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Urn Models Basics
The Fundamental Isomorphism
Special 2-dim. Models

Urn Models (1)

@ An urn contains balls of m possible colours ﬂ

o A fixed set of rules governs the urn evolution:

Place
———
Red Blue
: Red
Drawn: e o 3
Blue ol )

Convention: The ball “drawn” is not withdrawn (not taken out)!
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Urn Models (2): Examples

Balanced urns:

(?; ?) : a+fB=v4+0=:0.

Weight (size) of the urn is deterministic and equals sy + no at time n.

° ( é (1] >: Selfish urn (Pdlya); spread of epidemics/genes.
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Urn Models Basics
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Special 2-dim. Models

Urn Models (2): Examples

Balanced urns:

a f . _ L
(7 5) : a+fB=y+0=10.
Weight (size) of the urn is deterministic and equals sy + no at time n.
° ( é (1] >: Selfish urn (Pdlya); spread of epidemics/genes.
01 . .
° ( 10 >: Adverse-campaign model of Friedman.

° ( _11 _11 ): Ehrenfest's two chambers model.

° ( _01 1 : Coupon collector: have N different items ~~blue and

pick up at random with rule blue — red.
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Urn Models Basics
The Fundamental Isomorphism

Special 2-dim. Models

Urns exhibit different types of probabilistic behaviour

# balls of first type as a function of time (n)

(5 3) (35)

Spread +Uniform Concentrated + AN ormal

For coupon collector, scale is N log N, etc.
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Histories

—

Definition

Call history an unambigous description of an urn’s evolution.

Write x for red balls and y for blue balls. Eg, with < (1) ; ):

XX — XXYX — XXXXXX — - - - .

e Initial conditions: ap x-balls; by y-balls.
e Set sy := ag + bg. Have size @ time n: s, := sp + no.
Number of histories is H, := so(sp + ) --- (so + (n — 1)o).

H, = nlo" . <n+50/(71>.

n

Proposition

For balanced urns at time n, Probability < Combinatorics:
Histories are equiprobable.
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Special 2-dim. Models

Generating functions

e Operate with exponential generating function (EGF)

1
B A L R e

So/n"
n>0 UZ)

e Want: H, , := # histories with k (resp. ¢) balls of type x (resp. y) in

the end.
z"
H(x,y:z):= >  H, kZXkyZ
n,k,l
H
P(A, = k, B, = () = I"ff.

Note. For balanced urns, index ¢ and variable y are redundant (but
convenient): consider H, x and H(x,1; z).
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The Fundamental Isomorphism (1)

Given urn ( : ? ) define associated differential system:

s . {)'( = X“ﬂyﬁ {X(O) = X
yo= xy L y(0) = oy

Notations: t is the independent variable. X means < x(t).

s 0 1 X=Xy -1 1 — xX=y
Ex.Fned.(1 0>W{yzxy,Ehrenf.<1 _1) {y:x

5 (-2 3 x = xy*
23tree.<4 _3)W{y:x4y2
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The Fundamental Isomorphism (2)

N _ a+1,,6 o
Assoc. system: {§ = XY ’ {X(O) = X0

Theorem (Fundamental Isomorphism)

Solutions X, Y to associated systems determines GF of histories:

H(Xo,yo;z):X(z | Xo)aOY(z | yo)bo.

It suffices to solve differential system with “floating” initial conditions.
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The Fundamental Isomorphism (3): Proof

©. Solutions X, Y to associated systems determines GF of histories:
H(x0, y0:2) = X(2)* Y (2)™.
Represent k balls x and ¢ balls y by monomial x*y*.

— Differentiation 9, = < mean pick up and erase":
Oxxx] = Axx + xkx + xx 4, so that x0[xxx] = xxx + xxx + xxx

— One step transition of the urn is described by PD operator

‘ D = x"y 0, + x7y 10, | Thus D"x®yb enumerates n-histories.

— Differentiation w.r.t. t on solution monomial X (t)% Y(t)% mimicks
D: iX‘S'OYb0 =9 [Xa°yb°]

g Then by Taylor's formula:

(oy)=(X,Y)

—  HX(t),Y(t);2) = X(t +2)*Y(t +2)>. QD!
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Special 2-dim. Models

ePslya (L © x=ox2 tion, et
A
lya (4 y—y? separation, etc.

