

Santiago de Chile

**DEC 2006** 



# SINGULAR COMBINATORICS A. Symbolic Methods

Philippe Flajolet, INRIA, Rocquencourt
 http://algo.inria.fr/flajolet

Based on Analytic Combinatorics, Flajolet & Sedgewick, C.U.P., 2007<sup>+</sup>.

# **ANALYTIC COMBINATORICS**

- Find quantitative properties of large discrete structures = random combinatorial structures.
- Identify the fundamental analytic structures  $\neq$  probabilistic approaches.

Via complex analysis establish relationship

Combinatorics  $\rightsquigarrow$  Analysis  $\rightsquigarrow$  Asymptotics

 Organization into major schemas where chain can be worked out: "combinatorial processes" // stochastic processes.
 Example: "bag" process (Set); "row" process" (Seq). Universality: E.g. take a random tree of size n (large):

— Height is with high probabiliy (w.h.p.)  $O(\sqrt{n})$ ;

— Any designated pattern  $\varpi$  occurs on average  $C_{\varpi} \cdot n$ , and distribution is asymptotically normal.

• Such properties hold for a very wide range of local construction rules (also Galton-Watson trees conditioned on size).

• Similar properties hold for "molecule trees", random mappings, etc. But labelled trees based on order properties belong to a different universality class, with e.g., logarithmic height.



Figure 5.11 A binary search tree built from 256 randomly ordered keys



Figure 3.1 All binary trees with 1, 2, 3, 4, and 5 external nodes

Analytic combinatorics →
A. Counting Generating Function
B. Analytic properties of GF
Singularities + transfer to coefficients
C. Perturbation for distributions.

SYMBOLIC METHODS + COMPLEX ASYMPTOTICS + PERTURBA-TION.



### Duality: Combinatorics versus probability

Brownian motion, continuum random tree, etc.

# PART A. SYMBOLIC METHODS

**Goal:** develop generic tools to determine generating functions  $\equiv$  GFs.

**Approach:** Formulate a programming language to specify combinatorial structures such that translation into GFs is **au-tomatic**.

Parallels Joyal's theory of species (BLL's book). Similar in spirit to Jackson & Goulden's book. Cf Rota/Stanley. Formalizes recipes known to earlier combinatorialists.



Embed a fragment of elementary set theory into a **language** of constructions. Map to algebra(s) of special functions.

## **1 UNLABELLED STRUCTURES AND OGFS**

Ordinary Generating Function (OGF)

$$(f_n) \longrightarrow f(z) := \sum_{n=0}^{\infty} f_n z^n.$$

 $(f_n)$  is number sequence, e.g., counting sequence.

Later: Exponential Generating function (EGF):  $(f_n) \longrightarrow f(z) := \sum_{n=0}^{\infty} f_n \frac{z^n}{n!}$ .

C = a combinatorial class: at most denumerable set with size function.

$$C_n$$
 = subclass of objects of size  $n$ .  
 $C_n$  = # objects of size  $n = \operatorname{card}(C_n)$ .  
 $C(z) = \operatorname{OGF} := \sum_{n \ge 0} C_n z^n = \sum_{\gamma \in \mathcal{C}} z^{|\gamma|}$ .

Count up to combinatorial isomorphism:  $C \cong D$  iff  $\exists$  size-preserving bijection.

Atom:  $\mathcal{Z} \mapsto z$ ; neutral element:  $\mathcal{E} \mapsto 1$ .

#### How many binary trees $B_n$ with n external nodes?



 $\mathcal{B} = \Box + \bullet, (\mathcal{B} \times \mathcal{B}).$ Euler-Segner (1743): Recurrence  $n\!-\!1$  $B_n = \sum B_k B_{n-k}.$ Form OGF:  $B(z) = z + (B(z) \times B(z))$ . Solve equation (quadratic): Expand:  $B_n = \frac{1}{n} \binom{2n-2}{n-1}$  (Catalan numbers)

Analogy: 
$$\mathcal{B} = \Box + (\bullet \mathcal{B} \times \mathcal{B}) \rightsquigarrow B(z) = z + (B(z) \times B(z))$$

#### **Outline**

Define a collection of constructions

union, product, sequence, set, cycle,...

allowing for *recursive definitions*.

meta-THM1: OGFs are automatically computable (equations!)

meta-THM2: Counting sequences are automatically computable in time  $O(n^2)$ , and even  $O(n^{1+\epsilon})$ .

meta-THM3: Random generation is fast in  $O(n \log n)$  arithmetic op'ns.

**Theorem.** There exists a dictionary:

| Construction                                    | OGF                                            |
|-------------------------------------------------|------------------------------------------------|
| $\mathcal{C} = \mathcal{A} + \mathcal{B}$       | C(z) = A(z) + B(z)                             |
| $\mathcal{C}=\mathcal{A}	imes\mathcal{B}$       | $C(z) = A(z) \cdot B(z)$                       |
| $\mathcal{C} = \operatorname{Seq}(\mathcal{A})$ | $C(z) = \frac{1}{1 - A(z)}$                    |
| C = MSET(A)                                     | $C(z) = \operatorname{Exp}(A(z))$              |
| C = PSET(A)                                     | $C(z) = \widehat{\operatorname{Exp}}(A(z))$    |
| $\mathcal{C} = \operatorname{Cyc}(\mathcal{A})$ | $C(z) = \operatorname{Log} \frac{1}{1 - A(z)}$ |

$$\begin{split} \mathcal{E} \text{ or } \mathbf{1}: \text{``neutral class'' formed with element of size } 0 &\mapsto E(z) = 1. \\ \mathcal{Z}: \text{``atomic class'' formed with element of size } 1 &\mapsto E(z) = 1. \\ \operatorname{Exp}(g(z)) &= \exp\left(\sum_{k \geq 1} \frac{1}{k}g(z^k)\right); \widehat{\operatorname{Exp}}(g(z)) = \exp\left(\sum_{k \geq 1} \frac{(-1)^k}{k}g(z^k)\right); \\ \operatorname{Log}(g(z)) &= \sum_{k \geq 1} \frac{\varphi(k)}{k}g(z^k) \text{ with } \varphi(k) \text{= Euler totient.} \end{split}$$

Proofs. 
$$\mathcal{A} \mapsto A(z) = \sum A_n z^n = \sum_{\alpha} z^{|\alpha|}$$
.  
- Union:  $\mathcal{C} = \mathcal{A} + \mathcal{B}$ ;  $\sum_{\gamma} = \sum_{\alpha} + \sum_{\beta}$ .  $C(z) = A(z) + B(z)$   
- Product:  $\mathcal{C} = \mathcal{A} \times \mathcal{B}$ ;  $\sum_{\gamma} = \sum_{\alpha} \cdot \sum_{\beta}$ .  $C(z) = A(z) \cdot B(z)$   
- Sequence:  $\mathcal{C} = \operatorname{SEQ}(\mathcal{A}) \operatorname{means} \mathcal{C} = 1 + \mathcal{A} + (\mathcal{A} \times \mathcal{A}) + \cdots$ .  $C(z) = \frac{1}{1 - A(z)}$ 

— Multiset: C = MSET(A) means  $C \cong \prod_{\alpha} (1 + \{\alpha\})$ , so that

$$C(z) = \prod_{\alpha} \frac{1}{1 - z^{|\alpha|}} = \prod_{n \ge 1} \frac{1}{(1 - z^n)^{A_n}},$$

and conclude by  $C(z) = \exp(\log C(z)) \dots C(z) = \exp(A(z))$ .

