

Singular Combinatorics

Combinatorics: discrete structures by finitary rules → Enumerative & Quantitative aspects

Counting and asymptotics

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

Asymptotic laws (e.g., Monkey and typewriter!)

$$\Omega_n \xrightarrow{\mathcal{D}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-t^2/2} dt.$$

Approaches

— Probabilistic, stochastic

— Analytic: Generating Functions

1. Introduction

"Symbolic" Methods

Rota-Stanley; Foata-Schutzenberger; Joyal and UQAM group; Jackson-Goulden, &c; ca 1980^{\pm} .

<u>Basic combinatorial constructions</u> admit of direct translations as operators over generating functions (GF's).

 \mathcal{C} : class of comb. structures;

 C_n : # objects of size n

Ordinary GF's for unlabelled structures Exponential GF's for labelled structures.

"Dictionaries"

= Constructions viewed as Operators over GF's.

Constr.	Operations	
Union	+	+
Product	×	×
Sequence	$(1-f)^{-1}$	$(1-f)^{-1}$
${\mathfrak M}$ ulti ${\sf Set}$	Pólya <mark>Exp</mark> .	e^f
Cycle	Pólya Log.	$\log(1-f)^{-1}$
	(unlab.)	(lab.)

Books: Goulden-Jackson, Bergeron-LL, Stanley, F-Sedgewick

- \Longrightarrow Formal power series w/ rich set of functional eqns!!
- ⇒ How to extract coeff., especially, asymptotically??

$$\operatorname{Exp}(f) := \exp \left(f(z) + \frac{1}{2} f(z^2) + \cdots \right); \quad \operatorname{Log}(f) := \log \frac{1}{1 - f(z)} + \cdots$$

"Complex-analytic Structures"

Interpret:

- \heartsuit Counting GF as analytic transformation of \mathbb{C} ;
- ♡ <u>Comb. Construction</u> as analytic functional.

Singularities are crucial to asymptotic prop's!

(cf. analytic number theory, complex analysis, etc)

Asymptotic counting via Singularity Analysis (S.A.) Asymptotic laws via $\frac{\text{Perturbation}}{\text{Perturbation}} + \frac{\text{S.A.}}{\text{S.A.}}$

Refs: F-Odlyzko, SIAM A&DM, 1990; Odlyzko's 1995 survey in *Handbook of Combinatorics*

+ Banderier, Fill, J. Gao, Gonnet, Gourdon, Kapur, G. Labelle, Laforest, T. Lafforgue, Noy, Odlyzko, Panario, Pouyanne, Prodinger, Puech, Richmond, Robson, Salvy, Schaeffer, Sipala, Soria, Steyaert, Szpankowski, B. Vallée.

 \spadesuit Location of singularity at $z = \rho$:

coeff.
$$[z^n]f(z) = \rho^{-n} \cdot \text{coeff.} [z^n]f(\rho z),$$

where latter is singular at z=1.

 \blacktriangle Nature of singularity at z=1:

$$\frac{1}{(1-z)^2} \longrightarrow n+1 \sim n$$

$$\frac{1}{1-z}\log\frac{1}{1-z}$$
 \longrightarrow $H_n \equiv \frac{1}{1}+...+\frac{1}{n}$ \sim $\log n$

$$\frac{1}{1-z} \longrightarrow 1 \sim 1$$

$$\frac{1}{\sqrt{1-z}} \longrightarrow \frac{1}{2^{2n}} {2n \choose n} \sim \frac{1}{\sqrt{\pi n}}$$

Location of sing's: Exponential factor ρ^{-n}

Nature of sing's: "Polynomial" factor $\vartheta(n)$

Generating Function → Coefficients

Solving a "Tauberian" problem

Combinatorial constructions → Analytic Functionals

⇒ Analytic continuation prevails for comb. GF's

2. Basic Singularity Analysis

Theorem 1. Basic scale translates:

$$\sigma_{\alpha,\beta}(z) := (1-z)^{-\alpha} \left(\frac{1}{z} \log \frac{1}{1-z}\right)^{\beta}$$

$$\Longrightarrow [z^n] \sigma_{\alpha,\beta} \underset{n \to \infty}{\sim} \frac{n^{\alpha-1}}{\Gamma(\alpha)} (\log n)^{\beta}.$$

 $\underline{\text{Proof}}$. Cauchy's coefficient integral, $f(z) = (1-z)^{-\alpha}$

$$[z^{n}]f(z) = \frac{1}{2i\pi} \int_{\gamma} f(z) \frac{dz}{z^{n+1}}$$

$$\downarrow \downarrow \qquad (z = 1 + \frac{t}{n}) \qquad \downarrow \downarrow$$

$$\frac{1}{2i\pi} \int_{\mathcal{H}} \left(-\frac{t}{n}\right)^{-\alpha} e^{-t} \frac{dt}{n}$$

$$n^{\alpha - 1} \times \frac{1}{\Gamma(\alpha)}.$$

- \heartsuit Slowly varying \Longrightarrow slowly varying
- \bigvee Log-log \Longrightarrow Log-Log
- Full asymptotic expansions

