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ANALYTIC COMBINATORICS

e Find quantitative properties of large discrete structures = ran-
dom combinatorial structures.

e |denftify tThe fundamental analytic structures # probabilistic
approaches.

Via complex analysis establish relationship

Combinatorics ~» Analysis ~» Asymptotics

e Organization into major schemas where chain can be worked
ouf: "combinatorial processes” // stochastic processes.

Example: "bag” process (Set); “row” process” (Seq).



Universality: E.g. take a random tree of size n (large):
— Height is with high probabiliy (w.h.p.) O(y/n);

— Any designated pattern @ occurs on average C, - n, and
distribution is asymptotically normal.

e SUch properties hold for a very wide range of local consfruc-
fion rules (also Galton-Watson trees conditioned on size).

e Similar properties hold for "molecule frees”, random map-
pings, efc. But labelled frees based on order properties be-
long to a different universality class, with e.g., logarithmic height.
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Fatin Analytic combinatorics ~»
P e N A. Counting Generating Function
- B. Analytic properties of GF

A 4 A Singularities + fransfer to coefficients
i g g g g ﬁ g C. Perturbation for distributions.

SYMBOLIC METHODS + COMPLEX ASYMPTOTICS + PERTURBA-
TION.



Duality: Combinatorics versus probability
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Brownian motion, continuum random tree, etc.



PART A. SYMBOLIC METHODS

Goal: develop generic tools fo defermine generating func-
fions = GFs,

Approach: Formulate a programming language to specify
combinatorial structures such that translation info GFs is au-
tomatic.

Parallels Joyal's theory of species (BLL's book). Similar in spirit to Jackson &

Goulden’s book. Cf Rota/Stanley. Formalizes recipes known to earlier combi-
natorialists.
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1 |UNLABELLED STRUCTURES AND OGFS

Ordinary Generating Function (OGF)
(fn) — f(z Z fn2"

(fn) Is number sequence, e.g., counfing sequence.

Later: Exponential Generating function (EGF): (fn) — f(z Z fn



C = a combinatorial class: at most denumerable set with size
function.

C,, = subclass of objects of size n.

C'), = # objects of size n = card(C,,).

C(z) = OGF = Z Cpz" = Zz"ﬂ.

n>0 veC

Count up to combinatorial isomorphism: C =2 D iff 3 size-preserving
pijection.

Atom: Z — z: neutral element: € — 1.
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How many binary frees B,, with n external nodes?

Analogy:

%

A%
£ 5y

AR O
sl

B=0O + e, (BxDB).
Euler-Segner (1743): Recurrence

n—1
B, = Z BB, 1.
k=1

Form OGF: B(z) = z 4+ (B(z) x B(z)).
Solve equation (quadrafic):

B(z) = s(1-vI—12) = §—§(1-42)'/2
Expand:

n\n—1

B, = 1 <2n B 2) (Catalan numbers)

B

O + (eB x B)

~ | B(z) =2z + (B(2) x B(2))
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Outline

Define a collection of consfructions
union, product, sequence, set, cycle, ...

allowing for recursive definitions.

meta-THM1: OGFs are automatically computable (equations!)

meta-THM2: Counting sequences are automatically computable
in time O(n?), and even O(n'*).

meta-THM3: Random generation is fast in O(nlogn) arithmetic
op’ns.
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Theorem. 'here exists a dictionary:

Construction OGF
C=A+B | C(z)=A(z) + B(z)
C=AxB | C(z)=A(2) B(z)
C=SEQ(A) | C() =1 14(,2
C =MSET(A) | C(z) = Exp(A(z))
C =PSET(A) | C(z) = Exp(A(z))
C=Cvyc(A) | C(2) =Log — z e

£ or 1: "neutral class” formed with element of size 0 — FE(z

Z: “atomic class” formed with element of size 1 — E(z) =

Exp(g(z)) = exp (

Log(g(z)) =
k>1

k>1

@ (%) with ¢(k)= Euler totient,

= 1.
1.

k>1

13
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Proofs. A+ A(z) =Y A,z" =5 2ol

—Unioni C=A+B:>  =>.,+> 5 |C(z)=A(2)+ B(z)

—Product: C=AxB; >, =3 .25 |C(2) = A(z) - B(2)

— Sequence: C = SEQ(A) meansC = 1+ A+(AxA)+---.| C(z)

— Mulfiset: C = MSET(A) means C =[], (1 + {«a}). so that

1 1
c@=1ly—m =l a—ma

oY n>1

and conclude by C(z) = exp(log C(2)) ...| C(z) = Exp(A(2)) |

— Cycle: (omitted) ¢(k) is Euler’s totient function.
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Example 1. Binary words

W = SEQ({a,b}) = W(z)=

1—2z
Get W,, = 2" (17?). Words starting with b and < 4 consecutive a's:

1

W*® = SEQ(bx (1+a+aa+aaa)) = W?*(z)= [ P gy

Longest run sfafistics lead to rational functions (Feller).