— Cycle: (omitted)  $\varphi(k)$  is Euler's totient function.

Example 1. Binary words

$$\mathcal{W} = \mathbf{SEQ}(\{a, b\}) \implies W(z) = \frac{1}{1 - 2z}.$$

Get  $W_n = 2^n$  (!?). Words starting with b and < 4 consecutive a's:

$$\mathcal{W}^{\bullet} \cong \operatorname{Seg}(b \times (1 + a + aa + aaa)) \implies W^{\bullet}(z) = \frac{1}{1 - (z + z^2 + z^3 + z^4)}.$$

Longest run statistics lead to rational functions (Feller).

Example 2. Plane trees ("general" = all degrees allowed)

$$P = \overline{Z} \times Seq(P)$$

$$P_{1}=1 \qquad P_{2}=1 \qquad P_{3}=2 \qquad P_{4}=5$$

$$P(\overline{z}) = \frac{\overline{z}}{1-P(\overline{z})} \implies P(\overline{z}) = \frac{1-\sqrt{1-4}\overline{z}}{2} \qquad P_{n} = \frac{1}{n} \begin{pmatrix} 2n-2\\ n-1 \end{pmatrix}$$

Example 3. Nonplane trees (all degrees allowed)  $\mathcal{U} = \mathcal{Z} \times \text{MSET}(\mathcal{U})$ .  $U_1 = 1$ ,  $U_2 = 1$ ,  $U_3 = 2$ ,  $U_4 = 5$ .

$$U(z) = z \exp\left(\frac{1}{1}U(z) + \frac{1}{2}U(z^2) + \frac{1}{3}U(z^3) + \cdots\right).$$

Cayley: recurrences; Pólya: asymptotics of this infinite functional equation.

Exercise: computable in polynomial time ( $O(n^2)$ ).

Example 4. Words containing a pattern (abb)

 $\mathcal{L}_j :=$  language accepted from state j.

$$\{\mathcal{L}_0 = a\mathcal{L}_1 + b\mathcal{L}_0, \ \mathcal{L}_1 = a\mathcal{L}_1 + b\mathcal{L}_2, \mathcal{L}_2 = a\mathcal{L}_1 + b\mathcal{L}_3, \ldots\}$$

**Theorem.** Regular language (finite automaton) has rational GF.

$$Reg \mapsto \mathbb{Q}(z).$$

Patterns of all sorts in words. Applications in pattern matching algorithms and computational biology.

Borges' Theorem: Large enough text contains any finite set of patterns w.h.p.

#### Example 5. Walks and excursions.



Exercise A. Integer compositions. Argue that  $C_n = 2^{n-1}$  since

$$\mathcal{C} = \operatorname{SEQ}(\mathcal{N}), \ \mathcal{N} = \mathcal{Z} \times \operatorname{SEQ}(\mathcal{Z}) \implies C(z) = \frac{1}{1 - \frac{z}{1 - z}} = \frac{1 - z}{1 - 2z}.$$

Exercise B. Denumerants. In how many ways can one give change for n cents, given coins of 1, 2, 5, 10c?

$$D(z) = \frac{1}{(1-z)(1-z^2)(1-z^5)(1-z^{10})}.$$

Exact form of coefficients? Asymptotics?

Exercise C. Unary binary trees.  $U = z(1 + U + U^2)$ .

Exercise D. Binary trees, general plane trees, excursions, and polygonal triangulations are all enumerated by Catalan numbers  $C_n = \frac{1}{n+1} {2n \choose n}$ . Why?

#### Simple families of plane trees.

Let  $\Omega \subseteq Z_{\geq 0}$  be the set of allowed (out)degrees. Define

$$\phi(y) := \sum_{w \in \Omega} y^{\omega}.$$

Then the simple family  $\mathcal Y$  has OGF:

 $Y(z) = z\phi(Y(z)).$ 

If  $\phi$  is finite, get an algebraic function.

#### Lagrange Inversion Theorem.

$$[z^n]Y(z) = \frac{1}{n}\operatorname{coeff}[w^n]\phi(w)^n.$$

If  $\phi$  is finite, get multinomial sums.

## **2 LABELLED STRUCTURES AND EGFS**

EGF = exponential generating function

$$(f_n) \longrightarrow f(z) = \sum_{n \ge 0} f_n \frac{z^n}{n!}.$$

A labelled object has atoms that bear distinct integer labels (canonically numbered on [1 ... n]).

Unlabelled: "anonymous atoms". Labelled: distinguished atoms or colours.

**Example.** How many (undirected) graphs on n (distinguishable) vertices?  $G^n = 2^{n(n-1)/2}$ .

Graphs: unlabelled problem is harder (Pólya theory). In general, can get unlabelled by identification of labelled.

PERMUTATIONS = typical labelled objects: write  $\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma_1 & \sigma_2 & \cdots & \sigma_n \end{pmatrix}$ as  $\sigma_1 \sigma_2 \cdots \sigma_n$  and view as linear digraph that is labelled:  $\varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon_4 & \varepsilon_4 & \varepsilon_5 \\ \varepsilon_1 & \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon_4 & \varepsilon_4 & \varepsilon_5 \\ \varepsilon_1 & \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon_4 & \varepsilon_5 & \varepsilon_5$ 

EGF is 
$$\frac{1}{1-z}$$
 since  $P(z) = \sum_{n} n! \frac{z^n}{n!}$ .

DISCONNECTED GRAPHS (labelled) = no edges aka "Urns".

 $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$  EGF is  $U(z) = \exp(z) = e^{z}$ .

EGF 
$$K(z) = \log \frac{1}{1-z}$$
.

### ROOTED TREES (graphs) nonplane and labelled

$$T_{n} = ??$$

$$T_{1} = 1, \quad T_{2} = 2, \quad T_{3} = 9, \quad (T_{4} = 64..)$$

$$\gg \text{Unlabelled:}$$

$$U_{4} = 1, \quad U_{2} = 1, \quad U_{3} = 2, \quad U_{4} = 4, \cdots$$

Labelled product. Let A and B be labelled classes. Then the cartesian product  $A \times B$  is *not* well-labelled (why?).

Given  $(\beta, \gamma)$  form all possible *relabellings* that preserve the order structure within  $\beta, \gamma$ , while giving rise to well-labelled objects.



