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ANALYTIC COMBINATORICS

• Find quantitative properties of large discrete structures = ran-
dom combinatorial structures.

• Identify the fundamental analytic structures != probabilistic
approaches.

Via complex analysis establish relationship

Combinatorics ! Analysis ! Asymptotics

•Organization into major schemas where chain can be worked
out: “combinatorial processes” // stochastic processes.

Example: “bag” process (Set); “row” process” (Seq).
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Universality: E.g. take a random tree of size n (large):

— Height is with high probabiliy (w.h.p.) O(
√

n);

— Any designated pattern ! occurs on average C! · n, and
distribution is asymptotically normal.

• Such properties hold for a very wide range of local construc-
tion rules (also Galton-Watson trees conditioned on size).

• Similar properties hold for “molecule trees”, random map-
pings, etc. But labelled trees based on order properties be-
long to a different universality class, with e.g., logarithmic height.
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“
√

n–trees”

“log–trees”
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Analytic combinatorics !

A. Counting Generating Function
B. Analytic properties of GF
Singularities + transfer to coefficients
C. Perturbation for distributions.

SYMBOLIC METHODS + COMPLEX ASYMPTOTICS + PERTURBA-
TION.
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Duality: Combinatorics versus probability

Brownian motion, continuum random tree, etc.
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PART A. SYMBOLIC METHODS

Goal: develop generic tools to determine generating func-
tions ≡ GFs.

Approach: Formulate a programming language to specify
combinatorial structures such that translation into GFs is au-
tomatic.

Parallels Joyal’s theory of species (BLL’s book). Similar in spirit to Jackson &
Goulden’s book. Cf Rota/Stanley. Formalizes recipes known to earlier combi-
natorialists.
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Abstraction:

Embed a fragment of elementary set theory into a language
of constructions. Map to algebra(s) of special functions.
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1 UNLABELLED STRUCTURES AND OGFS

Ordinary Generating Function (OGF)

(fn) −→ f(z) :=
∞∑

n=0

fnzn.

(fn) is number sequence, e.g., counting sequence.

Later: Exponential Generating function (EGF): (fn) −→ f(z) :=
∞X

n=0

fn
zn

n!
.
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C = a combinatorial class: at most denumerable set with size
function.

Cn = subclass of objects of size n.

Cn = # objects of size n = card(Cn).

C(z) = OGF :=
∑

n≥0

Cnzn =
∑

γ∈C
z|γ|.

Count up to combinatorial isomorphism: C ∼= D iff ∃ size-preserving
bijection.

Atom: Z #→ z; neutral element: E #→ 1.
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How many binary trees Bn with n external nodes?
B = " + •, (B × B).
Euler-Segner (1743): Recurrence

Bn =
n−1X

k=1

BkBn−k.

Form OGF: B(z) = z + (B(z)×B(z)).
Solve equation (quadratic):
B(z) = 1

2 (1−
√

1− 4z) = 1
2−

1
2 (1−4z)1/2.

Expand:

Bn =
1
n

 
2n− 2
n− 1

!
[Catalan numbers]

Analogy: B = " + (•B × B) ! B(z) = z + (B(z)×B(z))
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Outline

Define a collection of constructions

union, product, sequence, set, cycle, . . .

allowing for recursive definitions.

meta-THM1: OGFs are automatically computable (equations!)

meta-THM2: Counting sequences are automatically computable
in time O(n2), and even O(n1+ε).

meta-THM3: Random generation is fast in O(n log n) arithmetic
op’ns.
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Theorem. There exists a dictionary:

Construction OGF

C = A+ B C(z) = A(z) + B(z)

C = A× B C(z) = A(z) ·B(z)

C = SEQ(A) C(z) =
1

1−A(z)

C = MSET(A) C(z) = Exp(A(z))

C = PSET(A) C(z) = dExp(A(z))

C = CYC(A) C(z) = Log
1

1−A(z)

E or 1: “neutral class” formed with element of size 0 #→ E(z) = 1.
Z: “atomic class” formed with element of size 1 #→ E(z) = 1.

