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Urn Models (1)

An urn contains balls of m possible colours

A fixed set of rules governs the urn evolution:

Drawn:


Red

Blue

Place︷ ︸︸ ︷
Red Blue

α β

γ δ

Convention: The ball “drawn” is not withdrawn (not taken out)!
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Urn Models (2): Examples

Balanced urns: (
α β
γ δ

)
: α + β = γ + δ =: σ.

Weight (size) of the urn is deterministic and equals s0 + nσ at time n.(
1 0
0 1

)
: Selfish urn (Pólya); spread of epidemics/genes.

(
0 1
1 0

)
: Adverse-campaign model of Friedman.

(
−1 1
1 −1

)
: Ehrenfest’s two chambers model.

(
−1 1
0 1

)
: Coupon collector: have N different items  blue and

pick up at random with rule blue → red.
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Urns exhibit different types of probabilistic behaviour

# balls of first type as a function of time (n)
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For coupon collector, scale is N log N, etc.
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Histories

Definition

Call history an unambigous description of an urn’s evolution.

Write x for red balls and y for blue balls. Eg, with

(
1 1
0 2

)
:

xx → xxyx → xxxxxx → · · · .

• Initial conditions: a0 x-balls; b0 y-balls.
• Set s0 := a0 + b0. Have size @ time n: sn := s0 + nσ.
Number of histories is Hn := s0(s0 + σ) · · · (s0 + (n − 1)σ).

Hn = n!σn ·
(

n + s0/σ − 1

n

)
.

Proposition

For balanced urns at time n, Probability ⇔ Combinatorics:
Histories are equiprobable.
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Generating functions

• Operate with exponential generating function (EGF)

H(z) =
∑
n≥0

Hn
zn

n!
=

1

(1− σz)s0/σ
, s0 = a0 + b0.

• Want: Hn,k,` := # histories with k (resp. `) balls of type x (resp. y) in
the end.

H(x , y ; z) :=
∑
n,k,`

Hn,k,`x
ky ` zn

n!
.

P(An = k,Bn = `) =
Hn,k,`

Hn
.

Note. For balanced urns, index ` and variable y are redundant (but
convenient): consider Hn,k and H(x , 1; z).
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The Fundamental Isomorphism (1)

Given urn

(
α β
γ δ

)
, define associated differential system:

Σ :

{
ẋ = xα+1yβ

ẏ = xγy δ+1 ,

{
x(0) = x0

y(0) = y0
.

Notations: t is the independent variable. ẋ means d
dt x(t).

Ex: Fried.

„
0 1
1 0

«
 

{
ẋ = xy
ẏ = xy

; Ehrenf.

„
−1 1
1 −1

«
 

{
ẋ = y
ẏ = x

2–3 tree:

„
−2 3
4 −3

«
 

{
ẋ = xy3

ẏ = x4y2
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The Fundamental Isomorphism (2)

Assoc. system:

{
ẋ = xα+1yβ

ẏ = xγyδ+1 ,

{
x(0) = x0

y(0) = y0
.

Theorem (Fundamental Isomorphism)

Solutions X ,Y to associated systems determines GF of histories:

H(x0, y0; z) = X
(
z

∣∣ x0

)a0 Y
(
z

∣∣ y0

)b0
.

It suffices to solve differential system with “floating” initial conditions.
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The Fundamental Isomorphism (3): Proof

Θ. Solutions X ,Y to associated systems determines GF of histories:
H(x0, y0; z) = X (z)a0Y (z)b0 .

Represent k balls x and ` balls y by monomial xky `.

— Differentiation ∂x ≡ d
dx mean pick up and erase”:

∂[xxx ] =6 xxx + x6 xx + xx6 x , so that x∂[xxx ] = xxx + xxx + xxx

— One step transition of the urn is described by PD operator

D = xα+1yβ∂x + xγyδ+1∂y . Thus Dnxa0yb0 enumerates n–histories.

— Differentiation w.r.t. t on solution monomial X (t)a0Y (t)b0 mimicks

D:
d

dt
X a0Y b0 = D

[
xa0yb0

]
(x,y) 7→(X ,Y )

. Then by Taylor’s formula:

=⇒ H(X (t),Y (t); z) = X (t + z)a0Y (t + z)b0 . qed!
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Special 2–dim. Models

• Pólya

„
1 0
0 1

«
 

{
ẋ = x2

ẏ = y2 . =⇒ separation, etc.

H(x0, y0; z) =
xa0
0 yb0

0

(1− x0z)a0(1− y0z)b0
=⇒ P(An = a,Bn = b) =

(
a−1
a0−1

)(
b−1
b0−1

)(
a+b−1

a0+b0−1

) .