• Labelled product of two objects.

$$(\alpha\star\beta):=\left\{\gamma \ \left| \ \gamma=(\alpha',\beta')\right\},\right.$$

where  $\gamma$  is well-labelled and  $\alpha' \equiv_{\text{order}} \alpha$  and  $\beta' \equiv_{\text{order}} \beta$ .

• Labelled product of two classes.

$$\mathcal{C} := \bigcup_{\alpha \in \mathcal{A}, \beta \in \mathcal{B}} (\alpha \star \beta).$$



GFs; Stirling numbers.

### Sequences, Sets, Cycles

- $\mathcal{E}$  (or 1): neutral class.
- $\mathcal{Z}$ : atomic class  $\equiv 1$ .
- Define Seg(A), Set(A), Cyc(A) by relabellings:

 $\operatorname{Seq}(\mathcal{A}) = \mathbf{1} + \mathcal{A} + (\mathcal{A} \star A) + \cdots$ 

Sets: quotient up to perms. Cyc: up to cyclic perms.

- Perms  $\mathcal{P} \cong \operatorname{SEQ}(\mathcal{Z})$ - Urn  $\mathcal{U} \cong \operatorname{SET}(\mathcal{Z})$ - Circulars graphs  $\mathcal{K} \cong \operatorname{Cyc}(\mathcal{Z})$  *m* times - *m*-functions:  $\mathcal{F}^{[m]} \cong \overbrace{\mathcal{U} \star \cdots \star \mathcal{U}}^{m} \equiv \operatorname{SEQ}_{m}(\mathcal{U})$ - *m*-surjections:  $\operatorname{SEQ}(\mathcal{V}), \ \mathcal{V} = \operatorname{SET}_{\geq 1}(\mathcal{Z})$ - Set partitions:  $\operatorname{SET}(\operatorname{SET}_{\geq 1}(\mathcal{Z}))$
- Lab. trees:  $T = \mathcal{Z} \star SET(T)$ .

**Theorem.** There exists a dictionary:

| Construction                                    | EGF                              |
|-------------------------------------------------|----------------------------------|
| $\mathcal{C} = \mathcal{A} + \mathcal{B}$       | C(z) = A(z) + B(z)               |
| $\mathcal{C} = \mathcal{A} \star \mathcal{B}$   | $C(z) = A(z) \cdot B(z)$         |
| $\mathcal{C} = \operatorname{Seg}(\mathcal{A})$ | $C(z) = \frac{1}{1 - A(z)}$      |
| $\mathcal{C} = \mathbf{Set}(\mathcal{A})$       | $C(z) = \exp(A(z))$              |
| $\mathcal{C} = \operatorname{Cyc}(\mathcal{A})$ | $C(z) = \log \frac{1}{1 - A(z)}$ |

 $\mathcal{E}$  or 1: "neutral class" formed with element of size  $0 \mapsto E(z) = 1$ .  $\mathcal{Z}$ : "atomic class" formed with element of size  $1 \mapsto E(z) = 1$ .

#### **Product lemma:**

$$\mathcal{C} = \mathcal{A} \times \mathcal{B} \implies C(z) = A(z) \cdot B(z)$$

$$C = (A \star B)$$
 implies  $C_n = \sum_{k=0}^n {n \choose k} A_k B_{n-k}$  (# possibilities × # rela-

bellings).

Hence 
$$\frac{C_n}{n!} = \sum_k \frac{A_k}{k!} \cdot \frac{B_{n-k}}{(n-k)!} \rightsquigarrow C(z) = A(z) \cdot B(z).$$

SEQ: 
$$1 + A + A^2 + \dots = \frac{1}{1 - A}$$
.  
SET:  $1 + \frac{A}{1!} + \frac{A^2}{2!} + \dots = \exp(A)$ .  
CYC:  $1 + \frac{A}{1} + \frac{A^2}{2} + \dots = \log \frac{1}{1 - A}$ .

#### Example 0



**Example 1**. Permutations and cycles:

$$\mathcal{P} = \operatorname{Set}(\operatorname{Cyc}(\mathcal{Z})) \implies P(z) = \exp\left(\log\frac{1}{1-z}\right) = \frac{1}{1-z}.$$

Derangements (no fixed point)

$$\mathcal{D} = \operatorname{SET}(\operatorname{CYC}(\mathcal{Z}) \setminus \mathcal{Z}) \implies D(z) = \exp\left(\log \frac{1}{1-z} - z\right) \equiv \frac{e^{-z}}{1-z}.$$

Thus 
$$\left| \frac{D_n}{n!} = 1 - \frac{1}{1!} + \frac{2}{2!} - \dots + \frac{(-1)^n}{n!} \right| \sim e^{-1}.$$

**Example 2**. Labelled (Cayley) trees:

$$\mathcal{T} = \mathcal{Z} \star \operatorname{SET}(\mathcal{T}) \qquad \Longrightarrow \qquad T(z) = z e^{T(z)}.$$

Thus  $T_n = n^{n-1}$  by Lagrange Inversion Th.



Bell numbers: 
$$B_n = e^{-1} \sum_{k \ge 0} \frac{k^n}{k!}$$
.

#### **Example 4**. Allocations to $[1 \dots m]$ :

- all:  $e^{mz} \rightsquigarrow F_n = m^n$ . - surjective:  $(e^z - 1)^m \rightsquigarrow$  Stirling numbers,  $m! {m \atop n} = \sum {m \choose k} (-1)^{m-k} k^n$ . - injective:  $(1 + z)^m \rightsquigarrow {m \choose n} n!$  (arrangement #). Exercise: Birthday Problem and Coupon Collector.

$$\mathbb{E}(B) = \int_0^\infty \left(1 + \frac{t}{m}\right)^m e^{-t} dt, \qquad \mathbb{E}(C) = \int_0^\infty \left(e^t - (e^{t/m} - 1)^m\right) e^{-t} dt.$$

Multiple birthdays, multiple collections. (Cf Poissonization.)

**Example 5**. Mappings aka functional graphs = endofunctions of finite set.



$$T = ze^T$$
,  $K = \log(1-T)^{-1}$ ,  $M = e^K$ :  $M_n = n^n$ .  $\mathbb{P}(\text{connected}) = O\left(\frac{1}{\sqrt{n}}\right)$ .

Exercise: A binary functional graph is such that each x has either 0 or 2 preimages (cf  $x^2 + a \mod p$ ). **Q1.** Construct; **Q2.** enumerate.

Exercise: All graphs  $G(z) = 1 + \sum_{n=1}^{\infty} 2^{n(n-1)/2} z^n / n!$ . **Q1.** EGF K(z) of connected graphs? **Q2.** Probability of connectedness. **Q3**<sup>\*</sup> Prove not constructible.

### **MULTIVARIATE GFS AND PARAMETERS**



• BGF encodes exact distributions. hence, moments.

$$\mathbb{E}_{\mathcal{E}_n}\left[\chi\right] = \sum_k k \cdot \frac{E_{n,k}}{E_n} = \frac{1}{E_n} \operatorname{coeff}[z^n] \left. \frac{\partial}{\partial u} E(z,u) \right|_{u=1}.$$

Variance & moment of order 2: second derivative, etc.