Exp(g(z)) = exp

0

@
X

k≥1

1

k
g(zk)

1

A; dExp(g(z)) = exp

0

@
X

k≥1

(−1)k

k
g(zk)

1

A;

Log(g(z)) =
X

k≥1

ϕ(k)

k
g(zk) with ϕ(k)= Euler totient.
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Proofs. A '→ A(z) =
∑

Anzn =
∑

α z|α|.

— Union: C = A+ B;
P

γ =
P

α +
P

β . C(z) = A(z) + B(z)

— Product: C = A× B;
P

γ =
P

α ·
P

β . C(z) = A(z) ·B(z)

— Sequence: C = SEQ(A) means C = 1+A+(A×A)+· · · . C(z) =
1

1−A(z)

— Multiset: C = MSET(A) means C ∼=
Q

α(1 + {α}), so that

C(z) =
Y

α

1

1− z|α|
=
Y

n≥1

1
(1− zn)An

,

and conclude by C(z) = exp(log C(z)) . . . C(z) = Exp(A(z)) .

— Cycle: [omitted] ϕ(k) is Euler’s totient function.
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Example 1. Binary words

W = SEQ({a, b}) =⇒ W (z) =
1

1− 2z
.

Get Wn = 2n (!?). Words starting with b and < 4 consecutive a’s:

W• ∼= SEQ(b×(1+a+aa+aaa)) =⇒ W •(z) =
1

1− (z + z2 + z3 + z4)
.

Longest run statistics lead to rational functions [Feller].

Example 2. Plane trees (“general” = all degrees allowed)
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Example 3. Nonplane trees (all degrees allowed)
U = Z ×MSET(U). U1 = 1, U2 = 1, U3 = 2, U4 = 5.

U(z) = z exp
(

1
1
U(z) +

1
2
U(z2) +

1
3
U(z3) + · · ·

)
.

Cayley: recurrences; Pólya: asymptotics of this infinite func-
tional equation.

Exercise: computable in polynomial time (O(n2)).
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Example 4. Words containing a pattern (abb)

Lj := language accepted from state j.

{L0 = aL1 + bL0, L1 = aL1 + bL2,L2 = aL1 + bL3, . . .}

Theorem. Regular language (finite automaton) has rational
GF.

Reg '→ Q(z).

Patterns of all sorts in words. Applications in pattern matching
algorithms and computational biology.

Borges’ Theorem: Large enough text contains any finite set of
patterns w.h.p.
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Example 5. Walks and excursions.
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Exercise A. Integer compositions. Argue that Cn = 2n−1 since

C = SEQ(N ), N = Z × SEQ(Z) =⇒ C(z) =
1

1− z
1−z

=
1− z

1− 2z
.

Exercise B. Denumerants. In how many ways can one give
change for n cents, given coins of 1, 2, 5, 10c?

D(z) =
1

(1− z)(1− z2)(1− z5)(1− z10)
.

Exact form of coefficients? Asymptotics?

Exercise C. Unary binary trees. U = z(1 + U + U2).

Exercise D. Binary trees, general plane trees, excursions, and
polygonal triangulations are all enumerated by Catalan num-
bers Cn = 1

n+1

(2n
n

)
. Why?
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Simple families of plane trees.

Let Ω ⊆ Z≥0 be the set of allowed (out)degrees. Define

φ(y) :=
∑

w∈Ω

yω.

Then the simple family Y has OGF:

Y (z) = zφ(Y (z)).

If φ is finite, get an algebraic function.

Lagrange Inversion Theorem.

[zn]Y (z) =
1
n

coeff[wn]φ(w)n.

If φ is finite, get multinomial sums.
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2 LABELLED STRUCTURES AND EGFS

EGF = exponential generating function

(fn) −→ f(z) =
∑

n≥0

fn
zn

n!
.

A labelled object has atoms that bear distinct integer labels
(canonically numbered on [1 . . n]).

Unlabelled: “anonymous atoms”. Labelled: distinguished atoms
or colours.

Example. How many (undirected) graphs on n (distinguish-
able) vertices? Gn = 2n(n−1)/2.
Graphs: unlabelled problem is harder (Pólya theory). In general, can get
unlabelled by identification of labelled.
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PERMUTATIONS = typical labelled objects: write σ =

0

@ 1 2 · · · n

σ1 σ2 · · · σn

1

A

as σ1σ2 · · ·σn and view as linear digraph that is labelled:

EGF is
1

1− z
since P (z) =

∑

n

n!
zn

n!
.
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DISCONNECTED GRAPHS (labelled) = no edges aka “Urns”.