Example 2. Plane frees ("general” = all degrees allowed)
P: Z'x Seq (P)]

-, — —

q k i & i 3
| & > @ . 5 ’
| £ -I __!"\- [
| ¢ 1°
_-:ll_ll pi' | | Pg.‘-l : et
| ‘_..“__ -
P(a)  —2— = Pr)- =143
P 4-¥Fiz) - ) r— _!“-H i 7
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Example 3. Nonplane trees (all degrees allowed)
U=2Z X MSET(Z/[) U=1 U;=1, U3=2,U4 = 5.

U(z) = zexp (%U(z)—k %U(z2)—|— %U(z3)+...) .

Cayley: recurrences; Polya: asymptotics of this infinite func-
fional equation.

Exercise: computable in polynomial time (O(n?)).
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Example 4. Words containing a pattern (abb)

L, :=language accepted from state j.
{,Co =alq+bLy, L1 =alq1+bLsy, Lo =0alq+bLs,.. }

Theorem. Regular language (finite automaton) has rational
GF

Reg — Q(2).

Patterns of all sorts in words. Applications in pattern matching
algorithms and computational biology.

Borges’ Theorem: Large enough fext contains any finite set of
paftterns w.h.p.

17



Example 5. Walks and excursions.

Crevnim = LT NN o
= S(-'c:' (/' Elmrh':m )

? b
O e Pﬂ![&l et g}‘f,&;&‘h'ﬁh = Stfjn‘ﬂ 'E,r)g{;_xﬁe.g‘;- .}

Dl"m-.,' qu—‘. - l\:f_':'r \I l;%f‘.f.;-t”a.j\i- ;*' = \ 1
L ¢ !

/‘f% ;# r_,?_ "f('";-'?l -hr [ &.ll C
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Exercise A. Infeger compositions. Argue that C,, = 2"~ since

C=SEQIN), N = Z xSEQ(Z) —C()= — = 177

1-%= 1-2z

Exercise B. Denumerants. In how many ways can one give
change for n cents, given coins of 1,2, 5,10C?

1
(1=2)(1=22)(1=2°)(1—2")

D(z) =

Exact form of coefficients? Asymptotics?
Exercise C. Unary binary trees. U = z(1 + U + U?).

Exercise D. Binary frees, general plane trees, excursions, and
polygonal triangulations are all enumerated by Catalan num-

bers C,, = — (7). Why?

19



Simple families of plane trees.

Let 2 C Z> be the set of allowed (ouf)degrees. Define

Sy) == D vy~

w e

Then the simple family Y has OGF:

If ¢ is finite, get an algebraic function.
Lagrange Inversion Theorem.

Y (2) = © coeff[w™]¢(w)".

n

If ¢ Is finite, get mulfinomial sums.

20



2 | LABELLED STRUCTURES AND EGFS

EGF = exponential generatfing function

(F)  — @)=Y

n>0

A labelled object has atoms that bear distinct infeger labels
(canonically numbered on [1..n]).

Unlabelled: "anonymous atfoms”. Labelled: distinguished atoms
or colours.

Example. How many (undirected) graphs on n (disfinguish-
able) vertices? G = 2n(n—1/2,

Graphs: unlabelled problem is harder (Polya theory). In general, can get
unlabelled by identification of labelled.

21



0102+ Op

PERMUTATIONS = typical labelled objects: write o = ( b2 “)

as o104 - - -0, ANd View as linear digraph that is labelled:

W-«@ -+
£ D« P
R o

OO N

Q«@P<«® !
4,4, 2 ’ g:;;‘-g:@ I IR A

EGFis

1 — 2z

n
since P(z) = Zn'z—'
n.
n

22



DISCONNECTED GRAPHS (labelled) = no edges aka "Urns”.
| poss S - |

it A

o

A & & 1 . EGFis U(z) = exp(z) = €.

CYCLIC GRAPHS (directed)

R "
8. A, . Ly i 1

© D& ®-6 EGFK(z):log1
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ROQOTED TREES (graphs) nonplane and labelled

M( f %g

Tn — 7
ik , TE= 2 r, TF; - E’j Tf-,- Eq
¢t T A
> Unlabelled: E |
U{:"‘ ; U'z.:"t y U!. :2 ’ 'U'#:L‘;*“
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Labelled product. Let A and B be labelled classes. Then the carte-
sian product A x B is not well-labelled (why?).

Given (3, v) form all possible relabellings that preserve the order struc-
ture within 3, v, while giving rise fo well-labelled objects.

o wllbchon of. |

- g. ';':?LH',’\.W :;f

X : ? \ " '; . ﬁi:a

\-r(g’ S L owelt lobellud peusts

e Labelled product of fwo objects.
(axB)={y | v=(,8)},

where ~ is well-labelled and o’ = qer @ ONA B’ =order B
e Labelled product of two classes.

C:= U (ax ().