Chebyshev inequalities:  $\sigma_n/\mu_n \rightarrow 0$  implies convergence in probability.

Bivariate GF (ordinary)  $E(z, u) = \sum_{n,k} E_{n,k} u^k z^n \equiv \sum_{\varepsilon \in \mathcal{E}} z^{|\varepsilon|} u^{\chi(\varepsilon)}$ . • BGE is reduction of combinatorial structure. Thus expe

• BGF is reduction of combinatorial structure. Thus expect **multivariate dictionaries.** 

**Definition.** Parameter is inherited if (i) it is compatible with unions; (ii) it is additive over products (also SEQ, SET, CYC).

**meta-THM** Previous dictionaries (U/L) work verbatim!

Proof (hint): 
$$\mathcal{C} = \mathcal{A} \times \mathcal{B} \Longrightarrow C(z, u) = \sum_{\gamma} = \sum_{(\alpha, \beta)} = A(z, u) \cdot B(z, u).$$

Same principles as counting, but with size now extended to  $\mathbb{N} \times \mathbb{N}$ .

**Example 1.** Permutations, counting # cycles:

$$\mathcal{P} = \operatorname{SET}(\operatorname{CYC}(\mathcal{Z})) \implies P(z, u) = \exp\left[\frac{u}{1}\frac{z}{1} + \frac{u}{2}\frac{z^2}{2} + \cdots\right] = (1-z)^{-u}.$$

Expand and get probability GF:  $\frac{1}{n!}u(u+1)\cdots(u+n-1)$ ; mean is  $H_n \sim \log n$ ; standard dev. is  $\sim \sqrt{\log n}$ ; distribution is concentrated (by Chebyshev).

# singleton cycles:

$$P(z,u) = \exp\left[\frac{u}{1}\frac{z}{1} + \frac{z^2}{2} + \cdots\right] = \frac{e^{z(u-1)}}{1-z}.$$

# singleton/doubleton cycles (joint): use  $u_1, u_2$ , and so on.

**Example 2.** Number of summands in compositions.

$$\mathcal{C} = \mathbf{SEQ}(\mathcal{Z} \times \mathbf{SEQ}(\mathcal{Z})) \implies C(z, u) = \frac{1}{1 - zu/(1 - z)}.$$

**Example 3.** Number of leaves in a general plane tree.

$$\mathcal{G} = \mathcal{Z} \boldsymbol{u} + \mathcal{Z} \operatorname{SeQ}_{\geq 1}(\mathcal{Z}) \implies G = \boldsymbol{z} \boldsymbol{u} + \boldsymbol{z} \frac{G}{1 - G}.$$

**Summary:** Place <u>marker</u> at appropriate places and translate with usual dictionary.

**Summary**. In order to *enumerate*, it suffices to find a *construction*.

- Get the OGF/EGF automatically;
- Get parameters that are traceable to constructions.

Integer compositions and partitions; words; trees; lattice paths; set partitions; allocations and functions; mappings; permutations and cycles.

Also: associate families of special functions to families of combinatorial classes.

- Regular languages  $\rightsquigarrow$  Rational functions
- Tree grammars & CF languages ~> Algebraic functions
- Simple tree families  $\rightsquigarrow$  Implicit functions

Other: Constrained mappings: implicit function  $\circ$  modified exp and log functions. Etc.

**Exercise A.** A record in a permutation is an element  $\sigma_j$  larger than all preceding  $\sigma_k$ . **Q.** Explain why the distribution of # records is the same as # cycles (on  $\mathcal{P}_n$ ).



**Exercise B.** Throw *n* balls into *m* urns. **Q1.** The statistics of empty bins is obtained from  $(e^z - 1 + u)^m$ . **Q2.** Mean and variance? **Q3.** Same for bins filled with *r* elements. **Q4.** Relation to *Poisson*?



Santiago de Chile

**DEC 2006** 



# SINGULAR COMBINATORICS **B**. Complex Asymptotics

Philippe Flajolet, INRIA, Rocquencourt
 http://algo.inria.fr/flajolet

Based on Analytic Combinatorics, Flajolet & Sedgewick, C.U.P., 2007<sup>+</sup>.

....

211N (1+1

- Asymptotic analysis is often very precise.

- Can be done from generating functions directly, even if no expression for coefficients is available.

- Works for functional equations

$$U(z) = z \exp\left(U(z) + \frac{1}{2}U(z^2) + \cdots\right).$$

- Makes it possible to discuss universality via schemas.

# 4 ANALYTIC FUNCTIONS

GFs are (usually) analytic functions near 0.

- Analytic aka holomorphic functions
- Meromorphic functions
- Integrals and residues
- Singularities and exponential growth orders

Let f(z) be defined from D (open connected set) to E:

**Definition.** • f(z) is analytic at  $z_0$  iff *locally*:  $\left| f(z) = \sum_{n \ge 0} c_n (z - z_0)^n \right|$ 

ε

• f(z) is complex differentiable iff

$$\exists \left| \lim_{h \to 0, h \in \mathbb{C}} \frac{f(z_0 + h) - f(z_0)}{h} \right| =: \left| f'(z_0) \right| \equiv \left| \frac{d}{dz} f(z) \right|_{z=z_0}$$

 $\rightsquigarrow f$  analytic/ differentiable in  $\Omega$  , etc.

Theorem. Equivalence between the two notions!

Combinatorialists love power series; analysts love differentiability!  $\frac{\Delta f}{\Delta z}$  gives closure under +, -, ×, ÷, composition, inversion, &c.

**Examples.** The function  $\sqrt{z}$ , such that  $\sqrt{\rho e^{i\theta}} = \sqrt{\rho} \cdot e^{i\theta/2}$ , can only be



— Same for  $\log z = \log \rho + i\theta$ .

— Exponential function  $\exp(z)$  is entire.

$$-\frac{e^z}{\sqrt{1-z}}$$
 is analytic in

- Catalan GF  $\frac{1-\sqrt{1-4z}}{2z}$  is analytic in slit plane  $\mathbb{C} \setminus [\frac{1}{4}, +\infty[$ .
- Rational GF is analytic except at poles.

# **Integration and residues**

**Theorem.** Let f be analytic in  $\Omega$  and  $\gamma$  be contractible to a single point in  $\Omega$ . Then

$$\int_{\gamma} f(z) \, dz = 0.$$

In particular  $\int_{A}^{B} f(z) dz$  does not depend on path.



**Definition.** g(z) is *meromorphic* in  $\Omega$  iff near any  $z_0$ , one has  $g(z) = \frac{A(z)}{B(z)}$ , with A, B analytic.

A point  $z_0$  such that  $B(z_0) = 0$  is a *pole*. Its *order* is the multiplicity of  $z_0$  as root of B (assume  $A(z_0) \neq 0$ ).

