(\theta_u + \theta_v - s\theta_z)\hat{H} = t_0 \hat{H}.
\end{array} \right. \]

Eliminate \(\partial_v \) and get

\[\partial_z \hat{H} = u^{-a} v^{1+a} \theta_u \hat{H} + u^{1+b} v^{1-b} \left(s\theta_z \hat{H} - \theta_u \hat{H} - t_0 \hat{H} \right). \]

One can set \(v = 1 \) and get \(H(z, u) = H(z; u, v \mapsto 1): \)

\[[(1 - szu^{b+s}) \partial_z + (u^{b+s+1} - u^{1-a}) \partial_u - t_0 u^{b+s} I] \circ H(z, u) = 0. \]
Apply general technology for first-order PDEs.

Theorem 3. The probability of the urn defined by

matrix: \[
\begin{pmatrix}
-a & a + s \\
b + s & -b
\end{pmatrix}
\]

initial cond: \(a_0, t_0 := a_0 + b_0\),

assuming it is tenable, is

\[
p_n(u) = \frac{\Gamma(n + 1)\Gamma\left(\frac{t_0}{s}\right)}{s^n \Gamma\left(n + \frac{t_0}{s}\right)} [z^n] H(z, u).
\]

There \(H(z, u)\) is given by

\[
H(z, u) = \delta(u)^{t_0} \psi(z\delta(u)^s + I(u)),
\]

where \(h = s + a + b\),

\[
\delta(u) := (1 - u^h)^{1/h}, \quad I(u) := \int_0^u \frac{t^{a - 1}}{\delta(t)^{a + b}} \, dt
\]

and the function \(\psi\) is defined implicitly by

\[
\psi(I(u)) = \frac{u^{a_0}}{\delta(u)^{t_0}}.
\]
Analytic aspects.

Abelian integrals over Fermat curve

\[x^h + y^h = 1. \]

In general, global structure is not “clear”, but dominant singularities are OK.

Consider the complex plane with \(h \) rays emanating from 0 and having directions given by all the \(h \)th roots of unity.

\[S_j := \left\{ z, \quad z = R e^{i\theta}, \quad 0 < R < \infty, \quad \frac{2j\pi}{h} < \theta < \frac{2(j + 1)\pi}{h} \right\}. \]

The image of \(S_0 \) by \(I(u) \) is a quadrilateral, the elementary kite with vertices at the points

\[0, \quad I(1), \quad I(+\infty), \quad I(e^{2i\pi/h}). \]

\[\begin{array}{c}
\text{I}(e^{2i\pi/h}) \\
\angle_{s\pi/h} \quad \angle_{2\pi/h} \quad \text{I}(+\infty) \\
\angle_{2a\pi/h} \quad \angle_{s\pi/h} \quad \text{I}(0) \quad \rho = I(1)
\end{array} \]

The elementary kite.
Definition 1. The fundamental polygon of an urn model is the (closure of) the union of h regularly rotated versions of the elementary kite about the origin.

The elementary kite and the fundamental polygon of the urn

\[
\begin{pmatrix}
-1 & 4 \\
4 & -1
\end{pmatrix}
\]

$h = 5$, $s = 3$

\[
\psi(z) \asymp (\rho - z)^{-1/3}.
\]
Theorem 4. The ψ function is analytic beyond its disc of convergence whose radius is

$$\rho = \frac{1}{h} B\left(\frac{a}{h}, \frac{s}{h}\right) = \frac{1}{h} \frac{\Gamma\left(\frac{a}{h}\right)\Gamma\left(\frac{s}{h}\right)}{\Gamma\left(\frac{a+s}{h}\right)}.$$

It has an algebraic branch point at $z = \rho$, where

$$\psi(\rho - x) \asymp (\rho - x)^{-a/s}. \quad (8)$$

It is continuable beyond its circle of convergenc in a star-like domain.

Proof. Uses symmetries about origin, then rotations around vertices.

Suffices to apply singularity analysis.
Probabilistic consequences

Corollary 6. A quasipowers approximation holds but with weaker error terms than \(T_{2,3} \).
The limit law is Gaussian with speed of convergence \(O\left(\frac{1}{\sqrt{n}}\right) \).

Corollary 7. The large deviation rate exists and is expressible in terms of integrals over the Fermat curve.