E\f“_"l&f A = Saw «»5 alf d&%ﬂmﬂm,&,

mdr‘ E@:@J
q

1 1

) -

UeW k- + U o Mocakro of n dimes ek
s e e &
Nt = D m (eﬂ)ﬁ} ?dﬂ.cl-.% gqum
Lfi..nj - (4..m]

Uﬁ: u\ﬁti} 0; 1'*'4'--1-

Ve Ue-.oYU 2 Q,Mﬂm[if:-u we bl MLWT*TYM
:{.‘i{i‘(tclilha gwm (4.2 b [,f..mj

GFs; Stirling numbers.
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Sequences, Sets, Cycles

e £ (Or 1): neutral class.

e Z: afomic class =|1|
e Define SEQ(A), SET(A), Cyc(A) by relabellings:

SEQ(A)=1+A+(AxA)+---.

Sefs: quotient up to perms. Cyc: up to cyclic perms.

— Perms P = SEQ(Z2)
— UrnU = SET(Z)
— Circulars graphs K = Cyc(2)
m times
— m—functions: FIM™ >/« xU = SEQ,,, (U)
— m~surjections: SEQ(V), V = SET>;(Z2)
— Set partitions: SET(SET>1(2))
— Lab. frees: T = Z x SET(T).

27



Theorem. 'here exists a dictionary:

Construction EGF

C=A+B | C(z)=A(2)+ B(z2)
C=AxB C(z) = A(z) - B(#2)

C=SEQ(A) | C(z) = 1_;14(2)
C = SET(A) C(z) = exp(A(z))
C = CvYc(A) | C(2) = log 1_;14@)

£ or 1: "neutral class” formed with element of size 0 — F(z) = 1.
Z: “atomic class” formed with element of size 1 — E(z) = 1.

28



Product lemma:
C=AxDB — (C(z2) = A(2) - B(»)

n

C = (Ax B) implies C,, = Z (Z’) ArB,_1 (# possibilities x # relo-

k=0
bellings).

Cn Ak; Bn—k o
Hencemz s -(n_k)!«»C(z)_A(z) B(z)
SEQ 14 A4 A2 4=

< 1A
2
SET:l—I—%—I—%—I—---:exp(A).
A A2 1
CYC.1+T—|—7+---—10g1_A.

29



Example O
D> OO (P- &T(Z)

E, ©, e ? PEOEO
D€ P(?)-: . 200
'4; 4 ’ 2”, @“'@f@ {-2
e« ® P 4
GJ-E-EH:-GJ n=
o (Labeltnd) cﬂd!e' d"’ﬂmﬂw (@ JQ " - %CLZ)
» @ ®— G}_é’ g . Dﬂg |-%
4 4 2, Kaz M-1)

o Labelet) Biscommedisl grayfes W= Sebl2)
54 ED:M J@" §U(;):ei
A 1

1 1 Un =
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Example 1. Permutations and cycles:

P =SET(CyC(Z)) =— P(z)=-exp (log 1 ! ) S

— Z

Derangements (no fixed point)

D = SET(CYC(Z)\Z) = D(z)=-exp <log 1 Lo z) = c .

— Z

=D | -1

1
Thus| “% =1 — + = .4

Example 2. Labelled (Cayley) frees:

T =ZxSET(T) — T(z) = zeT®),

Thus| 7, = »" ' | by Lagrange Inversion Th,

31



Example 3. Set partitions:

_ k™
Bell numbers: | B,, = e} Z >

32



Example 4. Allocations to [1..m):

—all: e™* ~ F, =m".
— surjective: (e*—1)™ ~» Stiring numbers, m!{"} = > (") (=1)™ *k".

— injective: (14 2)™ ~» (Z’) n! (Qrrangement #).

Exercise: Birthday Problem and Coupon Collector.

E(B) :/OOO <1+ %)m dt,  E(C) :/OOO (et (e 1)m) dt.

Multiple birthdays, multiple collections. (Cf Poissonization.)

33



Example 5. Mappings aka functional graphs = endofunctions
of finite set.

o _|I|".I'."'!
i

Wy - L.:.H( L
il -: LL:.I. = iy :.I i 'II:I III

—

| z . e
=

T =ze!', K =log(1-T)" ', M =e**:| M,, = n" |, P(connected)=0 (%)
n

Exercise: A binary functional graph is such that each z has either O
or 2 preimages (cf z° + @ mod p). @1. Construct; @2. enumerate.

Exercise: All graphs G(z) = 1+ » 2" Y/2:"/nl. Q1. EGF K(z) of
n=1

connected graphs? @2. Probability of connectedness. @3* Prove
not constructible.

34



MULTIVARIATE GFS AND PARAMETERS

35




e BGF encodes exact distributions. hence, moments.

E, 1 0
Be, D] =Dk % = o coeff["] o-B(z,u)
k n n

u u=1

Variance & moment of order 2: second derivative, etc.

Chebyshev inequalities: o, /u, — 0 implies convergence in
probability.

36



Bivariate GF (ordinary) E(z, u) ZEn wk 2" = Z [l 4 x ()

ee&
e BGF is reduction of CombIﬂOTOI’ICﬂ structure. Thus expect

multivariate dictionaries.