Theorem 2. *O-transfers*:

Under continuation in a Δ -domain,

$$f(z) = O(\sigma_{\alpha,\beta}(z)) \implies [z^n] f(z) = O([z^n] \sigma_{\alpha,\beta}(z)).$$

PROOF:

Usage:
$$\begin{cases} f(z) = \lambda \sigma(z) + \mu \tau(z) + ... + O(\omega(z)) \\ \Longrightarrow \\ f_n = \lambda \sigma_n + \mu \tau_n + ... + O(\omega_n). \end{cases}$$

Similarly: *o*-transfer.

- Dominant singularity at ρ gives factor ρ^{-n} .
- Finitely many singularities work fine
- ullet Some cases with ∞ of sing's.

EXAMPLE 1. 2-regular graphs [Comtet]

$$\mathcal{G} = \mathfrak{M}\left(\frac{1}{2}\mathfrak{C}_{\geq 3}(\mathcal{Z})\right)$$

$$\widehat{G}(z) = \exp\left(\frac{1}{2}\log\frac{1}{1-z} - \frac{z}{2} - \frac{z^2}{4}\right)$$

$$\widehat{G}(z) \underset{z \to 1}{\sim} \frac{e^{-3/4}}{\sqrt{1-z}}$$

$$\frac{G_n}{n!} \underset{n \to \infty}{\sim} \frac{e^{-3/4}}{\sqrt{\pi n}}.$$

(Originally by Darboux-Pólya.)

EXAMPLE 2. *Richness index of trees* [FSS,90] = Number of different terminal subtrees. Catalan case:

$$K(z) = \frac{1}{2z} \sum_{k \geq 0} \frac{1}{k+1} \binom{2k}{k} \left(\sqrt{1 - 4z - 4z^{k+1}} - \sqrt{1 - 4z} \right)$$

$$K(z) \underset{z \to 1/4}{\approx} \frac{1}{\sqrt{X \log X}}, \qquad X := 1 - 4z$$

$$\text{Mean index } \underset{n \to \infty}{\sim} C \frac{n}{\sqrt{\log n}}, \qquad C \equiv \sqrt{\frac{8 \log 2}{\pi}}.$$

Related to compact tree representations as DAGs.

3. Closure Properties

Function of S.A.-type = amenable to singularity analysis

- \bullet is continuable in a Δ -domain,
- ullet admits singular expansion in scale $\{\sigma_{lpha,eta}\}$.

Theorem 3. Generalized polylogarithms

$$\operatorname{Li}_{\alpha,k} := \sum (\log n)^k n^{-\alpha} z^n$$

are of S.A.-type.

PROOF. Cauchy-Lindelöf representations

$$\sum \varphi(n)(-z)^n = -\frac{1}{2i\pi} \int_{1/2 - i\infty}^{1/2 + i\infty} \varphi(s) z^s \frac{\pi}{\sin \pi s} \, ds.$$

+ Mellin transform techniques (Ford, Wong, F.).

EXAMPLE 3. Entropy of Bernoulli distribution

$$H_n := -\sum_k \pi_{n,k} \log \pi_{n,k}, \qquad \pi_{n,k} \equiv \binom{n}{k} p^k (1-p)^{n-k}$$
involves
$$\sum_k \log(k!) z^k = (1-z)^{-1} \operatorname{Li}_{0,1}(z)$$

$$\frac{1}{2} \log n + \frac{1}{2} + \log \sqrt{2\pi p (1-p)} + \cdots.$$

(Redundancy, coding, information th.; Jacquet-Szpankowski.)

• Elements like $\log n, \sqrt{n}$ in combinatorial sums

Theorem 4. Functions of S.A.-type are closed under integration and differentiation.

PROOF. Adapt from Olver, Henrici, etc.

Theorem 5. Functions of S.A.-type are closed under Hadamard product

$$f(z) \odot g(z) := \sum_{n} (f_n g_n) z^n.$$

PROOF. Start from Hadamard's formula

$$f(z) \odot g(z) = \frac{1}{2i\pi} \int_{\gamma} f(t)g\left(\frac{w}{t}\right) \frac{dt}{t}.$$

+ adapt Hankel contours [H., Jungen, R. Wilson; Fill-F-Kapur]

EXAMPLE 4. Divide-and -conquer recurrences

$$f_n = t_n + \sum_{n,k} \pi_{n,k} (f_k + f_{n-k})$$

$$\operatorname{Sing}(f(z)) = \Phi(\operatorname{Sing}(t(z)))$$

$$\operatorname{Asympt}[f_n] = \Psi(\operatorname{Sing}(t)).$$

E.g., Catalan statistics: need $\sum {2n \choose n} \log n \cdot z^n$.

