

Some Exactly Solvable Models of Urn Process Theory

Philippe Flajolet

Based on joint work with Philippe Dumas and Vincent Puyhaubert

MATHINFO'06, Nancy, September 15, 2006

Basics The Fundamental Isomorphism Special 2–dim. Models

Urn Models (1)

• An urn contains balls of *m* possible colours

• A fixed set of rules governs the urn evolution:

Convention: The ball "drawn" is not withdrawn (not taken out)!

Basics The Fundamental Isomorphism Special 2–dim. Models

Urn Models (2): Examples

Balanced urns:

$$\left(\begin{array}{cc} lpha & eta \\ \gamma & \delta \end{array}
ight)$$
 : $lpha + eta = \gamma + \delta =: \sigma.$

Weight (size) of the urn is deterministic and equals $s_0 + n\sigma$ at time n.

•
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
: Selfish urn (Pólya); spread of epidemics/genes.

Basics The Fundamental Isomorphism Special 2–dim. Models

Urn Models (2): Examples

Balanced urns:

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
 : $\alpha + \beta = \gamma + \delta =: \sigma$.

Weight (size) of the urn is deterministic and equals $s_0 + n\sigma$ at time n.

• $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$: Selfish urn (Pólya); spread of epidemics/genes. • $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$: Adverse-campaign model of Friedman.

Basics The Fundamental Isomorphism Special 2-dim. Models

Urn Models (2): Examples

Balanced urns:

$$\left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}
ight)$$
 : $\alpha + \beta = \gamma + \delta =: \sigma.$

Weight (size) of the urn is deterministic and equals $s_0 + n\sigma$ at time n.

• $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$: Selfish urn (Pólya); spread of epidemics/genes. • $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$: Adverse-campaign model of Friedman.

•
$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$$
: Ehrenfest's two chambers model

Basics The Fundamental Isomorphism Special 2-dim. Models

Urn Models (2): Examples

Balanced urns:

$$\left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}
ight)$$
 : $\alpha + \beta = \gamma + \delta =: \sigma.$

Weight (size) of the urn is deterministic and equals $s_0 + n\sigma$ at time *n*.

- $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$: Selfish urn (Pólya); spread of epidemics/genes. • $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$: Adverse-campaign model of Friedman.
- $\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$: Ehrenfest's two chambers model.

• $\begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$: Coupon collector: have *N* different items \rightsquigarrow blue and pick up at random with rule blue \rightarrow red.

Basics The Fundamental Isomorphism Special 2–dim. Models

Urns exhibit different types of probabilistic behaviour

balls of first type as a function of time (*n*)

For coupon collector, scale is $N \log N$, etc.

Basics The Fundamental Isomorphism Special 2–dim. Models

Histories

Definition

Call history an unambigous description of an urn's evolution.

Write **x** for red balls and **y** for blue balls. Eg, with $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$: $\underline{xx} \rightarrow xx\underline{yx} \rightarrow xx\underline{xxx} \rightarrow \cdots$.

- Initial conditions: a₀ x-balls; b₀ y-balls.
- Set $s_0 := a_0 + b_0$. Have size @ time n: $s_n := s_0 + n\sigma$. Number of histories is $H_n := s_0(s_0 + \sigma) \cdots (s_0 + (n-1)\sigma)$.

$$H_n = n! \sigma^n \cdot \binom{n + s_0/\sigma - 1}{n}.$$

Proposition

For balanced urns at time n, Probability ⇔ Combinatorics: Histories are equiprobable.

Basics The Fundamental Isomorphism Special 2–dim. Models

Generating functions

Operate with exponential generating function (EGF)

$$H(z) = \sum_{n \ge 0} H_n \frac{z^n}{n!} = \frac{1}{(1 - \sigma z)^{s_0/\sigma}}, \qquad s_0 = a_0 + b_0.$$

• Want: $H_{n,k,\ell} := \#$ histories with k (resp. ℓ) balls of type x (resp. y) in the end.

$$H(x,y;z) := \sum_{n,k,\ell} H_{n,k,\ell} x^k y^\ell \frac{z^n}{n!}.$$

$$\mathbb{P}(A_n=k, B_n=\ell)=\frac{H_{n,k,\ell}}{H_n}.$$

Note. For <u>balanced urns</u>, index ℓ and variable y are redundant (but convenient): consider $H_{n,k}$ and H(x, 1; z).