EGF is U(z) = exp(z) = ez.

CYCLIC GRAPHS (directed)

EGF K(z) = log
1

1− z
.
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ROOTED TREES (graphs) nonplane and labelled

Tn =??

* Unlabelled:
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Labelled product. Let A and B be labelled classes. Then the carte-
sian product A× B is not well-labelled [why?].

Given (β, γ) form all possible relabellings that preserve the order struc-
ture within β, γ, while giving rise to well-labelled objects.

• Labelled product of two objects.

(α & β) :=
˘
γ
˛̨

γ = (α′, β′)
¯

,

where γ is well-labelled and α′≡order α and β′≡order β.
• Labelled product of two classes.

C :=
[

α∈A,β∈B

(α & β) .
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GFs; Stirling numbers.

26



Sequences, Sets, Cycles

• E (or 1): neutral class.

• Z: atomic class ≡ 1 .

• Define SEQ(A), SET(A), CYC(A) by relabellings:

SEQ(A) = 1 +A+ (A $ A) + · · · .

Sets: quotient up to perms. Cyc: up to cyclic perms.
— Perms P ∼= SEQ(Z)
— Urn U ∼= SET(Z)
— Circulars graphs K ∼= CYC(Z)

— m–functions: F [m] ∼=

m times
z }| {
U " · · · " U ≡ SEQm(U)

— m–surjections: SEQ(V), V = SET≥1(Z)

— Set partitions: SET(SET≥1(Z))

— Lab. trees: T = Z " SET(T ).

27



Theorem. There exists a dictionary:

Construction EGF

C = A+ B C(z) = A(z) + B(z)

C = A & B C(z) = A(z) ·B(z)

C = SEQ(A) C(z) =
1

1−A(z)

C = SET(A) C(z) = exp(A(z))

C = CYC(A) C(z) = log
1

1−A(z)

E or 1: “neutral class” formed with element of size 0 #→ E(z) = 1.
Z: “atomic class” formed with element of size 1 #→ E(z) = 1.
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Product lemma:

C = A× B =⇒ C(z) = A(z) ·B(z)

C = (A & B) implies Cn =
nX

k=0

 
n
k

!
AkBn−k [# possibilities × # rela-

bellings].

Hence
Cn

n!
=
X

k

Ak

k!
· Bn−k

(n− k)!
! C(z) = A(z) ·B(z).

SEQ: 1 + A + A2 + · · · = 1
1−A

.

SET: 1 +
A
1!

+
A2

2!
+ · · · = exp(A).

CYC: 1 +
A
1

+
A2

2
+ · · · = log

1
1−A

.
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Example 0
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Example 1. Permutations and cycles:

P = SET(CYC(Z)) =⇒ P (z) = exp
(

log
1

1− z

)
=

1
1− z

.

Derangements (no fixed point)

D = SET(CYC(Z)\Z) =⇒ D(z) = exp
(

log
1

1− z
− z

)
≡ e−z

1− z
.

Thus Dn

n!
= 1− 1

1!
+

2
2!
− · · ·+ (−1)n

n!
∼ e−1.

Example 2. Labelled (Cayley) trees:

T = Z $ SET(T ) =⇒ T (z) = zeT (z).

Thus Tn = nn−1 by Lagrange Inversion Th.
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Example 3. Set partitions:
B = SET(SET≥1(Z)) =⇒ B(z) = eez−1.

Bell numbers: Bn = e−1
X

k≥0

kn

k!
.
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Example 4. Allocations to [1 . . m]:

— all: emz ! Fn = mn.
— surjective: (ez−1)m ! Stirling numbers, m!

{m
n

}
=

∑(m
k

)
(−1)m−kkn.

— injective: (1 + z)m !

(
m

n

)
n! (arrangement #).

Exercise: Birthday Problem and Coupon Collector.

E(B) =

Z ∞

0

„
1 +

t
m

«m

e−t dt, E(C) =

Z ∞

0

“
et − (et/m − 1)m

”
e−t dt.

Multiple birthdays, multiple collections. (Cf Poissonization.)