X o () (s

. _ 0 70 _ _ _ \ag— —

H(Xo’yo,Z) - (1 o on)ao(]. _ on)bO ]P)(A" = a, Bn - b) - E a+Z;;).1)
ao+bo—

e Ehrenfest ( -1 ) ~s { X=Y = x hyperbolic fns:
1 -1 y=x

H(x0, ¥0,2) = (xo cosh z + ygsin z)N.

# Kac. Generalizes to 3t chambers . ..

o Get explicitly all 10 models of dimension two with entries in {0, £1}.

) .
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Analysis of 2—dim Urns Triangular|Urmns

OK Corral

Analysis of 2—dim Urns

Proposition (First integral)
Let p:=~—a= [ —0 (balanced urn). Then

XP — YP = Constant.

Proof:
P_yPy = pxPlx — pyP 1y s 0.
dt(X yP)=pxP " x — pyP Tty .

E.g., Ehrenfest: X? — Y? =1 is satisfied by cosh, sinh.
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OK Corral

Analysis of 2—dim Urns

Sacrificial Urns

Colour is called sacrificial if its diagonal entry is < 0.
— Semisacrificial urns: @ < 0, § > 0.
— Fully sacrificial urns: o < 0, § < 0.

Theorem

|

For all sacrificial urns, the GF of urn histories H(x, 1; z)
expressible from a fundamental hypergeometric function by

inversion: T
Pl :/o e

There: r = © == € Q0.

Alternatively: view as Abelian integral over Fermat curve YP — XP =1, as well
aa special hypergeometric function.
Proof: Standardize diff. system and use first integral to eliminate y.
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The explicit form

With: r:aT_B,)\:B_%,s:(s_TW.

e The fundamental integral J:
u dg
J(u) = / —
W= Jo @rop
e The base functions S, C:

S = Inverse[J]; C:=(1+ S5,

e The GF of urn histories with A := (1 — Xp)l/p:

S0

H(x,1,z) = A®S (—azA” + J(x “A%)) " C (—azA” + J(x"*A*))~

s
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Analysis of 2—dim Urns

SETES

e Ehrenfest urn has J(u) = [ = arcsinh(u), etc.

\/1+g2

. 1 1—x2)1/2

e Algebraic urn: < 11 ) has H = (1—(221—i2;+x)2)1/2'

e Generation-parity model: grow an increasing binary tree (=

BST):
— ’ dC
( 21 _21 ) . S = Inverse [/0 (1+C3)2/3] )

and get elliptic functions.
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Analysis of 2—dim Urns

Triangular Urns
OK Corral

Probabilistic Properties

Theorem

For any semi-sacrificial urn, at time n:

— Urn composition is asymptotically Gaussian with speed O(n™¢).
— Extreme large deviation, A, = 0, is exponentially small with
Gamma value rate.

—Large deviation principle holds with rate a transform of J.

— All moments admit hypergeometric form.

Proof techniques inspired from F.-Gabarro-Pekari [Annals Prob. 2005] based on
Analytic Combinatorics [FSO77], esp. singularity analysis [FIOd90].
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Analysis of 2—dim Urns

Proof and principles of analytic combinatorics

e Singularity analysis: locate singularities; expand locally; transfer
to coefficents according to dictionary

nu,—l
n —x —n
z'(1—z = 4 -
R L
Needs analytic continuation in A—domain (“camembert”).
Real-Tauberian Darboux-Pélya Singularity An.
1

Extreme Large Deviations: H(0,1,z) = S(—az)~ s =—P(E.L.D.) ~ K".
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Analysis of 2—dim Urns

e Analyse multivariate GF via singularity perturbation. E.g.,
movable singularity yields

[2"H(x,1,2) ~ p(x) ",

e Use approximation of PGF of random variable to estimate of
Limit Law of Gaussian type.
~> Quasi-Powers Theorem [Hwang]: Analytically like sum of RVs
— Normal, with speed < Berry—Esseen.

e Adapt for Large Deviations combining with Cramér-type
techniques [Hwang]. Singularities of S, C known from inversion +

differential eqns.
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Analysis of 2—dim Urns

Fully sacrificial urns

Theorem (FIGaPe05)

For any fully sacrificial urn, at time n:
Limit law + Speed + Large deviation + Extreme + Moments.

Proof via a PDE + method of characteristics + conformal mappings.

Theorem (FIGaPe05)

There are six models solvable by elliptic functions assoc. tilings.

PN

L

Includes the [Yao, Aldous, Panholzer-Prodinger] 18/27




Sacrificial Urns
Probabilistic Properties
Triangular Urns

OK Corral

Analysis of 2—dim Urns

Triangular Urns (1)

Classification:

— , e.g., Pdlya = diagonal.