• Ehrenfest

„
−1 1
1 −1

«
 

{
ẋ = y
ẏ = x

=⇒ ẍ = x  hyperbolic fns:

H(x0, y0, z) = (x0 cosh z + y0 sin z)N .

6= Kac. Generalizes to 3+ chambers . . .

• Get explicitly all 10 models of dimension two with entries in {0,±1}.
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Analysis of 2–dim Urns

Proposition (First integral)

Let p := γ − α ≡ β − δ (balanced urn). Then

X p − Y p = Constant .

Proof:
d

dt
(xp − yp) = pxp−1ẋ − pyp−1ẏ  

Σ
0.

E.g., Ehrenfest: X 2 − Y 2 = 1 is satisfied by cosh, sinh.

11 / 27



Urn Models
Analysis of 2–dim Urns

Higher dimensions

Sacrificial Urns
Probabilistic Properties
Triangular Urns
OK Corral

Sacrificial Urns

Colour is called sacrificial if its diagonal entry is < 0.
— Semisacrificial urns: α < 0, δ > 0.
— Fully sacrificial urns: α < 0, δ < 0.

Theorem

For all sacrificial urns, the GF of urn histories H(x , 1; z) is
expressible from a fundamental hypergeometric function by
inversion:

Jλ,r (u) :=

∫ u

0

dζ

(1 + ζr )λ
.

There: r = α−β
α ∈ Z>0 and λ = β

β−α ∈ Q>0.

Alternatively: view as Abelian integral over Fermat curve Y p − X p = 1, as well
aa special hypergeometric function.
Proof: Standardize diff. system and use first integral to eliminate y .
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The explicit form

With: r = α−β
α , λ = β

β−α , s = δ−γ
δ .

• The fundamental integral J:

J(u) :=

∫ u

0

dζ

(1 + ζr )λ
.

• The base functions S ,C :

S := Inverse[J]; C := (1 + S r )1/s ,

• The GF of urn histories with ∆ := (1− xp)1/p:

H(x , 1, z) = ∆s0S
(
−αz∆σ + J(x−α∆α)

)− s0
α C

(
−αz∆σ + J(x−α∆α)

)− s0
δ
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Examples

• Ehrenfest urn has J(u) =
∫ u
0

dζ√
1+ζ2

= arcsinh(u), etc.

• Algebraic urn:
„
−1 3
1 1

«
has H = (1−x2)1/2

(1−(z(1−x2)+x)2)1/2 .

• Generation-parity model: grow an increasing binary tree (∼=
BST):

„
−1 2
2 −1

«
: S = Inverse

[∫ u

0

dζ

(1 + ζ3)2/3

]
,

and get elliptic functions.

14 / 27



Urn Models
Analysis of 2–dim Urns

Higher dimensions

Sacrificial Urns
Probabilistic Properties
Triangular Urns
OK Corral

Probabilistic Properties

Theorem

For any semi-sacrificial urn, at time n:
— Urn composition is asymptotically Gaussian with speed O(n−ε).
— Extreme large deviation, An = 0, is exponentially small with
Gamma value rate.
—Large deviation principle holds with rate a transform of J.
— All moments admit hypergeometric form.

Proof techniques inspired from F.-Gabarro-Pekari [Annals Prob. 2005] based on
Analytic Combinatorics [FS07?], esp. singularity analysis [FlOd90].
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Proof and principles of analytic combinatorics

• Singularity analysis: locate singularities; expand locally; transfer
to coefficents according to dictionary

[zn](1− z/ρ)−α =
nα−1

Γ(α)
ρ−n + · · · .

Needs analytic continuation in ∆–domain (“camembert”).

Extreme Large Deviations: H(0, 1, z) ≡ S(−αz)−
s0
σ =⇒P(E .L.D.) ≈ K n.
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Singularity analysis preserves uniformity

• Analyse multivariate GF via singularity perturbation. E.g.,
movable singularity yields

[zn]H(x , 1, z) ≈ ρ(x)−n,

• Use approximation of PGF of random variable to estimate of
Limit Law of Gaussian type.

 Quasi-Powers Theorem [Hwang]: Analytically like sum of RVs
=⇒Normal, with speed ≺ Berry–Esseen.

• Adapt for Large Deviations combining with Cramér-type
techniques [Hwang]. Singularities of S ,C known from inversion +
differential eqns.
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Fully sacrificial urns

Theorem (FlGaPe05)

For any fully sacrificial urn, at time n:
Limit law + Speed + Large deviation + Extreme + Moments.