Pole of order m:  $g(z) = \frac{c_{-m}}{(z-z_0)^m} + \dots + \frac{c_{-1}}{(z-z_0)} + c + 0 + \dots$  $c_{-1}$  is called *residue* of g(z) at  $z_0$ .

# **Cauchy's Residue Theorem.** If f(z) has poles, then

$$\frac{1}{2i\pi} \int_{\gamma} f(z) \, dz = \sum \text{Residues} \, .$$

Proof: local integration +

$$\operatorname{coeff}[z^n] f(z) = \frac{1}{2i\pi} \int_{\gamma} f(z) \, \frac{dz}{z^{n+1}}$$

Proof: by residues:



### **Residues: local versus global**

• Computing integrals: 
$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^4} =$$

$$\lim_{R \to \infty} \int \frac{\pi}{R} = \frac{\pi}{\sqrt{2}}$$

By only considering *local properties* at  $\zeta = e^{i\pi/4}, e^{3i\pi/4}$ .

• Estimating coefficients:  $d_n := \mathbb{P}[\text{derangement}]$  over  $\mathcal{P}_n$ .

$$d_n = [z^n] \frac{e^{-z}}{1-z} = \frac{1}{2i\pi} \int_{|z|=1/2} \frac{e^{-z}}{1-z} \frac{dz}{z^{n+1}}.$$

Evaluate instead on |z| = 2:

$$J_n = \frac{1}{2i\pi} \int_{|z|=2} \frac{e^{-z}}{1-z} \frac{dz}{z^{n+1}} = O(2^{-n})$$
$$= \operatorname{Res}_{z=0} + \operatorname{Res}_{z=1} = d_n - e^{-1}.$$

Thus:  $d_n = e^{-1} + O(2^{-n})$ . Exercise: Double derangement:  $[z^n]e^{-z-z^2/2}/(1-z)$ . Generalize!

### Singularities.

• f(z) has a singularity at border point  $\sigma$  iff

**Theorem**. A series always has at least one singularity on its circle of convergence (but none inside).

Convergence radius  $\equiv$  Analyticity radius:



2

For a Car

**Pringsheim's Theorem**. If  $f_n \ge 0$ , one such singularity is positive.



### **Exponential growth of coefficents.**

If f(z) has radius exactly R, then  $\forall \epsilon > 0$ :

 $f_n(R-\epsilon)^n \to 0;$   $f_n(R+\epsilon)^n$  is unbounded.

That is  $\limsup |f_n|^{1/n} = \frac{1}{R}$  , or

 $f_n = R^{-n}\vartheta(n)$ , where  $\vartheta(n)$  is "subexponental".

Also write  $f_n \bowtie R^{-n}$  with R := distance to nearest sing(s).

Find exponential growth by just "looking" at GF!!

## **Examples** (singularities and growth)

- Binary words:  $W(z) = \frac{1}{1-2z} \rightsquigarrow W_n \bowtie 2^n$ .
- Derangements:  $D(z) = \frac{e^{-z}}{1-z} \rightsquigarrow \frac{D_n}{n!} \bowtie 1^n$ .
- General trees:  $G(z) = \frac{1}{2} \left( 1 \sqrt{1 4z} \right) \rightsquigarrow G_n \bowtie 4^n$ . By Stirling:  $G_n \sim \frac{4^{n-1}}{\sqrt{\pi n^3}}$ .

• Unary-binary trees:  $U = z(1+U+U^2)$ ,  $U = \frac{1}{2z}(1-z-\sqrt{1-2z-3z^2})$ , so that singularities are at  $z = -1, \frac{1}{3}$  and  $U_n \bowtie 3^n$ .

Exponential order is computable(almost) automatically for GFs given by explicit expressions.

E.g.:  $\rho(f+g) = \min(\rho(f), \rho(g)); \ \rho\left(\frac{1}{1-f}\right) = \min(\rho(f), \{z \mid f(z) = 1\}),$  etc.

# **5 RATIONAL AND MEROMORHIC FNS**

Find subexponential factors in

 $f_n \bowtie R^{-n}$ , meaning  $f_n = R^{-n}\vartheta(n)$ ,

where  $\vartheta(n)$  is like  $n^{\alpha}$ ,  $(\log n)^{\beta}$ ,  $e^{\sqrt{n}}$ , etc.

Here: simple case of Rat & Mero.

# **Coefficients of rational functions**

**Theorem.** Each pole  $\zeta$  with multiplicity r contributes to coefficients a term

 $\zeta^{-n}P(n),$ 

where P(n) is a polynomial of degree r-1.

**Proof.** 
$$[z^n] \frac{1}{(z-\zeta)^r} = (-\zeta)^{-r} \binom{n+r-1}{r-1} \zeta^{-m}.$$

Poles are arranged in order of increasing modulus. Dominant ones matter for exponential growth. Multiplicities give polynomial factors.



### Example 1. Denumerants.



• In how many ways can one give change with 1, 2, 5c coins?

$$D_n = [z^n] \frac{1}{(1-z)(1-z^2)(1-z^5)}$$

One layer. Poles at 1,  $\pm 1$ ,  $\zeta^5 = 1$ .

Observe the "transfer"  $D(z) \sim \frac{1}{10}(1-z)^{-3}$  implies  $D_n \sim n^2/20$ .

• General case  $\Omega$ -denominations,  $m = \|\Omega\|$ . Then (Schur)

$$D_n \sim \frac{n^{m-1}}{(m-1)!} \prod_{\omega \in \Omega} \frac{1}{\omega}.$$

### **Example 2.** Longest *b*-runs in strings. (cf Feller)

$$\begin{array}{c|c} bbb \ \hline \mathbf{a}bb \ \hline \mathbf{a}b \ \hline \mathbf{a}b \ \hline \mathbf{a} \ \hline \mathbf{a}bbb \\ \hline \mathbf{b}bb \ \hline \mathbf{a}b \ \hline \mathbf{a}b \ \hline \mathbf{a}b \\ \hline \mathbf{b}bb \ \hline \mathbf{a}b \\ \hline \mathbf{b}bb \ \hline \mathbf{a}b \\ \hline \mathbf{a}$$

— Dominant pole is near  $\frac{1}{2}$ :  $\rho_m \approx \frac{1}{2}(1+2^{-m-1})$ .

- Dominant pole is separated by  $|z| = \frac{3}{2}$ ; error is exp. small.
- Uniform estimates are obtained. Get

$$\mathbb{P}(\text{longest } b\text{-run} < m) \approx \left(\frac{1}{2\rho_m}\right)^n \approx e^{-n/2^{m+1}}.$$

Threshold near  $\log_2 n$ .

Arbitrary patterns: similar with *correlation polynomials* of Guibas–Odlyzko. Quantitative normality of strings, Borges' Theorem ,etc.

# **Coefficients of meromorphic functions**

Assumption: g(z) is meromorphic in |z| < R and analytic on |z| = R.

**Theorem.** Each pole  $\zeta$  with multiplicity r contributes to coefficients a term

$$\zeta^{-n}P(n),$$

where P(n) is a polynomial of degree r-1. Error term is  $O(R^{-n})$ .