Useful in computer science applications [FFK, 2002⁺].

4. Functional Equations

• Rational functions. Combinatorics: linear system $\mathbb{Q}_{\geq 0}[z]$ implies polar singularities (X^{-k}) :

$$[z^n]f(z) pprox \sum \omega^n n^k, \qquad \omega \in \overline{\mathbb{Q}}, \quad k \in \mathbb{Z}_{\geq 0}.$$

- + irreducibility: Perron-Frobenius \implies simple dom. pole.
- Word problems from regular language models;
- <u>Transfer matrices</u> [Bender-Richmond]: easy dimer coverings in $k \times n$ strip, knight tours, etc.
- Algebraic functions, by Puiseux expansions $(X^{p/q})$:

$$[z^n]f(z) \approx \sum \sum \omega^n n^{p/q}, \qquad \omega \in \overline{\mathbb{Q}}, \quad p/q \in \mathbb{Q},$$

results from S.A. (or Darboux!)

Asymptotics of coeff. is decidable [Chabaud-F-Salvy].

- Word problems and context-free models;
- <u>Trees</u>; geom. configurations (non-crossing graphs, polygonal triangs.); planar maps [Tutte].

$$(1 - \sqrt{1 - 4z})/(2z)$$

Square-root singularity is "universal" for many recursive classes (irreducibility). Owes to controlled "failure" of Implicit Function Theorem where quadratic dependency replaces linear (=analytic) dependency. Entails coeff. asymptotic $\approx \omega^n n^{-3/2}$ with critical exponent -3/2 that is universal.

E.g., 2-3 trees (Meir-Moon):

$$f = z\phi(f),$$
 $\phi(u) = 1 + u^2 + u^3.$

Pólya's combinatorial chemistry programme:

$$f(z) = z \operatorname{Exp}(f(z)) \equiv z e^{f(z) + \frac{1}{2}f(z^2) + \frac{1}{3}f(z^3) + \cdots}$$

Starting with Pólya 1937; Otter 1949; Harary-Robinson et al. 1970's; Meir-Moon 1978; Drmota-Lalley-Woods thm.1990⁺

• "Holonomic" functions. Defined as solutions of linear ODE's with coeffs in $\mathbb{C}(z)$ [Zeilberger] $\equiv \mathcal{D}$ -finite.

$$\mathcal{L}[f(z)] = 0, \qquad \mathcal{L} \in \mathbb{C}(z)[\partial_z].$$

• Stanley, Zeilberger, Gessel: great importance for combinatorial enumeration: Young tableaux and permutation statistics; regular graphs, constrained matrices, etc.

Fuchsian case (or "regular" singularity) $(X^{\beta} \log^k X)$:

$$[z^n]f(z) pprox \sum \omega^n n^{\beta} (\log n)^k, \qquad \omega, \beta \in \overline{\mathbb{Q}}, \quad k \in \mathbb{Z}_{\geq 0}.$$

S.A. applies automatically to classical classification.

Asymptotics of coeff is decidable

- general case: modulo oracle for connection problem;
- strictly positive case: unconditionally.

EXAMPLE 5. Quadtrees—Partial Match [FGPR'92]

Divide-and-conquer recurrence with coeff. in $\mathbb{Q}(n)$

Fuchsian equation of order d (dimension) for GF $Q_n^{(d=2)} \approx n^{(\sqrt{17}-3)/2}.$

E.g., d=2: Hypergeom $_2F_1$ with algebraic arguments.

- Functional Equations and Substitution.
- Early example of balanced 2-3 trees by Odlyzko, 1979.

$$T(z) = z + T(\tau(z)), \qquad \tau(z) := z^2 + z^3.$$

Infinitely many exponents with common real part implies periodicities: $T_n \sim \frac{\phi^n}{n} \Omega(\log n)$.

• Singular iteration for *height of trees* (binary and other simple varieties; F-Gao-Odlyzko-Richmond; cf Rényi-Szekeres):

$$y_h = z + y_{h-1}^2, \qquad y_0 = z.$$

- Moments and convergence in law; Local limit law of ϑ -type. (Applies to branching processes conditioned on total progeny.)
- Digital search trees via q-hypergeometrics: singularities accumulate geometrically \rightsquigarrow periodicities [F-Richmond]:

$$\partial_z^k f(z) = t(z) + 2e^{z/2} f(\frac{z}{2}).$$

Order of binary trees (Horton-Strahler, Register function;
 F-Prodinger) via Mellin tr. of GF and & singularities.

5. Limit Laws

Classical probability theory: sums of independent Random Variables \rightsquigarrow powers of fixed function (probability GF, Fourier tr.) $\rightsquigarrow \mathcal{N}$ ormal Law.