— Sacrificial, Semi or fully, ~» Gaussian urns.

— Nonsacrificial: to be completed (algebra works fine!)
— Triangular: next!

a 0 —«

0.
)

See [Janson06], even for nonbalanced.
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Sacrificial Urns
Probabilistic Properties
Triangular Urns

OK Corral

Analysis of 2—dim Urns

Triangular Urns (2)

e Fundamental isomorphism first!

v — a+l.,0 x20 ! “ _ 2
{ ;:;fﬁkly :H(XaLZ): W(l—x”(l—(l—az)ﬂ)) e
—0z) ©

e Singularity analysis strikes again!! (Hankel contours)

Composition of singularities. Combinatorially: H = F o G implies
H(x,z) = F(xG(z)). If F, G have singularities of algebraic type
with critical composition, then get stable laws. [BaFIScSo01]

Universality: cores in maps, triangular urn mod-
els, forests-trees-mappings, + Gnedin-Pitman.

20/27



Sacrificial Urns
Probabilistic Properties
Triangular Urns

OK Corral

Analysis of 2—dim Urns

Intermezzo: OK Corral

Two gangs of m and n gunwomen face each other. They shoot
at random. Which group survives? How many survivors?

— Williams—Mcllroy, Kingman—Volkov
Urn model is “non-standard”:

0 -1
M = .

-1 0

Use time reversal [KiVo] to reduce to Friedman's urn ( ? (1))

X = xy . o xx=y) N Xy =x) O\
Vv =xy = (X:}/fz) T\ x— yez(xfy) y — xez(y—x) ’
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Analysis of 2—dim Urns

OK Corral (2)

Fair / Unfair

P(# survivors=s) = (msT|n)| ZT=1(_1)m_k(ls<j) () kmEn=.

P(Group I wins) = (mTln)' S ey ()R (T k.

Unfair fights: X logP/(an, n) = W(a) + o(1).

Mean number of survivors (fair fight) is ~ n*/*. Connections with Eulerian

numbers, rises in perms. Asymptotics of moments, speeds, etc.
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Pélya, Ehrenfest, Coupon, & Pelican

Higher dimensions e

Higher dimensions

@ The Fundamental Isomorphism theorem still holds. Get 3 x 3

nonlinear system.
@ 7 no First Integrals: [Jouanolou] x = y?,y = v*, i1 = x*

@ But many “natural” systems with structure can be solved.
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Pdélya, Ehrenfest, Coupon, & Pelican

Higher dimensions e

Pdlya, Friedman, & Pelican

Solvable cases for m = 3 and beyond

— Pélya’s autistic model: diagonal matrix =% = x?, etc.

— Generalized coupon collector: solved to get known solution.

-1 1 1
— Pelican’s urn: 1 -1 1
1 1 -1
{ %= yu, y = ux, i = xy,
d _ d _ d _ 2
gsnt=cntdnt, Zcnt=—dntsnt, L dnt= —k“sntcnt,
snt dX
where / = t is Jacobian elliptic function.
0o VI k)

Also get hyperelliptic for dimension m > 4.
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Pdélya, Ehrenfest, Coupon, & Pelican
Triangular

Higher dimensions

Ehrenfest m x m

/ X=Yy
Cyclic Chambers:|| y=u
u=x
Thus, X(t) satisfies j—;X(t) = X(t). This is a trisection of the
AN
exponential. GF with everybody back to base is (ano mod 3 %) )

Read off spectrum of associated Markov matrices as

e e

S Y
o]e
e els’s

pseudo-lattices:

DECECEEY PR

s e e e
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Pélya, Ehrenfest, Coupon, & Pelican

. . . Triangular
Higher dimensions g

Triangular 3 x 3

Triangular urns m x m are integrable.
Work out distribution for m = 3. Characteristic function is a double
integral. Etc.

Cf also: Janson, Pouyanne [= moments approach]
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Pélya, Ehrenfest, Coupon, & Pelican

Higher dimensions D

Conclusions

From Eilbeck et al.:

“Integrable systems have a rich mathematical structure. [...]

These systems form an archipelago of solvable models in a sea of
unknown,

and can be used to investigate properties of ‘nearby’ non-integrable
systems.”

e Here: get new distributions, local limit laws, large deviation rates,
speeds of convergence, elliptic function solutions, etc.
e Hope to approach nonintegrable models via perturbation and

singularities? g

folks!"
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