**Proof.** (i) Subtracted sngularities. Let h(z) gather contributions of poles. Then g(z) - h(z) is analytic in  $|z| \leq R$ . Use Cauchy with trivial bounds.

(*ii*) Estimate  $\int g$  by residues.

**Example 3.** Derangements.

 $\mathcal{D} = \operatorname{SET}(\operatorname{CYC}_{\geq 2}(Z)) \implies D(z) = e^{-z}1 - z.$ Get simple pole at z = 1 so that  $\frac{1}{n!}D_n = [z^n]\frac{e^{-1}}{1-z} + O(2^{-n}) = e^{-1} + O(2^{-n}).$ 

Generalized derangement: all cycles of length > r:

$$\frac{1}{n!}D_n^{\star} \sim e^{-H_r}, \qquad H_r = 1 + \frac{1}{2} + \dots + \frac{1}{r}.$$

# **Example 4.** Paths-in-graphs models.

Encapsulates finite automata and finite Markov chains. GFs are rational.

If the graph  $\Gamma$  is strongly connected and aperiodic, then there is unicity and simplicity of dominant pole ( $\ll$  Perron-Frobenius):  $f_n \sim c\rho^{-n}$ .

Generalized patterns in random strings (F, Nicodème, Régnier, Salvy, Szpankowski, Vallée, &c).

# **Example 5.** Surjections and Supercritical SEQ Schema.

Random surjection  $\equiv$  ordered partition (pref. arrangement)

$$\mathcal{R} = \operatorname{Seg}(\operatorname{Set}_{\geq 1}(\mathcal{Z})) \qquad \Longrightarrow R(z) = \frac{1}{2 - e^z}.$$

Pole at  $\zeta = \log 2$ ; subdominant ones at  $\zeta = \log 2 \pm 2ik\pi$ , etc.

$$\frac{R_n}{n!} \sim c(\log 2)^{-n}.$$

Also, mean number of blocks via  $\frac{1}{1-u(e^z-1)}$  is O(n). There is concentration, etc.

Any supercritical sequence should similarly behave ~> schema.

# 6 SINGULARITY ANALYSIS

- Singularities more general than poles.
- Subexponential factors more general than polynomials:

 $f_n \sim R^{-n} \vartheta(n),$ 

with  $\vartheta(n)$  of the form  $n^{\alpha}(\log n)^{\beta}$ .

Note: May assume singularity at 1 by scaling  $[z^n]f(\lambda z) = \lambda^n [z^n]f(z)$ .



Coefficients:  $n^{-3/2}$ 



#### From functions to coefficients:

| $\frac{1}{(1-z)^2}$              | $\longrightarrow$ | n+1                                             | $\sim$ | n                        |
|----------------------------------|-------------------|-------------------------------------------------|--------|--------------------------|
| $\frac{1}{1-z}\log\frac{1}{1-z}$ | $\longrightarrow$ | $H_n \equiv \frac{1}{1} + \ldots + \frac{1}{n}$ | $\sim$ | $\log n$                 |
| $\frac{1}{1-z}$                  | $\longrightarrow$ | 1                                               | $\sim$ | 1                        |
| $\frac{1}{\sqrt{1-z}}$           | $\longrightarrow$ | $\frac{1}{2^{2n}} \binom{2n}{n}$                | $\sim$ | $\frac{1}{\sqrt{\pi n}}$ |

 $\begin{cases} \text{Location of sing's : Exponential factor } \rho^{-n} \\ \text{Nature of sing's : "Polynomial" factor } \vartheta(n) \end{cases}$ 

## **Principles of Singularity Analysis**

Larger functions tend to have larger coefficients.

— Establish this for basic scales  $(1 - z)^{-\alpha}$ . Enrich with  $\log$ 's,  $\log \log$ 's, etc.

— Prove transfer theorems. If f "resembles " g via  $O(\cdot)$ ,  $o(\cdot)$ , then  $f_n$  resembles  $g_n$ .

### Theorem 1. Coefficients of basic scale:

$$[z^n](1-z)^{-\alpha} \sim \frac{1}{\Gamma(\alpha)} n^{\alpha-1}.$$

Also: full expansion, log's log-log's, etc.

Gamma function:  $\Gamma(s) := \int_0^\infty e^{-t} t^{s-1} dt$ , with analytic continuation by  $\Gamma(s+1) = s\Gamma(s)$ .



**Theorem 1.** Basic scale translates:

$$\sigma_{\alpha,\beta}(z) := (1-z)^{-\alpha} \left(\frac{1}{z} \log \frac{1}{1-z}\right)^{\beta}$$
$$\implies [z^n] \sigma_{\alpha,\beta} \underset{n \to \infty}{\sim} \frac{n^{\alpha-1}}{\Gamma(\alpha)} (\log n)^{\beta}.$$

<u>**PROOF.</u>** Cauchy's coefficient integral,  $f(z) = (1 - z)^{-\alpha}$ </u>

## Theorem 2. Transfer of asymptotic properties.



Proof: similarly by Hankel contours.

# **Example 1.** 2-regular graphs.

$$\mathcal{R} = \text{Set} \left( \text{Unordered} Gycle (Z, \text{ card } z 3) \right)$$

$$R(z) = \exp\left(\frac{1}{2}\log\frac{1}{1-z} - \frac{z}{2} - \frac{z^2}{4}\right)$$

$$R(z) = \frac{e^{-\frac{z}{2} - \frac{z^2}{4}}}{\sqrt{1-z}}$$

$$R(z) \sim \frac{e^{-3/4}}{\sqrt{1-z}}$$

$$\frac{R_n}{n!} \sim e^{-3/4} \sqrt{\pi n}.$$

Comtet's clouds. Also full asymptotics.

## Example 2. Some trees.

- Catalan trees have GF  $\frac{1}{2}(1-\sqrt{1-4z}) \rightsquigarrow c \frac{4^n}{\sqrt{\pi n^3}}$ .
- Unary binary trees.

$$T = Z + ZT + ZT^{2}$$

$$\implies T = \frac{1 - 2 - \sqrt{1 - 22 - 32^{2}}}{22}$$

$$1 - 22 - 32^{2} = (1 - 32)(1 + 2)$$

$$\implies \sqrt{-\text{singularity}} \bigcirc (\frac{1}{3}),$$

$$T_{n} \sim C. (3^{n} n^{-3/2}) \leftarrow$$

In fact: *universality* of  $n^{-3/2}$  law (later).

### **Example 3.** Cycles in Perms.

Mean number of cycles in a random perm is  $coeff[z^n]$  in

$$M(z) = \left. \frac{\partial}{\partial u} \exp\left( \frac{u}{\log \frac{1}{1-z}} \right) \right|_{u \to 1} = \frac{1}{1-z} \log \frac{1}{1-z}$$

Thus  $[z^n]M(z) \sim \log n$ .