Proof via a PDE + method of characteristics + conformal mappings.

Theorem (FlGaPe05)

There are six models solvable by elliptic functions assoc. tilings.

Includes the fringe analysis of 2–3 trees [Yao, Aldous, Panholzer-Prodinger]
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Triangular Urns (1)

Classification:
— Special, e.g., Pólya ≡ diagonal.
— Sacrificial, Semi or fully,  Gaussian urns.
— Nonsacrificial: to be completed (algebra works fine!)
— Triangular: next!

M =

(
α σ − α
0 σ

)
.

See [Janson06], even for nonbalanced.
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Triangular Urns (2)

• Fundamental isomorphism first!{
ẋ = xα+1yσ

ẏ = yσ+1 =⇒H(x , 1, z) =
xa0

(1− σz)−
b0
σ

(
1− xα

(
1− (1− σz)

α
σ

))− a0
α .

• Singularity analysis strikes again!! (Hankel contours)

Composition of singularities. Combinatorially: H = F ◦ G implies
H(x , z) = F (xG (z)). If F ,G have singularities of algebraic type
with critical composition, then get stable laws. [BaFlScSo01]

Universality: cores in maps, triangular urn mod-
els, forests-trees-mappings, + Gnedin-Pitman.
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Intermezzo: OK Corral

Two gangs of m and n gunwomen face each other. They shoot
at random. Which group survives? How many survivors?

— Williams–McIlroy, Kingman–Volkov

Urn model is “non-standard”:

M =

(
0 −1
−1 0

)
.

Use time reversal [KiVo] to reduce to Friedman’s urn
„

0 1
1 0

«
.{

ẋ = xy
ẏ = xy

=⇒ H(x , y , z) =

(
x(x − y)

x − yez(x−y)

)a0
(

x(y − x)

y − xez(y−x)

)b0

.
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OK Corral (2)

Fair / Unfair

Theorem

P(# survivors=s) = s!
(m+n)!

∑m
k=1(−1)m−k

(
k−1
s−1

)(
m+n
n+k

)
km+n−s .

P(Group I wins) = 1
(m+n)!

∑n
k=1(−1)m−k

(
m+n
n+k

)
km+n.

Unfair fights: 1
n log PI (αn, n) = W (α) + o(1).

Mean number of survivors (fair fight) is ≈ n3/4. Connections with Eulerian
numbers, rises in perms. Asymptotics of moments, speeds, etc.
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Higher dimensions

The Fundamental Isomorphism theorem still holds. Get 3× 3
nonlinear system.

∃ no First Integrals: [Jouanolou] ẋ = y 2, ẏ = u2, u̇ = x2.

But many “natural” systems with structure can be solved.
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Pólya, Friedman, & Pelican

Solvable cases for m = 3 and beyond

— Pólya’s autistic model: diagonal matrix =⇒ẋ = x2, etc.
— Generalized coupon collector: solved to get known solution.

— Pelican’s urn:

0@ −1 1 1
1 −1 1
1 1 −1

1A.

{
ẋ = yu, ẏ = ux , u̇ = xy ,

d
dt sn t = cn t dn t, d

dt cn t = − dn t sn t, d
dt dn t = −k2 sn t cn t,

where

∫ sn t

0

dx√
(1− x2)(1− k2x2)

= t is Jacobian elliptic function.

Also get hyperelliptic for dimension m ≥ 4.
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Ehrenfest m ×m

Cyclic Chambers: System:

 ẋ = y
ẏ = u
u̇ = x

.

Thus, X (t) satisfies d3

dt3 X (t) = X (t). This is a trisection of the

exponential. GF with everybody back to base is
(∑

n≡0 mod 3
zn

n!

)N

.

Read off spectrum of associated Markov matrices as

pseudo-lattices:
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Triangular 3× 3

Triangular urns m ×m are integrable.
Work out distribution for m = 3. Characteristic function is a double
integral. Etc.

Cf also: Janson, Pouyanne [= moments approach]

26 / 27



Urn Models
Analysis of 2–dim Urns

Higher dimensions
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Conclusions

From Eilbeck et al.:

“Integrable systems have a rich mathematical structure. [...]
These systems form an archipelago of solvable models in a sea of
unknown,
and can be used to investigate properties of ‘nearby’ non-integrable
systems.”

• Here: get new distributions, local limit laws, large deviation rates,
speeds of convergence, elliptic function solutions, etc.
• Hope to approach nonintegrable models via perturbation and
singularities?
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