Basics The Fundamental Isomorphism Special 2-dim. Models

The Fundamental Isomorphism (1)

Given urn
$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
, define associated differential system:

$$\Sigma : \begin{cases} \dot{x} = x^{\alpha+1}y^{\beta} \\ \dot{y} = x^{\gamma}y^{\delta+1} \end{cases}, \begin{cases} x(0) = x_{0} \\ y(0) = y_{0} \end{cases}.$$

Notations: *t* is the independent variable. \dot{x} means $\frac{d}{dt}x(t)$. **Ex:** Fried. $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rightsquigarrow \begin{cases} \dot{x} = xy \\ \dot{y} = xy \end{cases}$; Ehrenf. $\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \rightsquigarrow \begin{cases} \dot{x} = y \\ \dot{y} = x \end{cases}$ 2-3 tree: $\begin{pmatrix} -2 & 3 \\ 4 & -3 \end{pmatrix} \rightsquigarrow \begin{cases} \dot{x} = xy^3 \\ \dot{y} = x^4y^2 \end{cases}$

Basics The Fundamental Isomorphism Special 2-dim. Models

The Fundamental Isomorphism (2)

Assoc. system:
$$\begin{cases} \dot{x} = x^{\alpha+1}y^{\beta} \\ \dot{y} = x^{\gamma}y^{\delta+1} \end{cases}, \qquad \begin{cases} x(0) = x_0 \\ y(0) = y_0 \end{cases}$$

Theorem (Fundamental Isomorphism)

Solutions X, Y to associated systems determines GF of histories:

$$H(x_0, y_0; z) = X (z | x_0)^{a_0} Y (z | y_0)^{b_0}$$

It suffices to solve differential system with "floating" initial conditions.

Basics The Fundamental Isomorphism Special 2-dim. Models

The Fundamental Isomorphism (3): Proof

 Θ . Solutions X, Y to associated systems determines GF of histories: $H(x_0, y_0; z) = X(z)^{a_0} Y(z)^{b_0}$. Represent k balls x and ℓ balls y by monomial $x^k y^{\ell}$.

— One step transition of the urn is described by PD operator $\boxed{\mathfrak{D} = x^{\alpha+1}y^{\beta}\partial_x + x^{\gamma}y^{\delta+1}\partial_y}.$ Thus $\mathfrak{D}^n x^{a_0} y^{b_0}$ enumerates *n*-histories.

- Differentiation w.r.t. *t* on solution monomial $X(t)^{a_0}Y(t)^{b_0}$ mimicks $\mathfrak{D}: \frac{d}{dt}X^{a_0}Y^{b_0} = \mathfrak{D}\left[x^{a_0}y^{b_0}\right]_{(x,y)\mapsto(X,Y)}$. Then by Taylor's formula:

$$\implies \qquad H(X(t),Y(t);z) = X(t+z)^{a_0}Y(t+z)^{b_0}. \qquad \text{QED}!$$

Basics The Fundamental Isomorphism Special 2-dim. Models

Special 2-dim. Models

• Pólya
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rightsquigarrow \begin{cases} \dot{x} = x^2 \\ \dot{y} = y^2 \end{cases} \implies$$
 separation, etc.

$$H(x_0, y_0; z) = \frac{x_0^{a_0} y_0^{b_0}}{(1 - x_0 z)^{a_0} (1 - y_0 z)^{b_0}} \Longrightarrow \mathbb{P}(A_n = a, B_n = b) = \frac{\binom{a-1}{a_0-1} \binom{b-1}{b_0-1}}{\binom{a+b-1}{a_0+b_0-1}}.$$

• Ehrenfest
$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \rightsquigarrow \begin{cases} \dot{x} = y \\ \dot{y} = x \end{cases} \implies \ddot{x} = x \rightsquigarrow$$
 hyperbolic fns:
$$H(x_0, y_0, z) = (x_0 \cosh z + y_0 \sin z)^N.$$

$$\neq$$
 Kac. Generalizes to 3⁺ chambers ...