Exercise: Holds for perms with finitely many excluded cycle lengths.

In fact: *universality* for the "exp-log" schema.

#### **Closures**

<u>Theorem 3</u>. Generalized polylogarithms

$$\operatorname{Li}_{\alpha,k} := \sum (\log n)^k n^{-\alpha} z^n$$

are of S.A.-type.

<u>**Theorem 4.**</u> Functions of S.A.-type are closed under integration and differentiation.

**Theorem 5.** Functions of S.A.-type are closed under Hadamard product

$$f(z) \odot g(z) := \sum_{n} (f_n g_n) z^n.$$

(F) (Fill-F-Kapur 2005).

### Generating Function $\rightsquigarrow$ Coefficients

Solving a "Tauberian" problem



+ Singularity analysis preserves uniformity ~> distributions.

# 7 APPLICATIONS OF SING. ANA.

Focus on recursive structures including trees, mappings.

- Universality of  $\sqrt{-}$ law for generating functions;
- Universality of  $\rho^{-n}n^{-3/2}$ –law for counts;
- Universal behaviour for major parameters (e.g., height).

#### **Inversion**:



Square-root singularity is expected for inverse functions.

**Theorem 1.** Let  $\phi$  have nonnegative coeffs and be entire. Then the function that solves

 $Y(z) = z\phi(Y(z))$ 

has a square-root singularity, so that

 $[z^n]Y(z) \sim C\rho^{-n}n^{-3/2}.$ 

— Characteristic equation (singular value of Y) is  $\tau : \frac{d}{dy} \frac{y}{\phi(y)} = 0$ , i.e.,  $\tau \phi'(\tau) - \phi(\tau) = 0$ . Then  $\rho = \frac{\tau}{\phi(\tau)}$ . All is computable.

—  $\sqrt{-}$ -singularity propagates via suitable compositions, so that parameters can be analysed.

— Phenomena are robust.

**Example 1.** Cayley trees.  $T = ze^T$  or  $z = Te^{-T}$  is not invertible if  $\frac{d}{dT}(Te^{-T}) \equiv (1-T)e^{-T} = 0$ , that is,  $T = 1, z = e^{-1}$ . Find:

$$T(z) = \frac{1}{z \to e^{-1}} 1 - \sqrt{2}\sqrt{1 - ez} + O((1 - ez)).$$

Implies  $[z^n]T(z) \sim \frac{e^n}{\sqrt{2\pi n^3}}$ ; we rederive Stirling's f. (since  $T_n = n^{n-1}$  by Lagrange).

**Example 2.** Unlabelled trees. Recall

$$U(z) = z e^{U(z) + \frac{1}{2}U(z^2) + \cdots}.$$

Express as T composed with an analytic function and get SQRT sing:  $U = \zeta e^U$ , where  $\zeta := z \exp(\frac{1}{2}U(z^2) + \cdots)$ .

Height is universally  $O(\sqrt{n})$  with local and integral limit laws (of theta type). Similarly for width (Marckert et al.). Leaves are universally normally distributed, etc.

### **Example 3.** Mappings (cyclic points).

Develop a theory of degree-constrained mappings: (Arney-Bender), (F.-Odlyzko).

# **Algebraic functions**

Singularity analysis applies to any algebraic function





Algebraic function  $\implies$  Fractional exponents @ singularities.



### Singularity analysis applies to

### Singularity analysis applies to

• <u>"Holonomic" functions</u>. Defined as solutions of linear ODE's with coeffs in  $\mathbb{C}(z)$  [Zeilberger]  $\equiv \mathcal{D}$ -finite.

$$\mathcal{L}[f(z)] = 0, \qquad \mathcal{L} \in \mathbb{C}(z)[\partial_z].$$

• Stanley, Zeilberger, Gessel: Young tableaux and permutation statistics; regular graphs, constrained matrices, etc.

Fuchsian case (or "regular" singularity)  $(Z^{\beta} \log^k Z)$ :

 $[z^n]f(z) \approx \sum \omega^n n^\beta (\log n)^k, \qquad \omega, \beta \in \overline{\mathbb{Q}}, \quad k \in \mathbb{Z}_{\geq 0}.$ 

S.A. applies automatically to classical classification.

Asymptotics of coeff is decidable

- general case: modulo oracle for connection problem;
- strictly positive case: "usually" OKay.



EXAMPLE 6. Quadtrees—Partial Match [FGPR'92]

Divide-and-conquer recurrence with coeff. in  $\mathbb{Q}(n)$ Fuchsian equation of order d (dimension) for GF  $Q_n^{(d=2)} \simeq n^{(\sqrt{17}-3)/2}$ .

E.g., d = 2: Hypergeom  $_2F_1$  with algebraic arguments.

Extended by Hwang et al. Cf also Hwang's *Cauchy ODE* cases. Panholzer-Prodinger+Martinez, ...

## 8 SADLE POINT METHODS

 $\mathbf{r}_{i} \in \mathbf{r}_{i}$ 



• For functions with violent growth at singularities, including entire functions.

$$[z^n]f(z) = \frac{1}{2i\pi} \oint f(z) \, \frac{dz}{z^{n+1}}.$$

Integer partitions, set partitions, involutions,



Santiago de Chile

**DEC 2006** 



## SINGULAR COMBINATORICS C. Random Structures

Philippe Flajolet, INRIA, Rocquencourt
 http://algo.inria.fr/flajolet

Based on Analytic Combinatorics, Flajolet & Sedgewick, C.U.P., 2007<sup>+</sup>.

#### Large random combinatorial structures exhibit are (often) predictable!



### Concentration?

Limit law?

Relation to Bivariate GFs C(z, u) and singularities?



Why is the binomial distribution asymptotically normal?

- <u>De Moivre</u>: approximation of  $\frac{1}{2^n} \binom{n}{k}$ .
- Laplace/Gauss: as sum of many RV's + Lévy: ...: because of characteristic functions  $\rightarrow e^{-t^2/2}$ .
- Analytic combinatorics: because of bivariate GF  $\frac{1}{1-z(1+u)}$  and smoothly varying singularity!

Classical Central Limit Theorem (CLT):  $\sum RV's \ to \ Normal$ . Proof: Levy's continuity theorem  $\phi_n(t) \to \phi(t)$  implies  $F_n(x) \to F(x)$ . + calculation of PGF  $f_n(u) = g(u)^n$  + normalization and  $u \mapsto it$ .

Quasi-Powers Theorem (HK Hwang, circa 1995). Assume  $(X_n)$  are RV's with probability GF (PGF)  $f_n(u) = \mathbb{E}(u^{X_n})$  and for A(u), B(u) analytic at 1:

$$f_n(u) = A(u)B(u)^{\beta_n} \left(1 + O(\frac{1}{\kappa_n})\right),$$

for  $u \approx 1$ , with  $\beta_n, \kappa_n \to \infty$ , and  $\mathbb{V}ar(B(u)) > 0$ . Then

- mean:  $\mu_n = \mathbb{E}(X_n) \sim \beta_n B'(1)$ ; s-dev.:  $\sigma_n^2 \sim \beta_n \mathbb{Var}(B)$ . normal limit:  $\mathbb{P}(X_n \le \mu_n + x\sigma_n) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-w^2/2} dw$
- Speed of convergence is  $O(\kappa_n^{-1} + \beta_n^{-1/2})$ .