33



Example 5. Mappings aka functional graphs = endofunctions
of finite set.

T = zeT , K = log(1−T )−1, M = eK : Mn = nn . P(connected)=O

„
1√
n

«
.

Exercise: A binary functional graph is such that each x has either 0
or 2 preimages (cf x2 + a mod p). Q1. Construct; Q2. enumerate.

Exercise: All graphs G(z) = 1 +
∞X

n=1

2n(n−1)/2zn/n!. Q1. EGF K(z) of

connected graphs? Q2. Probability of connectedness. Q3$ Prove
not constructible.

34



3 MULTIVARIATE GFS AND PARAMETERS

Bivariate GF (ordinary) (En,k) ! E(z, u) =
X

n,k

En,kukzn.

Bivariate GF (exponential) (En,k) ! E(z, u) =
X

n,k

En,kuk zn

n!
.
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• BGF encodes exact distributions. hence, moments.

EEn [χ] =
∑

k

k · En,k

En
=

1
En

coeff[zn]
∂

∂u
E(z, u)

∣∣∣∣
u=1

.

Variance & moment of order 2: second derivative, etc.

Chebyshev inequalities: σn/µn → 0 implies convergence in
probability.
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Bivariate GF (ordinary) E(z, u) =
∑

n,k

En,kukzn ≡
∑

ε∈E
z|ε|uχ(ε).

• BGF is reduction of combinatorial structure. Thus expect
multivariate dictionaries.

Definition. Parameter is inherited if (i) it is compatible with unions;
(ii) it is additive over products (also SEQ, SET, CYC).

meta-THM Previous dictionaries (U/L) work verbatim!

Proof [hint]: C = A×B =⇒ C(z, u) =
∑

γ

=
∑

(α,β)

= A(z, u) ·B(z, u).

Same principles as counting, but with size now extended to
N× N.
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Example 1. Permutations, counting # cycles:

P = SET(CYC(Z)) =⇒ P (z, u) = exp
[
u

z

1
+ u

z2

2
+ · · ·

]
= (1−z)−u.

Expand and get probability GF: 1
n!u(u + 1) · · · (u + n− 1); mean

is Hn ∼ log n; standard dev. is ∼
√

log n; distribution is concentrated
[by Chebyshev].

# singleton cycles:

P (z, u) = exp
[
u

z

1
+

z2

2
+ · · ·

]
=

ez(u−1)

1− z
.

# singleton/doubleton cycles (joint): use u1, u2, and so on.
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Example 2. Number of summands in compositions.

C = SEQ(Z × SEQ(Z)) =⇒ C(z, u) =
1

1− zu/(1− z)
.

Example 3. Number of leaves in a general plane tree.

G = Zu + Z SEQ≥1(Z) =⇒ G = z u + z
G

1−G
.

Summary: Place marker at appropriate places and translate
with usual dictionary.
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Summary. In order to enumerate, it suffices to find a con-
struction.
— Get the OGF/EGF automatically;
— Get parameters that are traceable to constructions.

Integer compositions and partitions; words; trees; lattice paths;
set partitions; allocations and functions; mappings; permuta-
tions and cycles.

Also: associate families of special functions to families of com-
binatorial classes.
— Regular languages ! Rational functions
— Tree grammars & CF languages ! Algebraic functions
— Simple tree families ! Implicit functions

Other: Constrained mappings: implicit function ◦ modified exp and
log functions. Etc.
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Exercise A. A record in a permutation is an element σj larger than
all preceding σk. Q. Explain why the distribution of # records is the
same as # cycles (on Pn).

Hint:

Exercise B. Throw n balls into m urns. Q1. The statistics of empty bins
is obtained from (ez − 1 + u)m. Q2. Mean and variance? Q3. Same
for bins filled with r elements. Q4. Relation to Poisson?
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— Asymptotic analysis is often very
precise.
— Can be done from generating
functions directly, even if no expres-
sion for coefficients is available.
— Works for functional equations

U(z) = z exp

„
U(z) +

1
2
U(z2) + · · ·

«
.

— Makes it possible to discuss univer-
sality via schemas.
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4 ANALYTIC FUNCTIONS

GFs are (usually) analytic functions near 0.