For problems expressed by Bivariate GF (BGF): field founded by E. Bender et al. + developments by F, Soria, Hwang, . . .

Idea: BGF $F(z, u) = \sum_{n \in \mathbb{Z}} f_n(u) z^n$, where $f_n(u)$ describes parameter on objects of size n. If (for u near 1)

$$f_n(u) \approx \omega(u)^{\kappa_n}, \qquad \kappa_n \to \infty,$$

then speak of Quasi-Powers approximation. Recycle continuity theorem, Berry-Esseen, Chernov, etc. $\Longrightarrow \mathcal{N}$ ormal law and many goodies...

(speed of convergence, large deviation fn, local limits)

Two important cases:

• Movable singularity:

$$F(z,u) \approx \left(1 - \frac{z}{\rho(u)}\right)^{-\alpha} \Longrightarrow \frac{f_n(u)}{f_n(1)} \approx \left(\frac{\rho(1)}{\rho(u)}\right)^n.$$

Variable exponent:

$$F(z,u) \approx \left(1 - \frac{z}{\rho}\right)^{-\alpha(u)} \Longrightarrow \frac{f_n(u)}{f_n(1)} \approx \begin{cases} n^{\alpha(u) - \alpha(1)} \\ \left(e^{\alpha(u) - \alpha(1)}\right)^{\log n} \end{cases}$$

Requires *uniformity* afforded by *Singularity Analysis* $(\neq Tauber or Darboux)$.

Singularity Perturbation analysis (smoothness)

↓
Uniform Quasi-Powers for coeffs
↓

Normal limit law

EXAMPLE 6. Polynomials over finite fields.

- \mathcal{P} olynomial is a $\mathfrak{S}_{equence}$ of coeffs: \mathcal{P} has Polar singularity.
- By unique factorization, \mathcal{P} is also \mathfrak{M} ultiset of \mathcal{I} rreducibles: \mathcal{I} has log singulariy.
- \implies Prime Number Theorem for Polynomials $I_n \sim \frac{q^n}{n}$.
- Marking number of \mathcal{I} -factors is approx uth power:

$$P(z,u) \approx \left(e^{I(z)}\right)^u$$
.

Variable Exponent $\Longrightarrow \mathcal{N}$ ormality of # of irred. factors. (cf Erdős-Kac for integers.)

(Analysis of algorithms, [F-Gourdon-Panario])

EXAMPLE 7. Patterns in Random Strings

Perturbation of linear system of eqns.(& many problems with finite automata, paths in graphs)

Linear system $X = X_0 + \mathbf{T}X$ w/ Perron-Frobenius. Auxiliary mark u induces smooth singularity displacement. For "natural" problems: \mathcal{N} ormal limit law.

Also sets of patterns; similarly for patterns in increasing labelled trees, in permutations, etc.

П

EXAMPLE 8. Non crossing graphs. [F-Noy] = Perturbation of algebraic equation.

$$G^{3} + (2z^{2} - 3z - 2)G^{2} + (3z + 1)G = 0$$

$$G^{3} + (2u^{3}z^{2} - 3u^{2}z + u - 3)G^{2} + (3u^{2} - 2u + 3)G + u - 1 = 0$$

Movable singularity scheme applies: \mathcal{N} ormality.

+ Patterns in context-free languages, in combinatorial tree models, in functional graphs [Cf. Drmota].

EXAMPLE 9. Profile of Quadtrees.

$$F(z,u) = 1 + 2^{3}u \int_{0}^{z} \frac{dx_{1}}{x_{1}(1-x_{1})} \int_{0}^{x_{1}} \frac{dx_{2}}{1-x_{2}} \int_{0}^{x_{2}} F(x_{3},u) \frac{dx_{3}}{1-x_{3}}.$$

Solution is of the form $(1-z)^{-\alpha(u)}$ for algebraic branch $\alpha(u)$; Variable Exponent $\Longrightarrow \mathcal{N}$ ormality of search costs.

Applies to many linear differential models that then behave like cycles-in-perms.

• Coalescence of singularities and/or exponents: e.g. Airy Law \equiv Stable($\frac{3}{2}$) [BFSS'01; cf also Pemantle].

Conclusion

For combinatorial counting and limit laws:

Modest technical apparatus & generic technology.

High-level for applications, esp., analysis of algorithms.

Plug-in on *Symbolic Combinatorics* & Symbolic Computation.

Discussion of *Schemas & Universality*" in metric aspects of random discrete structures.

E.g. Borges' theorem for words, trees, labelled trees, mappings, permutations, increasing trees, etc.

THANK YOU!

A random functional graph (mapping)

QTrees:

NW NE (1) (2)

NW NE SW SE (3) (4)

$$f^{\star}(s) := \int_0^{\infty} f^{\star}(x) x^{s-1} dx.$$