• Get explicitly all 10 models of dimension two with entries in $\{0, \pm 1\}$.

Sacrificial Urns Probabilistic Properties Triangular Urns OK Corral

Analysis of 2-dim Urns

Proposition (First integral)

Let $p := \gamma - \alpha \equiv \beta - \delta$ (balanced urn). Then

 $X^p - Y^p =$ Constant.

Proof:

$$\frac{d}{dt}(x^p - y^p) = px^{p-1}\dot{x} - py^{p-1}\dot{y} \quad \underset{\Sigma}{\leadsto} \quad \mathbf{0}.$$

E.g., Ehrenfest: $X^2 - Y^2 = 1$ is satisfied by cosh, sinh.

Sacrificial Urns Probabilistic Properties Triangular Urns OK Corral

Sacrificial Urns

Colour is called *sacrificial* if its diagonal entry is < 0.

- Semisacrificial urns: $\alpha < 0$, $\delta > 0$.
- Fully sacrificial urns: $\alpha < 0$, $\delta < 0$.

Theorem

For all sacrificial urns, the GF of urn histories H(x, 1; z) is expressible from a fundamental hypergeometric function by inversion:

$$J_{\lambda,r}(u) := \int_0^u \frac{d\zeta}{(1+\zeta^r)^{\lambda}}.$$

There: $r = \frac{\alpha - \beta}{\alpha} \in \mathbb{Z}_{>0}$ and $\lambda = \frac{\beta}{\beta - \alpha} \in \mathbb{Q}_{>0}$.

Alternatively: view as Abelian integral over Fermat curve $Y^p - X^p = 1$, as well as special hypergeometric function.

Proof: Standardize diff. system and use *first integral* to eliminate *y*.

Sacrificial Urns Probabilistic Properties Triangular Urns OK Corral

The explicit form

With:
$$r = \frac{\alpha - \beta}{\alpha}$$
, $\lambda = \frac{\beta}{\beta - \alpha}$, $s = \frac{\delta - \gamma}{\delta}$.

• The fundamental integral J:

$$J(u) := \int_0^u \frac{d\zeta}{(1+\zeta^r)^{\lambda}}.$$

• The base functions *S*, *C*:

$$S :=$$
Inverse[J]; $C := (1 + S^r)^{1/s}$,

• The GF of urn histories with $\Delta := (1 - x^p)^{1/p}$:

 $H(x,1,z) = \Delta^{s_0} S \left(-\alpha z \Delta^{\sigma} + J(x^{-\alpha} \Delta^{\alpha}) \right)^{-\frac{s_0}{\alpha}} C \left(-\alpha z \Delta^{\sigma} + J(x^{-\alpha} \Delta^{\alpha}) \right)^{-\frac{s_0}{\delta}}$

Sacrificial Urns Probabilistic Properties Triangular Urns OK Corral

Examples

- Ehrenfest urn has $J(u) = \int_0^u \frac{d\zeta}{\sqrt{1+\zeta^2}} = \operatorname{arcsinh}(u)$, etc.
- Algebraic urn: $\begin{pmatrix} -1 & 3\\ 1 & 1 \end{pmatrix}$ has $H = \frac{(1-x^2)^{1/2}}{(1-(z(1-x^2)+x)^2)^{1/2}}$.
- Generation-parity model: grow an increasing binary tree (\cong BST):

$$\left(egin{array}{cc} -1 & 2 \ 2 & -1 \end{array}
ight) \ : \qquad S = {
m Inverse} \left[\int_0^u {d\zeta \over (1+\zeta^3)^{2/3}}
ight],$$

and get elliptic functions.

Sacrificial Urns Probabilistic Properties Triangular Urns OK Corral

Probabilistic Properties

Theorem

For any semi-sacrificial urn, at time n:

— Urn composition is asymptotically Gaussian with speed $O(n^{-\epsilon})$.