• Analytic aka holomorphic functions
• Meromorphic functions
• Integrals and residues
• Singularities and exponential growth orders
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Let f(z) be defined from D [open connected set] to E:

Definition. • f(z) is analytic at z0 iff locally : f(z) =
X

n≥0

cn(z − z0)
n .

• f(z) is complex differentiable iff

∃ lim
h→0, h∈C

f(z0 + h)− f(z0)
h

=: f ′(z0) ≡
d
dz

f(z)

˛̨
˛̨
z=z0

.

! f analytic/ differentiable in Ω , etc.

Theorem. Equivalence between the two notions!

Combinatorialists love power series; analysts love differentiability!
∆f

∆z
gives closure under +,−,×,÷, composition, inversion, &c.
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Examples. The function
√

z, such that
p

ρeiθ =
√

ρ ·eiθ/2, can only be

made continuous in .

— Same for log z = log ρ + iθ.

— Exponential function exp(z) is entire.

—
ez

√
1− z

is analytic in

— Catalan GF 1−
√

1−4z
2z is analytic in slit plane C \ [ 14 , +∞[.

— Rational GF is analytic except at poles.
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Integration and residues

Theorem. Let f be analytic in Ω and γ be contractible to a
single point in Ω. Then

∫

γ
f(z) dz = 0.

In particular
∫ B

A f(z) dz does not depend on path.
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Definition. g(z) is meromorphic in Ω iff near any z0, one has
g(z) = A(z)

B(z) , with A,B analytic.

A point z0 such that B(z0) = 0 is a pole. Its order is the multi-
plicity of z0 as root of B (assume A(z0) != 0).

Pole of order m: g(z) =
c−m

(z − z0)m
+ · · · + c−1

(z − z0)
+ c + 0 + · · · .

c−1 is called residue of g(z) at z0.
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Cauchy’s Residue Theorem. If f(z) has poles, then

1
2iπ

∫

γ
f(z) dz =

∑
Residues .

Proof: local integration +

Cauchy’s Coefficient Theorem. coeff[zn] f(z) =
1

2iπ

∫

γ
f(z)

dz

zn+1

Proof: by residues:
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Residues: local versus global

• Computing integrals:
R +∞
−∞

dx
1+x4 = = π√

2

By only considering local properties at ζ = eiπ/4, e3iπ/4.

• Estimating coefficients: dn := P[derangement] over Pn.

dn = [zn]
e−z

1− z
=

1
2iπ

Z

|z|=1/2

e−z

1− z
dz

zn+1
.

Evaluate instead on |z| = 2:

Jn =
1

2iπ

Z

|z|=2

e−z

1− z
dz

zn+1
= O(2−n)

= Resz=0 + Resz=1 = dn − e−1.

Thus: dn = e−1 + O(2−n) .

Exercise: Double derangement: [zn]e−z−z2/2/(1− z). Generalize!
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Singularities.

• f(z) has a singularity at border point σ iff .

Theorem. A series always has at least one singularity on its circle of
convergence (but none inside).

Convergence radius≡Analyticity radius:

Pringsheim’s Theorem. If fn ≥ 0, one such singulariy is positive.
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Exponential growth of coefficents.

If f(z) has radius exactly R, then ∀ε > 0:

fn(R− ε)n → 0; fn(R + ε)n is unbounded.

That is lim sup |fn|1/n = 1
R , or

fn = R−nϑ(n), where ϑ(n) is “subexponental”.

Also write fn &' R−n with R := distance to nearest sing(s).

Find exponential growth by just “looking” at GF!!

11



Examples (singularities and growth)

• Binary words: W (z) = 1
1−2z ! Wn &' 2n.

• Derangements: D(z) = e−z

1−z ! Dn
n! &' 1n.

• General trees: G(z) = 1
2

`
1−

√
1− 4z

´
! Gn &' 4n. By Stirling: Gn ∼

4n−1

√
πn3

.

• Unary-binary trees: U = z(1+U+U2), U = 1
2z

`
1− z −

√
1− 2z − 3z2

´
,

so that singularities are at z = −1, 1
3 and Un &' 3n.