Definition. Parameter is inherifed if (i) it is compatible with unions;
(ii) it is addifive over products (also SEQ, SET, CYC).

meta-THM Previous dictionaries (U/L) work verbatim!

Proof (hint): € = AxB=C(z,u) =) =Y = A(z.u)-B(zu).

gl (a,3)
Same principles as counting, but with size now extended to

N x N,

37



Example 1. Permutafions, counting # cycles:

P = SET(CYC(Z)) =— P(z,u)=-exp us + ui + - ] = (1-2)""

1 2

Expand and get probability GF: & u(u+1) -+ (u+n—1); mean

IS H,, ~ logn; standard dev. is ~ +/log n; distribution is concentrated
(by Chebyshev).

# singleton cycles:

P(z,u) = exp [u% TR
# singleton/doublefon cycles (Joint): use u., us, and so on.

38



Example 2. Number of surnmands in composifions.

C = SEQ(Z x SEQ(Z))

—  (C(z,u) =

1

1 —zu/(1—2)

Example 3. Number of leaves in a general plane tree.

G = Zu+ Z SEQ>,(Z)

— G=2z

_|_

s G
1-G

Summary: Place marker at appropriate places and franslate

with usual dictionary.

39



Summary. In order to enumerafe, it suffices to find a con-
sfruction.

— Get the OGF/EGF automatically;

— Get parameters that are fraceable to constructions.

Integer compositions and partitions; words; frees; lattice paths;
set partitions; allocations and functions; mappings; permufo-
fions and cycles.

Also: associate families of special functions to families of com-
binatorial classes.

— Regular languages ~» Rational functions

— Tree grammars & CF languages ~» Algebraic functions

— Simple tree families ~ Implicit functions

Other. Constrained mappings: implicit function o modified exp and
log functions. Etc.

40



Exercise A. A record in a permutfation is an element ¢, larger than
all preceding ;. Q. Explain why the distribufion of # records is the
same as # cycles (on P,,).

Exercise B. Throw n balls info m urns. @1. The statistics of empty bins
is obtained from (e¢* — 1 + «)™. @2. Mean and variance? @3. Same
for bins filled with r elements. @4. Relation to Poisson?

41
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— Asymptotic analysis is often very
precise.

— Can be done from generating
functions directly, even if no expres-
sion for coefficients is available.

— Works for functional equations

U(z) = zexp U(z)—l—%U(zQ)—l—--- :

— Makes it possible to discuss univer-
sality via schemas.



4 |ANALYTIC FUNCTIONS

GFs are (usually) analytic functions near 0.

e Analyfic aka holomorphic functions

e Meromorphic functions

e Infegrals and residues

e Singularities and exponential growth orders



Definition. e f(z) is analyfic af zg iff locally: | f(z) = Z cn(z — 20)"

n>0
e f(z) is complex differentiable iff
: f(zo+h)—f(z0) | _. _d
= h—>1(%,HiILE(C y =: f'(20) = dzf(z) e

~» f analytic/ differentiable in 2 , efc.

Theorem. EqQuivalence between the two notions!

Combinatorialists love power series; analysts love differentiability!
Af

A gives closure under +, —, x, —, compaosition, inversion, &c.
z



Examples. The function \/z, such that \/pei? = ,/p-¢*/?, can only be

made continuousin  ——, &

— Same for log z = log p + 6.

— Exponential function exp(z) is enfire.

z

e
vV1—2z

s analyticin |} &=

— Catalan GF 4= is anallytic in slit plane C \ [, +o9].

2z

— Rational GF is analytic except at poles.



Integration and residues

Theorem. Let f be analyfic in 2 and ~ lbe contractible to a
single point in 2. Then

/ f(z)dz = 0.
.
In particular fA z) dz does not depend on path.
17 o\
* qf? 9 ,

D«
v (@8



Definition. ¢(z) is meromorphic in Q iff near any z,, one has

9(z) = 54, with A, B analytic.

A point zy such that B(zy) = 0is a pole. Its order is the multi-
plicity of zo as root of B (assume A(zy) # 0).

Pole of order m: g(z) = Cm

(z — z9)™ (z — 20)
c_1 Is called residue of g(z) at z.

+e+ 04




Cauchy’s Residue Theorem. If f(z) has poles, then

1
20T

/ f(z)dz = Z Residues .
,




Residues: local versus global

e Computing infegrals: [ H2. = . | [T =

By only considering local properties at ¢ = et™/4, e3i7/4,
e Estimating coefficients: d,, := P|derangement| over P,,.

e € ° 1 e * dz
dn:[z]l_ :2 1 — n+1"
< (I |2|=1/2 2 =

Evaluate instead on |z| = 2:

Jn = o c . _ o

217 |2|=2 1 — 2z zntl

1
Res,—og+Res,—1 = d, —e .

Thus: |d, = + 002 ") |

Exercise: Double derangement: [z”]e—z—zQ/Q/(l — z). Generalize!