Corollary 8. The extreme large deviation rate is given explicitly in terms of Gamma function values at rational points.
Part V

Special cases and explicitly solvable models

The urns

\[
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}
\]

correspond to: sampling with replacement or without replacement, and Coupon Collector.

Solutions agree with basic combinatorics!

\[
H(z, u) = u^{a_0} e^{(a_0 + b_0)z}
\]

\[
H(z, u) = (z + u)^{a_0} (z + 1)^{b_0}.
\]

\[
H(z, u) = (e^z - 1 + u)^{a_0}.
\]
The Ehrenfest Urn • Initially: 2 urns with balls moving between them.
• A celebrated controversy: *irreversibility versus ergodicity.*

\[
\begin{pmatrix}
-1 & 1 \\
1 & -1
\end{pmatrix}
\]

Balance is \(s = 0 \). One has \(a = b = 1 \), hence \(h = 2 \).
Start with \(a_0 = m \).

One has \(\delta(u) = (1 - u^2)^{1/2} \), hence genus 0.

\[
I(u) = \int_0^u \frac{dt}{1 - t^2} = \frac{1}{2} \log \frac{1 + u}{1 - u} = \text{atanh}(u).
\]

The function \(\psi \) is defined implicitly by

\[
\psi(\text{atanh}(u)) = \left(\frac{u}{\sqrt{1 - u^2}} \right)^m,
\]

which is equivalent to \(\psi(w) = \sinh^m w \).

\[
H(z, u) = (1 - u^2)^{m/2} \sinh^m (z + \text{atanh} u) = (\sinh z + u \cosh z)^m.
\]

≡ *Combinatorics!*
Elliptic cases

\[A = \begin{pmatrix} -2 & 3 \\ 4 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ 3 & -2 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 2 \\ 2 & -1 \end{pmatrix}. \]

Corollary 9. The three urn models \(A, B, C \) of balance 1 have solutions expressible in terms of elliptic functions. The corresponding lattices are the equilateral triangular lattice (cases \(A, C \)) and the square lattice tilted by \(\pi/4 \) (case \(B \)).

Like for \(T_{2,3} \): **TILINGS**.

\[D = \begin{pmatrix} -1 & 3 \\ 3 & -1 \end{pmatrix}. \]

Corollary 10. The urn model \(D \) admits an elliptic function solution of the lemniscatic type.
Urns without replacement

= the original models!

♡ Pólya–Eggenberger’s contagion urn.

\[
\begin{pmatrix}
a & 0 \\
0 & a
\end{pmatrix}.
\]

\[
H(z, u) = \frac{u^{a_0}}{(1 - az)^{b_0/a} (1 - au^{a}z)^{a_0/a}},
\]

With \(a = 1\) and \(a_0 = b_0 = 1\), the PGF of at time \(n\) is

\[
\frac{u}{n+1}(1 + u + \cdots + u^n),
\]

Cf. also M. Durand. In general:

\[
\mathbb{P}(\text{White}_n = a_0 + ja) = \frac{[z^n u^j] (1 - z)^{-b_0/a} (1 - uz)^{-a_0/a}}{[z^n] (1 - z)^{-t_0/a}}.
\]
The altruistic model.

\[T = \begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix}. \]

Friedman 1947: “Every time an accident occurs, the safety campaign is pushed harder. Whenever no accident occurs, the safety campaign slackens and the probability of an accident increases.”

\[H(z, u) = u^{a_0} e^{a_0 z(1-u^a)} \frac{(1 - u^a) t_0/a}{(1 - u e^{a z(1-u^a)}) t_0/a}, \]

Smythe \(a = 1 \): stemma construction in philology as well as with recursive trees. Eulerian numbers and leaves in “recursive trees”.
The KMR urn: Kotz–Mahmoud–Robert!

\[
\begin{pmatrix}
 a + 1 & 0 \\
 1 & a
\end{pmatrix},
\]

Bagchi and Pal (1985): “present some curious technical problems”.