— Extreme large deviation, $A_n = 0$, is exponentially small with Gamma value rate.

-Large deviation principle holds with rate a transform of J.

- All moments admit hypergeometric form.

Proof techniques inspired from F.-Gabarro-Pekari [Annals Prob. 2005] based on *Analytic Combinatorics* [FS07?], esp. singularity analysis [FIOd90].

Andrew M. Odlyzko to speak or "Cybersecurity, mathematics and limits on technology."

Sacrificial Urns Probabilistic Properties Triangular Urns OK Corral

Proof and principles of analytic combinatorics

• Singularity analysis: locate singularities; expand locally; transfer to coefficents according to dictionary

$$[z^n](1-z/
ho)^{-lpha}=rac{n^{lpha-1}}{\Gamma(lpha)}
ho^{-n}+\cdots$$

Needs *analytic continuation* in Δ -domain ("camembert").

Extreme Large Deviations: $H(0, 1, z) \equiv S(-\alpha z)^{-\frac{s_0}{\sigma}} \Longrightarrow \mathbb{P}(E.L.D.) \approx K^n$.

Sacrificial Urns Probabilistic Properties Triangular Urns OK Corral

Singularity analysis preserves uniformity

• Analyse multivariate GF via singularity perturbation. E.g., movable singularity yields

 $[z^n]H(x,1,z)\approx\rho(x)^{-n},$

• Use approximation of PGF of random variable to estimate of Limit Law of Gaussian type.

→ Quasi-Powers Theorem [Hwang]: Analytically like sum of RVs $\implies Normal$, with speed \prec Berry–Esseen.

• Adapt for Large Deviations combining with Cramér-type techniques [Hwang]. Singularities of S, C known from inversion + differential eqns.

Sacrificial Urns Probabilistic Properties Triangular Urns OK Corral

Fully sacrificial urns

Theorem (FIGaPe05)

For any fully sacrificial urn, at time n: Limit law + Speed + Large deviation + Extreme + Moments.

 ${\sf Proof via a \ {\sf PDE} + method \ of \ characteristics + conformal \ mappings}.$

Theorem (FIGaPe05)

There are six models solvable by elliptic functions assoc. tilings.

Includes the fringe analysis of 2-3 trees [Yao, Aldous, Panholzer-Prodinger]

Sacrificial Urns Probabilistic Properties Triangular Urns OK Corral

Triangular Urns (1)

Classification:

- Special, e.g., Pólya \equiv diagonal.
- Sacrificial, Semi or fully, \rightsquigarrow Gaussian urns.
- Nonsacrificial: to be completed (algebra works fine!)
- Triangular: next!

See [Janson06], even for nonbalanced.

Sacrificial Urns Probabilistic Properties Triangular Urns OK Corral

Triangular Urns (2)

• Fundamental isomorphism first!

$$\begin{cases} \dot{x} = x^{\alpha+1}y^{\sigma} \\ \dot{y} = y^{\sigma+1} \end{cases} \Longrightarrow \mathcal{H}(x, 1, z) = \frac{x^{a_0}}{(1 - \sigma z)^{-\frac{b_0}{\sigma}}} \left(1 - x^{\alpha} \left(1 - (1 - \sigma z)^{\frac{\alpha}{\sigma}}\right)\right)^{-\frac{a_0}{\alpha}}.$$

• Singularity analysis strikes again!! (Hankel contours)

Composition of singularities. Combinatorially: $\mathcal{H} = \mathcal{F} \circ \mathcal{G}$ implies H(x, z) = F(xG(z)). If F, G have singularities of algebraic type with critical composition, then get stable laws. [BaFIScSo01]

Universality: cores in maps, triangular urn models, forests-trees-mappings, + Gnedin-Pitman.

Sacrificial Urns Probabilistic Properties Triangular Urns OK Corral

Intermezzo: OK Corral

Two gangs of *m* and *n* gunwomen face each other. They shoot at random. Which group survives? How many survivors?