Singularities.

e f(2) has asingularity at border point o iff

Theorem. A series always has af least one singularity on its circle of

convergence (buf none inside).
anaﬂjhu% e daie]

Convergence radius = Analyticity radius:

Pringsheim’s Theorem. If f,, > 0, one such singulariy is posifive.

/ Curele r*I, Ceon RrAEnce

< ok Bast one %nﬂu]q;(ﬁ- R

10



Exponential growth of coefficents.

If f(2) has radius exactly R, then Ve > 0:
frn(R—¢€)" — 0; fn(R+ €)™ is unbounded.
That is lim sup | f,,|/" = L, or

R

fn=R "9(n), whered(n)is “subexponental”.

Also write | f, x R~ |  with R := distance to neadrest sing(s).

Find exponential growth by just “looking” at GF!!

11



Examples (singularities and growth)

e Binary words: W (z) = —— ~ W,, 12",

e Derangements: D(z) = &— ~» 2o pq 17,

e General frees: G(z) = 1 (1 —+/1—42) ~ G, > 4", By Stirling: G,y ~
4n—1

Vin3
e Unary-binary frees: U = z(14+U+U?), U = 5= (1 — z — V1 — 2z — 322),
so that singularities are at z = —1, £ and U,, 1 3",

Exponential order is computable(almost) automatically for GFs given
by explicit expressions.

EQ: p(f +9) = min(p(f), p(9)); p (25) = min(p(f), {z / f(z) = 1}),

etc.

12



5 | RATIONAL AND MEROMORHIC FNS

Find subexponential factors in
fao@ BT, meaning f, = R "d(n),

where 9(n) is like n®, (logn)?, evV", etfc.

Here: simple case of Rat & Mero.

13



Coefficients of rational functions

Theorem. Each pole ¢ with mulfiplicity » contributes to coeffi-
cienfs a term

¢ P(n),

where P(n) is a polynomial of degree r — 1.

Proof. [z"] (—¢)" (” e 1) .

(z—C)r r—1

Poles are arranged in order of increasing
modulus. Dominant ones matter for expo-
nential growth. Mulfiplicifies give polyno-
mial factors.

14



Example 1. Denumerants.

1
(1—2)(1—22)(1—25

One layer. Poles at 1, +1, ¢® = 1.
Observe the “transfer” D(z) ~ (1 — z)~” implies D,, ~ n*/20.

e General case ()-denominations, m = |2|. Then (Schur)

nm—l 1
Dn g T .
—1)!
(m—1)! WIEIQ w

15



Example 2. Longest b-runs in strings. (cf Feller)

bbb| abb || ab || a || abbbb

SEQ_, (b) x SEQ(a SEQ_,, (b))
1—2z™ 1 1 —2

X = = :
l—2z  1—21% 1 —2z+4 zmtl

— Dominant pole isnear 2: p,, ~ (1 +2" "1,
— Dominant pole is separated by |z| = g;error is exp. small.
— Uniform estimates are obtained. Get

1 \" _pjom
P (longest b-run < m) = (2—) e P
Pm

Threshold near log, n.

Arbitrary patterns: similar with correlation polynomials of Guibas—Odlyzko.
Quantitative normality of strings, Borges’ Theorem .etc.

16



Coefficients of meromorphic functions

Assumption: g¢(z) is meromorphic in |z| < R and analytfic on
2| = R.

Theorem. Each pole ¢ with mulfiplicity » contributes to coeffi-
cients a ferm

(" "P(n),
where P(n) is a polynomial of degree r—1. Errorfermis O(R™").

Proof. (i) Subfracted sngularities. Let h(z) gather contributions of

poles. Then g(z) — h(z) is analytic in |z| < R. Use Cauchy with trivial
bbounds.

(i) Estimate [ g by residues.

17



Example 3. Derangements.

D = SET(CYC>2(Z)) — D(z)=e 71—z

(27") =e '+

Get simple pole at = = 1 so that 1 D,, = [2"]&
o(2™™).

Generalized derangement: all cycles of length > r:
1
+ 4=

1
— D} ~e Ho=1+ 2
2 r

n!

18



Example 4. Paths-in-graphs models.

Encapsulates finite automata and finite Markov chains. GFs
are rational.

If the graph I is sfrongly connected and aperiodic, then there is unic-
ity and simplicity of dominant pole (« Perron-Frobenius): f,, ~ cp ™ ".

Generdlized patterns in random strings (F, Nicodeme, Régnier, Salvy, Sz-
pankowski, Vallée, &c).

19



Example 5. Surjections and Supercritical SEQ Schema.

Random surjection = ordered partition (pref. arrangement)

R = SEQ(SET=1(2)) = R(:) = _1€Z.

Pole at ¢ = log 2; subdominant ones at ¢ = log 2 + 2ikn, etcC,

H ~ C(log 2) .
Also, mean number of blocks via 1 (1 D is O(n). There is con-
—u(e® —

cenftration, etfc.

Any supercrifical sequence should similarly behave ~» schema.