Exponential order is computable(almost) automatically for GFs given
by explicit expressions.
E.g.: ρ(f + g) = min(ρ(f), ρ(g)); ρ

“
1

1−f

”
= min(ρ(f), {z / f(z) = 1}),

etc.
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5 RATIONAL AND MEROMORHIC FNS

Find subexponential factors in

fn $% R−n, meaning fn = R−nϑ(n),

where ϑ(n) is like nα, (log n)β , e
√

n, etc.

Here: simple case of Rat & Mero.
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Coefficients of rational functions

Theorem. Each pole ζ with multiplicity r contributes to coeffi-
cients a term

ζ−nP (n),

where P (n) is a polynomial of degree r − 1.

Proof. [zn]
1

(z − ζ)r
= (−ζ)−r

 
n + r − 1

r − 1

!
ζ−m.

Poles are arranged in order of increasing
modulus. Dominant ones matter for expo-
nential growth. Multiplicities give polyno-
mial factors.

14



Example 1. Denumerants.

• In how many ways can one give change with 1, 2, 5c coins?

Dn = [zn]
1

(1− z)(1− z2)(1− z5)
.

One layer. Poles at 1, ±1, ζ5 = 1.
Observe the “transfer” D(z) ∼ 1

10 (1− z)−3 implies Dn ∼ n2/20.

• General case Ω–denominations, m = ||Ω||. Then [Schur]

Dn ∼
nm−1

(m− 1)!

∏

ω∈Ω

1
ω

.
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Example 2. Longest b-runs in strings. [cf Feller]

bbb abb ab a abbbb

SEQ<m(b)× SEQ(a SEQ<m(b))
1− zm

1− z
× 1

1− z 1−zm

1−z

=
1− z

1− 2z + zm+1
.

— Dominant pole is near 1
2 : ρm ≈ 1

2 (1 + 2−m−1).
— Dominant pole is separated by |z| = 3

2 ;error is exp. small.
— Uniform estimates are obtained. Get

P (longest b-run < m) ≈
„

1
2ρm

«n

≈ e−n/2m+1
.

Threshold near log2 n.

Arbitrary patterns: similar with correlation polynomials of Guibas–Odlyzko.
Quantitative normality of strings, Borges’ Theorem ,etc.
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Coefficients of meromorphic functions

Assumption: g(z) is meromorphic in |z| < R and analytic on
|z| = R.

Theorem. Each pole ζ with multiplicity r contributes to coeffi-
cients a term

ζ−nP (n),

where P (n) is a polynomial of degree r−1. Error term is O(R−n).

Proof. (i) Subtracted sngularities. Let h(z) gather contributions of
poles. Then g(z) − h(z) is analytic in |z| ≤ R. Use Cauchy with trivial
bounds.

(ii) Estimate
R

g by residues.
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Example 3. Derangements.

D = SET(CYC≥2(Z)) =⇒ D(z) = e−z1− z.

Get simple pole at z = 1 so that 1
n!Dn = [zn] e−1

1−z + O(2−n) = e−1 +

O(2−n).

Generalized derangement: all cycles of length > r:

1
n!

D#
n ∼ e−Hr , Hr = 1 +

1
2

+ · · ·+ 1
r
.
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Example 4. Paths-in-graphs models.

Encapsulates finite automata and finite Markov chains. GFs
are rational.

If the graph Γ is strongly connected and aperiodic, then there is unic-
ity and simplicity of dominant pole (. Perron-Frobenius): fn ∼ cρ−n.

Generalized patterns in random strings [F, Nicodème, Régnier, Salvy, Sz-

pankowski, Vallée, &c].
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Example 5. Surjections and Supercritical SEQ Schema.

Random surjection ≡ ordered partition (pref. arrangement)

R = SEQ(SET≥1(Z)) =⇒ R(z) =
1

2− ez
.

Pole at ζ = log 2; subdominant ones at ζ = log 2± 2ikπ, etc.

Rn

n!
∼ c(log 2)−n.

Also, mean number of blocks via
1

1− u(ez − 1)
is O(n). There is con-

centration, etc.

Any supercritical sequence should similarly behave ! schema.

20



6 SINGULARITY ANALYSIS

• Singularities more general than poles.

• Subexponential factors more general than polynomials:

fn ∼ R−nϑ(n),

with ϑ(n) of the form nα(log n)β .

Note: May assume singularity at 1 by scaling [zn]f(λz) = λn[zn]f(z).