Bivariate algebraic solution, genus 0:

\[
u_t \left(1 - \frac{1 - u^a}{(1 - (a + 1)u^{a+1}z)^a/(a+1)} \right)^{(a_0 - t_0)/\alpha} (1 - (a + 1)u^{a+1}z)^{-t_0}\]

Mean and variance at time \(n\) (\(a = 3\)):

\[
4n + 1 - \frac{1}{(n^{-3/4})} \sim 4n - \frac{\pi \sqrt{2}}{\Gamma(3/4)} n^{3/4} + 1 + O(n^{-1/4}).
\]

\[
\frac{2}{3} \frac{8\sqrt{2} - 3\pi}{\Gamma(3/4)^2} n^{3/2} - \frac{3\pi \sqrt{2}}{\Gamma(3/4)} n^{3/4} + O(\sqrt{n}).
\]

Distribution: prototype is

\[
\hat{H}(z, u) = \left(1 - u(1 - (1 - z)^a/(a+1)) \right)^{-1/a}
\]

Singular exponent is discontinuous at \(u = 1\).
Banderier, F., Schaeffer, Soria: within analytic combinatorics such changes are associated to stable laws. (Modify singularity analysis techniques.)
— e.g., cores of random maps.

Corollary 11. Model with matrix \((a + 1, 0, 1, a)\) and \(t_0 = 1, a_0 = 0\):

\[
\mathbb{P}\left(\frac{X_n}{n^{a/(a+1)}} = x\right) \sim \frac{1}{n^{a/(a+1)}} \frac{\Gamma(1/(a + 1))}{\Gamma(1/a)} x^{1/a - 1} G\left(x; \frac{a}{a + 1}\right),
\]

\[
G(x; \lambda) = -\frac{1}{\pi} \sum_{j \geq 1} \frac{(-x)^j}{j!} \Gamma(1 + \lambda k) \sin(k\pi \lambda),
\]

the quantity \(x^{-1} G(x^{-\lambda}; \lambda)\) is exactly the density of a stable law of index \(\lambda\) when \(0 < \lambda < 1\).

Conclusions

A unified analytic framework

All 2×2 urns with constant balance admit of analytic model.

Some interesting special function solutions: algebraic, elliptic, etc.

Some new probability laws.

Work still in progress!
> op(magic);
proc(a, b, c, d, a0, b0)
local eq1, eq2, s, h, eq, t0;
 s := a + b;
 if s = c + d then
 lprint("Error, non constant
trow sum");
 RETURN(NULL)
 end if;
 h := s - a - d;
 δ := (1 - u^h)^((1 / h);
 t0 := a0 + b0;
 lprint("Matrix is:", [a, b, c, d], ", with s,h:", s, h);
 dsolve(diff(w(u), u) = t0*w(u)*u^((h - 1) / (u^h - 1), w(u));
 eq1 := subs(w(u) = H, solve(%));
 diff(z(u), u) = -s*z(u)*u^((h - 1) / (u^h - 1) + u^(-s - 1) / (u^h - 1);
 dsolve(%);
 eq2 := subs(z(u) = z, solve(%));
 lprint("ratio of eigenvals is", \(2*s - s) / s);
 factor(solve(eq1 = ψ(eq2), H));
 eq := map(factor, %);
 [eq, "where", normal(subs(z = 0, eq)*δ^t0 / u^a0 = 1)]
end proc

> magic(-1, 3, 1, 1, 1, 0);
"Matrix is:", [-1, 3, 1, 1], "with s,h:", 2, 2
"ratio of eigenvals is", -2
\[
\begin{bmatrix}
\psi(zu^2 - z - u)\sqrt{u + 1}\sqrt{u - 1}, "where", \frac{\psi(-u)\sqrt{u + 1}\sqrt{u - 1}\sqrt{1 - u^2}}{u} - 1
\end{bmatrix}
\]

> magic(3, 0, 1, 2, 1, 0);
"Matrix is:", [3, 0, 1, 2], "with s,h:", 3, -2
"ratio of eigenvals is", 1
\[
\begin{bmatrix}
\psi\left(\frac{3zu^3 - 1}{3(u + 1)^{(3/2)}(u-1)^{(3/2)}}\right)u\quad \psi\left(\frac{1}{3(u + 1)^{(3/2)}(u-1)^{(3/2)}}\right)u \quad \sqrt{u + 1}\sqrt{u - 1}\sqrt{u^2 - 1} = 1
\end{bmatrix}
\]