20



6 |SINGULARITY ANALYSIS

e Singularities more general than poles.

e Subexponential factors more general than polynomials:
fn ~ R7"9(n),

with ¥(n) of the form n®(logn)”.

Note: May assume singularity at 1 by scaling [2"]f(Az) = A" [2"] f(2).

21



*rpmciui_m" l?nt'n.[r

-1l =2z .

o

o _ ‘:" -
gz mmE; ‘-r}:%’/f H"—*

ot o -
- :

: RS

Coefficients: n—3/2 n—5/2
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From functions to coefficients:

1
(1 —2)2 H
1 1
l—zlogl—z
1
1— =z %
1
1 — =z -

n+1 ~ n
H, = %—}—.. —{—% ~ logn
1 ~ 1

o
| =
-
L~
s 3
\.,________/
¢
-
--..1'—
-

Nature of sing’s :

\

Location of sing’s :

Exponential factor p '

“Polynomial” factor J(n)

23




Principles of Singularity Analysis
Larger functions tend to have larger coefficients.

— Establish this for basic scales (1 — z)~%. Enrich with log’s,
log log’s, etc.

— Prove transfer theorems. If f “resembles " g via O(-), o(-),
then f,, resembles g,,.

24



Theorem 1. Coefficients of basic scale:

[ZnKl__Z)_a'\'fzajna_l'

Also: full expansion, log’s log-log’s, etc.

Gamma function: I'(s) := / e "t°7 1 dt, with analytic contfinuation
0
by I'(s+ 1) = sI'(s).

(Crvary] g = é::;&( gm d

=M 4|
o 1R

Idea:

25



Theorem 1. Basic scale translates:

Proor. Cauchy’s coefficient integral.

. 1 dz f
UG =g [0S

t 1 o
I =1+5) | .
1 _. at
— f-’ —
2im oy n
a—1 1
n X m

26



Theorem 2. Transfer of asymptotic properties.

B 4 o0
a Camembert Feguon

an =214 v

e

Proof: similarly by Hankel contours.

27



Example 1. 2-regular graphs.
9@ = b ( unarJ:Ndeaﬂg (Z, card > 3))

R[%): QJX.P( -i—— onf:g -
R(t) = e %—h 'E
|- 2
%j %ﬂauﬂanig Cl*"'ﬂ-a'-a’“",a
R(%) - e_‘s.«’a
-2

Rn —
—F e 3/4\/7T’I’L.

n!

Comtet’s clouds. Also full asymptotics.

28



Example 2. Some trees.
e Catalan frees have GF (1 — /T —42) ~ ¢

7T’I’L3

e Unary binary frees.
TegsaTFaET"
= T- 1-2_\[:;?3!1
e A

bfr-Fe* = (-3 @) lAnN)
lr

= V- singulasly D @ ,

-_—

i S
IhNC.Z; N 32 £—

In fact: universality of n=3/? law (later).

29



Example 3. Cycles in Perms.

Mean number of cycles in a random perm is coeff[z"] in

0

M(z):%exp<ulog ! ) ! !

= |
1 —z 6

1—z

u—1 ]‘_Z

Thus | [2"|M(z) ~ logn |

Exercise: Holds for perms with finitely many excluded cycle lengths.

In fact: universality for the “exp-log” schema.

30



Closures

Theorem 3. Generalized polylogarithms

Lig r = Z{h}g n)n="

are of S.A.-type.

Theorem 4. Functions of S.A.-type are closed under integration

and differentiation.

Theorem 5. Functions of S.A.-type are closed under Hadamard

product
f(z)©9(2) = (fugn)2"

T

(F) (Fill-F-Kapur 2005).

31



Solving a “Tauberian” problem

Feal-Tauberian Darboux-Pdélya Singularity An.

(large = large) (smooth = small) (Full mappings)

+ Singularity analysis preserves uniformity ~» distributions.

32



7 |APPLICATIONS OF SING. ANA.

Focus on recursive structures including frees, mappings.

e Universality of , /—law for generating functions;

e Universality of p~"n~3/2-law for counts;
e Universal behaviour for major parameters (e.qg., height).

33



Inversion:

.

Y= P(2)

Taveene - Thivnem ;- » “""QSL
lH'I.UEALLLL ”TT 4), ‘l‘ﬁ‘j
11 'ﬁo‘ ::l“bl."ﬁut \/ /= 2_"“"12'
( WFO ¢
vt g

Square-root singularity is expected for inverse functions.

34



Theorem 1. Lef ¢ have nonnegative coeffs and be enfire.
Then the function that solves

has a square-root singularity, so that

2"V (2) ~ Cp~"n=3/2.

— Characteristic equation (singular value of Y) is 7 : d%ﬁ =0, l.e.,
7¢' (1) — @(7) = 0. Then p = ¢(TT). All is computable.

— \/——singulori’ry propagates via suitable compositions, so that pao-
rameters can be analysed.

— Phenomena are robust.

