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Combinatorics: discrete structures by finitary rules
~» Enumerative & Quantitative aspects

e Counting

and asymptotics
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e Asymptotic laws (e.g., Monkey and typewriter!)

Approaches
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— Probabilistic, stochastic

— Analytic:

Generating Functions
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1. Introduction

Rota-Stanley; Foata-Schutzenberger; Joyal and UQAM group;
Jackson-Goulden, &c: ca 1980*.

Basic combinatorial constructions admit of direct

translations as operators over generating functions (GF’s).

C : class of comb. structures:

C, : # objects of size n

(counting) <

Ordinary GF's for unlabelled structures

Exponential GF's for labelled structures.




= viewed as Operators over GF's.

Operations
+ +
X X
A-H""11 @a=-H"
Pdlya Exp. el
Pélya Log. | log(1 — f)~*
(unlab.) (lab.)

Books: Goulden-Jackson, Bergeron-LL, Stanley, F-Sedgewick

— Formal power series w/ rich set of functional eqns!

—> How to extract coeff., especially, asymptotically??

1
1—f(z)

Exp(f) := exp (f(2) );  Log(f) :=log



Interpret:
O Counting GF as analytic transformation of C;
@ Comb. Construction as analytic functional.

(cf. analytic number theory, complex analysis, etc)

Asymptotic counting via Singularity Analysis (S.A.)

Refs: F—Odlyzko, SIAM A&DM, 1990; Odlyzko's 1995 survey in
Handbook of Combinatorics

+ Banderier, Fill, J. Gao, Gonnet, Gourdon, Kapur, G. Labelle,
Laforest, T. Lafforgue, Noy, Odlyzko, Panario, Pouyanne, Prodinger,
Puech, Richmond, Robson, Salvy, Schaeffer, Sipala, Soria, Steyaert,
Szpankowski, B. Vallée.



coeff. [2"]f(2) = p~ " - coeff. [2"] f(pz),

where latter is singular at z = 1.

& Nature of singularity at z = 1:
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of sing’s: Exponential factor p="
Nature of sing’s : “Polynomial” factor ¢(n)




Solving a “Tauberian” problem

Real-Tauberian Darboux-Pélya Singularity An.

(large = large) (smooth = small) (Full mappings)

Combinatorial constructions ~» Analytic Functionals

— Analytic continuation prevails for comb. GF's



2. Basic Singularity Analysis

Theorem 1. Basic scale translates:

0ap(2) =(1—2)"° (% log 1iz)ﬁ

a—1
i (logn)”.

PROOF. Cauchy's coefficient integral,

dz
15 = g [ 10

=1+ U
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@ Slowly varying = slowly varying
O Log-log = Log-Log
@ Full asymptotic expansions



Theorem 2. O-transfers:

Under continuation in a A-domain,

(

f(z) = Ao (z) + p7(2) + ... + O(w(2))
Usage: < —
fo=Aon + utn + ... + O(wn).

\

Similarly: o-transfer.

n

e Dominant singularity at p gives factor p—".
e Finitely many singularities work fine

e Some cases with oo of sing’s.
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EXAMPLE 1. 2-regular graphs [Comtet]

o 1 1 z 2
G(Z):eXp<§log1—z_§_Z)
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(Originally by Darboux-Pdlya.)

EXAMPLE 2. Richness index of trees [FSS,90] = Number of
different terminal subtrees. Catalan case:

Mean index ~ (C i C = 810g2.

n— 0o w/l()gn’ T

Related to compact tree representations as DAGSs.




3. Closure Properties

Function of S.A.—type = amenable to singularity analysis
e is continuable in a A-domain,

e admits singular expansion in scale {o, 3.

Theorem 3. Generalized polylogarithms

Lig k= Z(log n)kn= "

are of S.A.-type.

PROOF. Cauchy-Lindelof representations

> en)(=2)" = —5— p(s)z”

20T J1/9—ic0 SIn s

7

ds.

+ Mellin transform techniques (Ford, Wong, F.).

EXAMPLE 3. Entropy of Bernoulli distribution

involves
1 1

(Redundancy, coding, information th.; Jacquet-Szpankowski.) []

ogn +

e Elements like log n, v/n in combinatorial sums



Theorem 4. Functions of S.A.-type are closed under

integration and differentiation.
PROOF. Adapt from Olver, Henrici, etc.

Theorem 5. Functions of S.A.-type are closed under

Hadamard product

f(2) ©g(2) =) (fagn)2"

n

PRrROOF. Start from Hadamard’s formula

1R 096 = 5 [ 109 (F) T

+ adapt Hankel contours [H., Jungen, R. Wilson; Fill-F-Kapur]

EXAMPLE 4. Divide-and -conquer recurrences

Asympt[fn] = ¥(Sing(t)).
E.g., Catalan statistics: need

Useful in computer science applications [FFK, 20027]. [
K \
n? [ @%

n-K /
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4. Functional Equations

e Rational functions. Combinatorics: linear system Q>¢|z]

implies polar singularities (X ~%):

2" f(2) Y wnF, weQ keZs.