Quasi-Powers Theorem: "If you resemble a power, then your limit law is normal".

**Proof.** "Analytic expansions are differentiable": this gives moments. Limit law results from Lévy's continuity theorem.
Speed results from Berry-Esseen.
«Bender, Richmond<sup>+</sup>.

### **Example 1.** Supercritical sequence schema.

Let  $\mathcal{F} = SEQ(\mathcal{G})$ , so that number of components has BGF

 $F(z,u) = \frac{1}{1 - uG(z)}.$ 

Assume that G(r) > 1 where r:=radius of conv. of G(z).

**Theorem.** The number of  $\mathcal{G}$ -components in a random  $\mathcal{F}$ -structure is asymptotically normal.

**Proof.** A. Let  $\rho \in (0, r)$  be such that  $G(\rho) = 1$ . This is r.o.c. of  $F(z) \equiv F(z, 1)$ . There is a simple pole.

**B**. Equation 1 - uG(z) = 0 has root  $\rho(u)$ , where  $\rho(u)$  depends analytically on u for  $u \approx 1$ .

C. Function F(z, u), with u parameter, has simple pole at  $\rho(u)$  and

 $[z^n]F(z,u) \sim c(u)\rho(u)^{-n}.$ 

D. Uniformity is granted (by integral representations), so that Quasi-Powers Theorem applies. QED

### **Example 1.** Supercritical sequences (continued)

— Compositions: arbitrary; with  $\Omega$ -excluded or  $\Omega$ -forced summands. Compositions into prime summands,  $G(z) = z^2 + z^3 + z^5 + \cdots$ . Same for twin primes (!!).

— Surjections aka ordered set partitions,  $G(z) = e^z - 1$ . Same with  $\Omega$ -constraints.

-k-components in compositions, surjections, etc.

### **Example 2.** Cycles in permutations.

$$F(z, u) = \exp\left(u\log\frac{1}{1-z}\right) = (1-z)^{-u}.$$

A. By singularity analysis, get main approximation :  $[z^n]F(z,u) \sim \frac{n^{u-1}}{\Gamma(u)}$ .

**B**. Approximation is uniform by nature of singularity analysis process (contour integration).

**C**. Rewrite as **Quasi-Powers** approximation:

$$[z^n]F(z,u) \sim \frac{1}{\Gamma(u)} \cdot \left(e^{(u-1)}\right)^{\log n}.$$

Thus, scale is now  $\beta_n \sim \log n$ .

D. Quasi-Powers Theorem applies.

**QED** 

**Example 3.** Exp-Log schema.

Let  $\mathcal{F} = \mathbf{SET}(\mathcal{G})$ , so that number of components has BGF

 $F(z,u) = e^{uG(z)}.$ 

Assume that G(z) is logarithmic:  $G(z) \sim \lambda \log \frac{1}{1-z/\rho}$ .

**Theorem.** The number of  $\mathcal{G}$ -components in a random  $\mathcal{F}$ -structure is asymptotically normal, with logarithmic mean and variance.

Application: Random mappings, etc. >> Arratia-Barbour-Tavaré.

**Example 4.** Polynomials over finite fields.

- > Factor(x^7+x+1) mod 29; 3 2 2 2 (x + x + 3 x + 15) (x + 25 x + 25) (x + 3 x + 14)
- $\mathcal{P}$ olynomial is a  $\mathfrak{S}$  equence of coeffs:  $\mathcal{P}$  has Polar singularity.
- By unique factorization, *P* is also *multiset of Irreducibles*:
   *I* has log singulariy.
- $\implies$  Prime Number Theorem for Polynomials  $I_n \sim \frac{q^n}{n}$ .
- Marking number of  $\mathcal{I}$ -factors is approx uth power:

$$P(z,u) \approx \left(e^{I(z)}\right)^u$$
.

*Variable Exponent*  $\implies \mathcal{N}$ ormality of # of irred. factors. (cf Erdős-Kac for integers.)

- Useful for analysis of polynomial factorization algorithms.

For a large collection of combinational classes  
& parameters, we have a functional equation  

$$\overline{\Phi}(\overline{z}, y, u) = 0$$
  
In the counting case  $(u=i)$  get a singular expansion  
 $y(\overline{z}, \underline{z}) = \cdots (1 - \overline{z}/p)^{\alpha} + \cdots$   
A PERTURBATION of u near s will often induce  
a presets perturbation of the expansion of  $y(\overline{z}, u) = \cdots (1 - \overline{z}/p)^{\alpha} + \cdots$   
movable singularity  $y(\overline{z}, u) = \cdots (1 - \overline{z}/p)^{\alpha(u)} + \cdots$   
movable exponent  $y(\overline{z}, u) = \cdots (1 - \overline{z}/p)^{\alpha(u)} + \cdots$   
inthe  $f(u)$  or  $\overline{z}(u)$  analytic of 1 by singularity analysis  
 $\implies$  Asymptotic normality  $\int_{-\infty}^{\infty} by singularity for a lysis$ 

Perturbation of rational functions

- Regular languages & automata, under irreducibity conditions. *Auxiliary mark u induces a smooth singularity dislacement.* Occurrences of patterns in random texts. Works for sets of patterns.

 $\approx$  Extends CLT for finite Markov chains.

Perturbation of algebraic functions: for irreducible systems, the Drmota-Lalley-Woods Theorem implies  $\sqrt{-}$ -singularity.

**Example 5.** Non-crossing graphs (Noy-F.)



= Perturbation of algebraic equation.

 $\begin{aligned} G^3 + (2z^2 - 3z - 2)G^2 + (3z + 1)G &= 0\\ G^3 + (2u^3z^2 - 3u^2z + u - 3)G^2 + (3u^2 - 2u + 3)G + u - 1 &= 0 \end{aligned}$ 

Movable singularity scheme applies:  $\mathcal{N}$  ormality.

+ Patterns in context-free languages, in combinatorial tree models, in functional graphs: Drmota's version of Drmota-Lalley-Woods.

Perturbation of differential equations.

**Example 6.** Profile of Quadtrees.



$$F(z,u) = 1 + 2^3 u \int_0^z \frac{dx_1}{x_1(1-x_1)} \int_0^{x_1} \frac{dx_2}{1-x_2} \int_0^{x_2} F(x_3,u) \frac{dx_3}{1-x_3}.$$

Solution is of the form  $(1-z)^{-\alpha(u)}$  for algebraic branch  $\alpha(u)$ ; Variable Exponent  $\implies \mathcal{N}$ ormality of search costs.

Applies to many linear differential models that behave like *cycles-in-perms*.



That's All, Folks!