35



Example 1. Cayley frees. T = ze! or z = Te ' is not invertible if
L(Te ")=(1-T)e " =0,thatis,7=1,z=¢". Find:
T(z) = 1- V21 —ez+ O((1 — ez)).

en

V2rn3

Implies [2"]|T'(z) ~
Lagrange).

: we rederive Stirling’s f. (since T;,, = n™~* by

Example 2. Unlabelled frees. Recall

U(z) = 2V (D F3UE+

Express as T' composed with an analytic function and get SQRT sing:
U = ¢e”, where ¢ := zexp(zU(2%) 4+ --+).

Height is universally O(y/n) wth local and integral limit laws (of theta

fype). Similarly for width (Marckert et al.). Leaves are universally nor-
mally distributed, efc.
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Example 3. Mappings (cyclic points).
A T/C=TY

Smflﬂ ! Cj - Sek () (G=e g . ;
|| - A nl A/ (=T
connu;td: {K‘.‘. %C(.%) ;-' W= Drﬁ :;-j:—;_r [% ] / - :
free: E?"- Q*&LC@) [ s ™ [%"}3('{-9%) " esataly' A o
Mean w mlses Dao CAjC-QA.C_. Fm;llﬁ_' La [%F]"F‘" “'C%) el
Ly : SR ——
{"n - [}_1 C/af."_.c_ L . & g _ Heam T n (
(1 Gl 2 a-uT ) | \ME e pak AT |
\\. ' ——— - l:

S—

Develop a theory of degree-constrained mappings: (Arney-
Bender), (F-Odlyzko).

37



Algebraic functions

Singularity analysis applies fo any algebraic function

(
femn MD—

At“{l g{

—

NEWTON= PUISEVR ThEOREN

Aroond d:j lpmwt' j‘ : 2.> admily a
fmcw FGWUL w”dh%

at

LJ(?:]: Z_ C) (%-—g) ; pram P,; €@ .

jz-n

Algebraic function — Fractional exponents @ singularities.
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Defene an “alygbraic * lement b be of Ohe form
ol (P
Theorem : 1§ 4(0) o am Alghonc fnclion, thow
Bow oxide & fumite Collockinn of Alycbomc e/emens
Ay (dw) , Avldl @) ..., A, (dw) 2t

Ya = Butoee & Ag + o(§™)
lw|= lwa] - = |ws]=f _§:>f7
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Singularity analysis applies to

40



Singularity analysis applies to

41



e “Holonomic” functions. Defined as solutions of linear ODE’s with

coeffs in C(z) [Zeilberger| = D-finite.

i) =0, LeC()o.)
e Stanley, Zeilberger, Gessel: Young tableaux and permutation statistics;
regular graphs, constrained matrices, etc.

Fuchsian case (or “regular” singularity) (Z Blogh Z):

2" f(2) = Zw”n-ﬁﬂ:}g n)k, w,3e€Q, ke

S.A. applies automatically to classical classification.

Asymptotics of coeff is decidable
general case: modulo oracle for connection problem:;

strictly positive case: “usually” OKay.

42



Wi RE =Ha BE

EXAMPLE 6. Quadtrees— Partial Match [FGPR'92]

Divide-and-conquer recurrence with coeff. in (Q(n)
Fuchsian equation of order d (dimension) for GF

(d=2) . __(+/17—3)/2
H P '] "

- | =
QTrees: Wy ® C(i& _ Ji\

Y-
i

n

E.g., d = 2: Hypergeom - F; with algebraic arguments.

Extended by Hwang et al. Cf also Hwang's Cauchy ODE cases.

Panholzer-Prodinger+Martinez, . ..

43



SADDLE POINT METHODS

e For functions with violent growth at sin-
gularities, including entire functions.

06 = 5= 7)o

 Um

Integer partitions, set partitions, involutions,

44
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SINGULAR COMBINATORICS
C. Random Structures

Philippe Flajolet, INRIA, Rocquencourt
http://algo.inria.fr/flajolet

Based on Analytic Combinatorics, Flajolet & Sedgewick, C.U.R, 2007 .



Large random combinatorial structures exhibit are (often) predictable!

Eulerian distributions rises w» H)&rrruﬂ’zx.lf\cw

" ] = S = .
Ho.n ] n.nn A HmHrH {
|||||||||||||||||||| LIAITITTITT I LT Ll Ll LLL i
a B A B B rHo
HEEEERN] | 1 LIL LI AR L AL L R L R I T TNl

= =
L s ks = -
ﬂn. F"' nE ""F m
I Tl frrrrrrrt et
nd nn BH otH H__H
0 0 0 O 0 .

Concentration? Limit law?

Relation to Bivariate GFs C'(z, u) and singularities?



Why is the binomial distribution asymptotically normal?

e De Moivre: approximation of 2% (Z) .

e Laplace/Gauss: as sum of many RV's + Lévy: ...: because of char-
acteristic functions — e~ /2,

e Analytic combinatorics: because of bivariate GF ;— -5 and smoothly
varying singularity!