+ irreducibility: Perron-Frobenius =—> simple dom. pole.

e Word problems from regular language models;

e Transfer matrices [Bender-Richmond]: easy dimer coverings

in k X n strip, knight tours, etc.

e Algebraic functions, by Puiseux expansions (X?/9):

M f(z) =) Y W'l weQ, p/geq,

results from S.A. (or Darboux!)

e Word problems and context-free models;
e Trees, geom. configurations (non-crossing graphs, polygonal

triangs.); planar maps [Tutte].
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Square-root singularity is “universal” for many recur-
sive classes (irreducibility). Owes to controlled “fail-
ure” of Implicit Function Theorem where quadratic de-
pendency replaces linear (=analytic) dependency.
Entails coeff. asymptotic ~ w™n~3/2 with critical ex-
ponent —3/2 that is universal.

E.g., 2-3 trees (Meir-Moon):

Pélya’s combinatorial chemistry programme:

Starting with Pdlya 1937; Otter 1949; Harary-Robinson et al.
1970’s; Meir-Moon 1978; Drmota-Lalley-Woods thm.1990"

11-1



e "Holonomic” functions. Defined as solutions of linear
ODE's with coeffs in C(z) [Zeilberger] = D-finite.

L[f(2)] =0, L € C(2)[0].

e Stanley, Zeilberger, Gessel: great importance for
combinatorial enumeration: Young tableaux and permutation

statistics; regular graphs, constrained matrices, etc.

Fuchsian case (or “regular” singularity) (X7 log" X):

2" f(2) = Zw”nﬁ(log n)*, w,B€Q, kE€Z>p.

S.A. applies automatically to classical classification.

EXAMPLE 5. Quadtrees—RPartial Match [FGPR'92]

Fuchsian equation of order d (dimension) for GF

E.g., d = 2: Hypergeom 2 F with algebraic arguments.
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e Functional Equations and Substitution.

e Early example of balanced 2-3 trees by Odlyzko, 1979.

Infinitely many exponents with common real part implies
n

periodicities: 1}, ~ %Q(log n).

e Singular iteration for height of trees (binary and other simple
varieties; F-Gao-Odlyzko-Richmond; cf Rényi-Szekeres):

— Moments and convergence in law; Local limit law of ¥-type.

(Applies to branching processes conditioned on total progeny.)

e Digital search trees via : singularities
accumulate geometrically ~» periodicities [F-Richmond]:

e Order of binary trees (Horton-Strahler, Register function;
F-Prodinger) via Mellin tr. of GF and & singularities.
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5. Limit Laws

. sums of independent Random
Variables ~» powers of fixed function (probability GF,
Fourier tr.) ~» ANormal Law.

For problems expressed by Bivariate GF (BGF): field founded
by E. Bender et al. 4+ developments by F, Soria, Hwang, ...

Idea: BGF , where f,,(u) describes
parameter on objects of size n. If (for u near 1)

fn(u) mw(u)™,  Kn = 00,

then speak of Quasi-Powers approximation. Recycle continuity
theorem, Berry-Esseen, Chernov, etc. = Normal law and
many goodies. ..

(speed of convergence, large deviation fn, local limits)
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Two important cases:

e Movable singularity:

e~ (1-5) = 7w~ ()

e Variable exponent:

—a(u) a(u)—a(l)

Z fn(u) n
F ~|1— — e ~ ogn
(%) ( p) fn(1) {(ea<“>“<1>)lg.

Requires uniformity afforded by Singularity Analysis
(# Tauber or Darboux).

22

Uniform Quasi-Powers for coeffs

g

Normal limit law
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EXAMPLE 6. Polynomials over finite fields.

e Polynomial is a & of coeffs:

e By unique factorization, P is also 901 T

—> Prime Number Theorem for Polynomials I,, ~ q_.
n

e Marking number of Z—factors is approx uth power:

Variable Exponent =—> N ormality of # of irred. factors.
(cf Erdds-Kac for integers.)

(Analysis of algorithms, [F-Gourdon-Panario])
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EXAMPLE 7. Patterns in Random Strings

— Perturbation of linear system of eqgns.
(& many problems with finite automata, paths in graphs)

Linear system X = X, + TX w/ Perron-Frobenius.
Auxiliary mark u induces smooth singularity displacement.
For “natural” problems: Normal limit law.

Also sets of patterns; similarly for patterns in increasing

labelled trees, in permutations, etc. []
ExAMPLE 8. Non crossing graphs. [F-Noy]

= Perturbation of algebraic equation.

Movable singularity scheme applies: N ormality.

+ Patterns in context-free languages, in combinatorial tree
models, in functional graphs [Cf. Drmotal. O
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ExXAMPLE 9. Profile of Quadtrees.

Solution is of the form (1 — 2z)~*) for algebraic branch a(u);
Variable Exponent = AN ormality of search costs. O

Applies to many linear differential models that then behave like

cycles-in-permes.

e Coalescence of singularities and /or exponents: e.g. Airy
Law = Stable(2) [BFSS’01; cf also Pemantle].
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Conclusion

For combinatorial counting and limit laws:
Modest technical apparatus & generic technology.
High-level for applications, esp., analysis of algorithms.

Plug-in on Symbolic Combinatorics & Symbolic
Computation.

Discussion of Schemas & Universality” in metric aspects
of random discrete structures.

E.g. Borges' theorem for words, trees, labelled trees, mappings,
permutations, increasing trees, etc.

(VIVAV
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A random functional graph (mapping)
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QTrees:
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f*(s) := /Ooo ()1 de.
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