21



Coefficients: n−3/2 n−5/2

22



From functions to coefficients:
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Principles of Singularity Analysis

Larger functions tend to have larger coefficients.

— Establish this for basic scales (1 − z)−α. Enrich with log’s,
log log’s, etc.

— Prove transfer theorems. If f “resembles “ g via O(·), o(·),
then fn resembles gn.

24



Theorem 1. Coefficients of basic scale:

[zn](1− z)−α ∼ 1
Γ(α)

nα−1.

Also: full expansion, log’s log-log’s, etc.

Gamma function: Γ(s) :=

Z ∞

0

e−tts−1 dt, with analytic continuation

by Γ(s + 1) = sΓ(s).

Idea:
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Theorem 2. Transfer of asymptotic properties.

Proof: similarly by Hankel contours.
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Example 1. 2–regular graphs.

Rn

n!
∼ e−3/4√πn.

Comtet’s clouds. Also full asymptotics.
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Example 2. Some trees.

• Catalan trees have GF 1
2 (1−

√
1− 4z) ! c 4n

√
πn3 .

• Unary binary trees.

In fact: universality of n−3/2 law (later).
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Example 3. Cycles in Perms.

Mean number of cycles in a random perm is coeff[zn] in

M(z) =
∂

∂u
exp

(
u log

1
1− z

)∣∣∣∣
u→1

=
1

1− z
log

1
1− z

.

Thus [zn]M(z) ∼ log n .

Exercise: Holds for perms with finitely many excluded cycle lengths.

In fact: universality for the “exp-log” schema.
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Closures

[F] [Fill-F-Kapur 2005].
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+ Singularity analysis preserves uniformity ! distributions.
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7 APPLICATIONS OF SING. ANA.

Focus on recursive structures including trees, mappings.

• Universality of √ –law for generating functions;
• Universality of ρ−nn−3/2–law for counts;
• Universal behaviour for major parameters (e.g., height).
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Inversion:

Square-root singularity is expected for inverse functions.
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Theorem 1. Let φ have nonnegative coeffs and be entire.
Then the function that solves

Y (z) = zφ(Y (z))

has a square-root singularity, so that

[zn]Y (z) ∼ Cρ−nn−3/2.

— Characteristic equation (singular value of Y ) is τ : d
dy

y
φ(y) = 0, i.e.,

τφ′(τ)− φ(τ) = 0. Then ρ = τ
φ(τ) . All is computable.

— √ –singularity propagates via suitable compositions, so that pa-
rameters can be analysed.

— Phenomena are robust.
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Example 1. Cayley trees. T = zeT or z = Te−T is not invertible if
d

dT (Te−T ) ≡ (1− T )e−T = 0, that is, T = 1, z = e−1. Find:

T (z) =
z→e−1

1−
√

2
√

1− ez + O((1− ez)).

Implies [zn]T (z) ∼ en
√

2πn3 ; we rederive Stirling’s f. (since Tn = nn−1 by
Lagrange).

Example 2. Unlabelled trees. Recall

U(z) = zeU(z)+ 1
2 U(z2)+···.

Express as T composed with an analytic function and get SQRT sing:
U = ζeU , where ζ := z exp( 1

2U(z2) + · · · ).

Height is universally O(
√

n) wth local and integral limit laws (of theta
type). Similarly for width [Marckert et al.]. Leaves are universally nor-
mally distributed, etc.
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Example 3. Mappings (cyclic points).

Develop a theory of degree-constrained mappings: [Arney-
Bender], [F.-Odlyzko].
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Algebraic functions

Singularity analysis applies to any algebraic function

Algebraic function =⇒ Fractional exponents @ singularities.

38



39



Singularity analysis applies to
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Singularity analysis applies to
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8 SADDLE POINT METHODS

• For functions with violent growth at sin-
gularities, including entire functions.

[zn]f(z) =
1

2iπ

∮
f(z)

dz

zn+1
.

Integer partitions, set partitions, involutions,
. . .
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Large random combinatorial structures exhibit are (often) predictable!

Concentration? Limit law?

Relation to Bivariate GFs C(z, u) and singularities?

2



Why is the binomial distribution asymptotically normal?

• De Moivre: approximation of
1
2n

 
n
k

!
.