— Williams–McIlroy, Kingman–Volkov

Urn model is "non-standard":

$$\mathcal{M} = \left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array} \right)$$

Use **time reversal** [KiVo] to reduce to Friedman's urn $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. $\begin{cases} \dot{x} = xy \\ \dot{y} = xy \end{cases} \implies H(x, y, z) = \left(\frac{x(x - y)}{x - ye^{z(x - y)}}\right)^{a_0} \left(\frac{x(y - x)}{y - xe^{z(y - x)}}\right)^{b_0}.$

Sacrificial Urns Probabilistic Properties Triangular Urns OK Corral

OK Corral (2)

Theorem

$$\mathbb{P}(\# \text{ survivors}=s) = \frac{s!}{(m+n)!} \sum_{k=1}^{m} (-1)^{m-k} \binom{k-1}{s-1} \binom{m+n}{n+k} k^{m+n-s}$$

$$\mathbb{P}(\operatorname{Group} I \text{ wins}) = \frac{1}{(m+n)!} \sum_{k=1}^{n} (-1)^{m-k} \binom{m+n}{n+k} k^{m+n}.$$

Unfair fights:
$$\frac{1}{n} \log \mathbb{P}_{I}(\alpha n, n) = W(\alpha) + o(1)$$
.

Mean number of survivors (fair fight) is $\approx n^{3/4}$. Connections with Eulerian numbers, rises in perms. Asymptotics of moments, speeds, etc.

Pólya, Ehrenfest, Coupon, & Pelican Triangular

Higher dimensions

- The Fundamental Isomorphism theorem still holds. Get 3×3 nonlinear system.
- \exists no First Integrals: [Jouanolou] $\dot{x} = y^2, \dot{y} = u^2, \dot{u} = x^2$.
- But many "natural" systems with structure can be solved.

Pólya, Ehrenfest, Coupon, & Pelican Triangular

Pólya, Friedman, & Pelican

Solvable cases for m = 3 and beyond

- Pólya's autistic model: diagonal matrix $\Longrightarrow \dot{x} = x^2$, etc.
- Generalized coupon collector: solved to get known solution.

- Pelican's urn:
$$\begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
.

 $\left\{ \begin{array}{cc} \dot{x} = yu, & \dot{y} = ux, & \dot{u} = xy, \\ \frac{d}{dt}\operatorname{sn} t = \operatorname{cn} t \operatorname{dn} t, & \frac{d}{dt}\operatorname{cn} t = -\operatorname{dn} t \operatorname{sn} t, & \frac{d}{dt}\operatorname{dn} t = -k^2 \operatorname{sn} t \operatorname{cn} t, \end{array} \right.$

where
$$\int_0^{\operatorname{sn} t} \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}} = t$$
 is Jacobian elliptic function.

Also get hyperelliptic for dimension $m \ge 4$.

Pólya, Ehrenfest, Coupon, & Pelican Triangular

Ehrenfest $m \times m$

Thus, X(t) satisfies $\frac{d^3}{dt^3}X(t) = X(t)$. This is a trisection of the exponential. GF with everybody back to base is $\left(\sum_{n\equiv 0 \mod 3} \frac{z^n}{n!}\right)^N$. Read off spectrum of associated Markov matrices as

pseudo-lattices:

Pólya, Ehrenfest, Coupon, & Pelican Triangular

Triangular 3×3

Triangular urns $m \times m$ are integrable.

Work out distribution for m = 3. Characteristic function is a double integral. Etc.

Cf also: Janson, Pouyanne [= moments approach]

Pólya, Ehrenfest, Coupon, & Pelican Triangular

Conclusions

From Eilbeck et al.:

"Integrable systems have a rich mathematical structure. [...] These systems form an archipelago of solvable models in a sea of unknown,

and can be used to investigate properties of 'nearby' non-integrable systems."

• Here: get new distributions, local limit laws, large deviation rates, speeds of convergence, elliptic function solutions, etc.

• Hope to approach nonintegrable models via perturbation and singularities?