Classical Cenftral Limit Theorem (CLT): >~ RV's to Normal.
Proof: Levy’s confinuity theorem ¢,,(t) — ¢(t) implies F,,(x) — F(x).
+ calculation of PGF f,,(u) = g(u)™ + normalization and u +— it.

Quasi-Powers Theorem (HK Hwang, circa 19995).
Assume (X,,) are RV’s with probability GF (PGF) f,,(u) = E(u*") and
for A(u), B(u) analyfic at 1:

() = A@BW™ (1+0(1))

Kn

~

foru ~ 1, with 8,, kn — oo, and Var(B(u)) > 0. Then

e mean: i, = E(X,) ~ ,B'(1); s-dev.: 0. ~ (3, Var(B).
e normal limit: | P(X,, < p,, + z0y,) — L e 1% du

V2T J_ o

e Speed of convergence is O(x, " + 58, /7).




Quasi-Powers Theorem: °“If you resemble a power, then your
limit law is normal”.

Proof. "Analytic expansions are differentiable”: this gives moments.
Limit law results from Lévy’s continuity theorem.

Speed results from Berry-Esseen.,

<Bender, Richmond™.



Example 1. Supercritical sequence schema.

Let F = SEQ(G), so that number of components has BGF

1

Fzu) = 1 —uG(z)

Assume that G(r) > 1 where r:=radius of conv. of G(z).

Theorem. The number of G-components in a random F-
sfructure is asymptoftically normal.

Proof. A. lLet p € (0,r) be such that G(p) = 1. This is ro.c. of
F(z) = F(z,1). Thereis asimple pole.

B. Equation 1 — uG(z) = 0 has root p(u), where p(u) depends analyfi-
cally on u for v ~ 1.,

C. Function F(z,u), with u parameter, has simple pole at p(u) and

2" F(z,u) ~ c(u)p(u) .

D. Uniformity is granted (by integral representations), so that Quasi-
Powers Theorem applies. QED



Example 1. Supercritical sequences (continued)

— Compositions: arbifrary; with Q—excluded or Q)-forced sum-
mands. Compositions into prime summands, G(z) = 22+ 22 +2°+- - -.
Same for twin primes (1),

— Surjections aka ordered set partitions, G(z) = e* — 1. Same
with Q2-consfraints.

— k—components in compositions, surjections, etc.



Example 2. Cycles in permutations.

F(2,1) = exp <ulog 1 ! ) —(1—2)

— 2

A. By singularity analysis, get main approximation : [z"|F(z,u) ~

nu—l

INCOE

B. Approximation is uniform by nature of singularity analysis process
(contour integration).

C. Rewrite as Quasi-Powers approximation:

[2"|F(z,u) ~ ﬁ , (e(u—l))logn.

Thus, scale is now 3,, ~ logn.

D. Quasi-Powers Theorem applies. QED



Example 3. Exp-Log schema.

Let F = SET(G), so that number of components has BGF

F(z,u) = "%,

1
1—z/p’

Assume that G(z) is logarithmic: G(z) ~ Alog

Theorem. The number of G—components in a random F-sfructure is
asymptotically normal, with logarithmic mean and variance.

Application: Random mappings, etc. > Arratia-Barbour-Tavaré.



Example 4. Polynomials over finite fields.

e Polynomial is a & of coeffs: P has Polar singularity.

e By unique factorization, P is also 9 A

7 has log singulariy.
T

. . q
— Prime Number Theorem for Polynomials I,, ~ —.
n

e Marking number of 7—factors is approx uth power:

Variable Exponent = Normality of # of irred. factors.
(cf Erdés-Kac for integers.)

— Useful for analysis of polynomial factorization algorithmes.

10
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Perturbation of rational functions

— Regular languages & automata, under irreducibity condi-
fions. Auxiliary mark v induces a smooth singularity dislacement.
Occurrences of patterns in random texts. Works for sets of pat-
ferns.

~ Extends CLT for finite Markov chains.

12



Perturbation of algebraic functions: for irreducible systems,
the Drmota-Lalley-Woods Theorem implies \f—singulori’ry.

Example 5. Non-crossing graphs (Noy-F)

N

— Perturbation of algebraic equation.

Movable singularity scheme applies: A'ormality.

+ Patterns in context-free languages, in combinatorial tree models, in
functional graphs: Drmota’s version of Drmota-Lalley-Woods.

13



Perturbbation of differential equations.

Example 6. Profile of Quadtrees.

1
: \ | g T
N NE | F—F13
%) 2) | i
. Nl . —i—ﬂ—'—

NW NE Sw SE —7

sw {
(3) %)

Solution is of the form (1 — 2)~*(*) for algebraic branch a(u);
Variable Exponent = N ormality of search costs.

Applies to many linear differential models that behave like cycles-in-permes.
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(Eombahed vaid)
5Ymbolic meHhod i

——— T um;,;:i;j

7%ulan heo ’ " }«W‘*"i“ =

mfﬁ/ )L-ml s ’

il

That’'s All, Folks!
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