• Laplace/Gauss: as sum of many RV’s + Lévy: . . . : because of char-
acteristic functions→ e−t2/2.

• Analytic combinatorics: because of bivariate GF 1
1−z(1+u) and smoothly

varying singularity!
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Classical Central Limit Theorem (CLT):
∑

RV’s to Normal.
Proof: Levy’s continuity theorem φn(t)→ φ(t) implies Fn(x)→ F (x).
+ calculation of PGF fn(u) = g(u)n + normalization and u "→ it.

Quasi-Powers Theorem [HK Hwang, circa 1995].
Assume (Xn) are RV’s with probability GF (PGF) fn(u) = E(uXn) and
for A(u), B(u) analytic at 1:

fn(u) = A(u)B(u)βn

„
1 + O(

1
κn

)

«
,

for u ≈ 1, with βn, κn →∞, and Var(B(u)) > 0. Then

• mean: µn = E(Xn) ∼ βnB′(1); s-dev.: σ2
n ∼ βnVar(B).

• normal limit: P(Xn ≤ µn + xσn)→ 1√
2π

Z x

−∞
e−w2/2 dw

• Speed of convergence is O(κ−1
n + β−1/2

n ).
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Quasi-Powers Theorem: “If you resemble a power, then your
limit law is normal”.

Proof. “Analytic expansions are differentiable”: this gives moments.
Limit law results from Lévy’s continuity theorem.
Speed results from Berry-Esseen.
(Bender, Richmond+.
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Example 1. Supercritical sequence schema.

Let F = SEQ(G), so that number of components has BGF

F (z, u) =
1

1− uG(z)
.

Assume that G(r) > 1 where r:=radius of conv. of G(z).

Theorem. The number of G–components in a random F–
structure is asymptotically normal.

Proof. A
¯
. Let ρ ∈ (0, r) be such that G(ρ) = 1. This is r.o.c. of

F (z) ≡ F (z, 1). There is a simple pole.
B. Equation 1− uG(z) = 0 has root ρ(u), where ρ(u) depends analyti-
cally on u for u ≈ 1.
C. Function F (z, u), with u parameter, has simple pole at ρ(u) and

[zn]F (z, u) ∼ c(u)ρ(u)−n.

D. Uniformity is granted [by integral representations], so that Quasi-
Powers Theorem applies. QED
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Example 1. Supercritical sequences (continued)

— Compositions: arbitrary; with Ω–excluded or Ω–forced sum-
mands. Compositions into prime summands, G(z) = z2+z3+z5+· · · .
Same for twin primes (!!).

— Surjections aka ordered set partitions, G(z) = ez − 1. Same
with Ω–constraints.

— k–components in compositions, surjections, etc.
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Example 2. Cycles in permutations.

F (z, u) = exp
(

u log
1

1− z

)
= (1− z)−u.

A. By singularity analysis, get main approximation : [zn]F (z, u) ∼
nu−1

Γ(u) .

B. Approximation is uniform by nature of singularity analysis process
(contour integration).

C. Rewrite as Quasi-Powers approximation:

[zn]F (z, u) ∼ 1
Γ(u)

·
“
e(u−1)

”log n
.

Thus, scale is now βn ∼ log n.

D. Quasi-Powers Theorem applies. QED
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Example 3. Exp-Log schema.

Let F = SET(G), so that number of components has BGF

F (z, u) = euG(z).

Assume that G(z) is logarithmic: G(z) ∼ λ log 1
1−z/ρ .

Theorem. The number of G–components in a random F–structure is
asymptotically normal, with logarithmic mean and variance.

Application: Random mappings, etc. "Arratia-Barbour-Tavaré.
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Example 4. Polynomials over finite fields.

— Useful for analysis of polynomial factorization algorithms.
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Perturbation of rational functions
— Regular languages & automata, under irreducibity condi-
tions. Auxiliary mark u induces a smooth singularity dislacement.
Occurrences of patterns in random texts. Works for sets of pat-
terns.
≈ Extends CLT for finite Markov chains.
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Perturbation of algebraic functions: for irreducible systems,
the Drmota-Lalley-Woods Theorem implies √ –singularity.

Example 5. Non-crossing graphs [Noy-F.]
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Perturbation of differential equations.

Example 6. Profile of Quadtrees.
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