Theory and Practice of (some) Probabilistic Counting Algorithms

Philippe Flajolet, INRIA, Rocquencourt

http://algo.inria.fr/flajolet
From Estan-Varghese-Fisk: traces of attacks
Need number of active connections in time slices.

Incoming/Outgoing flows at 40Gbits/second.
Code Red Worm: 0.5GBytes of compressed data per hour (2001).
CISCO: in 11 minutes, a worm infected 500,000,000 machines.
The situation is like listening to a play of Shakespeare and at the end estimate the number of different words.

Rules: Very little computation per element scanned, very little auxiliary memory.

From Durand-Flajolet, LogLog Counting (ESA-2003):
Whole of Shakespeare, $m = 256$ small “bytes” of 4 bits each = 128 bytes

Estimate $n^o \approx 30,897$ vs $n = 28,239$ distinct words. Error: +9.4% w/ 128 bytes!
Uses:

— **Routers:** intrusion, flow monitoring & control

— **Databases:** Query optimization, cf $M \cup M'$ for *multisets*; Estimating the size of queries & “sketches”.

— **Statistics gathering:** on the fly, fast and with little memory even on “unclean” data \simeq layer 0 of “*data mining*”.
This talk:

- **Estimating characteristics of large data streams**
 - sampling; size & cardinality & nonuniformity index (F_1, F_0, F_2)
 - power of randomization via hashing
 - Gains by a factor of >400 (Palmer et al.)

- **Analysis of algorithms**
 - generating functions, complex asymptotics, Mellin transforms
 - Nice problems for theoreticians.

- **Theory and Practice**
 - Interplay of analysis and design \leadsto super-optimized algorithms.
1 PROB. ALG. ON STREAMS

Given: $S = \text{a large stream} S = (r_1, r_2, \ldots, r_\ell)$ with duplicates

- $\|S\| = \text{length or size: total # of records (}\ell\text{)}$
- $|S| = \text{cardinality: # of distinct records (}c\text{)}$

◊ How to estimate size, cardinality, etc?

More generally, if f_v is frequency of value v: $F_p := \sum_{v \in \mathbb{D}} (f_v)^p$.

Cardinality is F_0; size is F_1; F_2 is indicator of nonuniformity of distribution; “F_∞” is most frequent element (Alon, Matias, Szegedy, STOC96)

◊ How to sample?
- with or without multiplicity
Pragmatic assumptions/ Engineer’s point of view:
Can get random bits from data: **Works fine!**

(A1) There exists a “good” hash function

\[h : \mathcal{D} \rightarrow \mathcal{B} \equiv \{0, 1\}^L \]

Data domain \mapsto Bits

Typically: $L = 30-32$ (more or less, maybe).

\[h(x) := \lambda \cdot \left\langle x \text{ in base } B \right\rangle \mod p \]

Sometimes, also: (A2) There exists a “good” pseudo-random number gen. $T : \mathcal{B} \mapsto \mathcal{B}$, s.t. iterates $T y_0, T^{(2)} y_0, T^{(3)} y_0, \ldots$ look random. $(T(y) := (a \cdot y \mod p))$
Two preparatory examples.

Let a flow of people enter a room.

— *Birthday Paradox*: It takes on average 23 to get a **birthday collision**

— *Coupon Collector*: After 365 persons have entered, expect a **partial collection** of ~ 231 different days in the year; it would take more than 2364 to reach a full collection.

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>n</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st birthday coll.</td>
<td>$\approx ne^{-1}$</td>
<td>$\mathbb{E}_n(C) = nH_n \sim n \log n$</td>
</tr>
<tr>
<td></td>
<td>$\mathbb{E}_n(B) \sim \sqrt{\frac{\pi n}{2}}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suppose we *didn’t know* the number N of days in the year but could identify people with the same birthday. Could we *estimate* N?
1.1 Birthday paradox counting

- A warm-up “abstract” example due to Brassard-Bratley (Book 1996) = a *Gedanken* experiment.

How to weigh an urn by shaking it?

Urn contains unknown number N of balls.
- Deterministic: Empty it one by one: cost is $O(N)$.

![Urn diagram]
Probabilistic $O(\sqrt{N})$: (shake, draw, paint)*; stop!

Alg: Birthday Paradox Counting

Shake, pull out a ball, mark it with paint; repeat until draw an already marked ball.

Infer N from $T = \text{number of steps.}$
We have $\mathbb{E}(T) \sim \sqrt{\frac{\pi}{2}N}$ by Birthday Paradox.

- **Invert** and try $X := \frac{2}{\pi}T^2$. Estimate is **biased**

- **Analyze** 2nd moment of BP, find $\mathbb{E}(T^2) \sim 2N$ and propose $X := T^2/2$. Estimate is now (asymptotically) **unbiased**.

- **Wonder about accuracy**: Standard Error $:= \frac{\text{Std Deviation of estimate (X)}}{\text{Exact value (N)}}$.

 \leadsto **Need to analyze** fourth moment $\mathbb{E}(T^4)$. Do maths:

 $\mathbb{E}_N(T^{2r}) = 2^r r! N^r$,

 $\mathbb{E}_N(T^{2r+1}) = (1 \cdot 3 \cdots (2r - 1))\sqrt{\frac{\pi}{2}}N^{r+\frac{1}{2}}$.

 $\implies \mathbb{E}(T^4) \sim 8N^2$. Standard error \implies Estimate $\in (0, 3N)$. ($N = 10^6$): 384k; 3,187k; 635k; 29k; 2,678k; 796k; 981k, ...

- **Improve algorithm**. Repeat m times and average.

 \leadsto Time cost: $O(m\sqrt{N})$ for accuracy $O\left(\frac{1}{\sqrt{m}}\right)$.

 Shows usefulness of maths: Ramanujan’s $Q(n)$ function, Laplace’s method for sums or integrals (cf Knuth, Vol 1); singularity analysis...
1.2 **Coupon Collector Counting**

First Counting Algorithm: Estimate cardinalities \(\equiv \# \) of **distinct** elements.

This is real CS, motivated by *query optimization in databases*. (Whang et al, ACM TODS 1990)

Alg: Coupon Collector Counting

Given multiset \(S = (s_1, \ldots, s_\ell) \); Estimate \(\text{card}(S) \)?

Set up a table \(T[1 \ldots m] \) of \(m \) bit-cells.

— for \(x \) in \(S \) do mark cell \(T[h(x)] \);

Return \(-m \log V \), where \(V := \text{fraction of empty cells} \).

Simulate hashing table; Alg. is indep. of replications.
Let n be sought cardinality. Then $\alpha := n/m$ is filling ratio. Expect $V \approx e^{-\alpha}$ empty cells by classical analysis of occupancy. Distribution is concentrated. Invert!

Count cardinalities till N_{max} using $\frac{1}{10} N_{\text{max}}$ bits, for accuracy (standard error) = 2%.

Generating functions for occupancy; Stirling numbers; basic depoissonization.
2 SAMPLING

A very classical problem (Vitter, ACM TOMS 1985)

Algorithm (Reservoir Sampling (with multiplicities))
Sample \(m \) elements from \(S = (s_1, \ldots, s_N) \); \(N \) unknown a priori
Maintain a cache (reservoir) of size \(m \);
— for each coming \(s_{t+1} \):
 place it in cache with probability \(m/(t+1) \); drop random element;
Math: Need analysis of skipping probabilities. Complexity of Vitter’s best alg. is $O(m \log N)$.

Useful for building “sketches”, order-preserving H-fns & DS.
Can we sample values (i.e., without multiplicity)?
Algorithm due to (Wegman, ca 1984, unpub.), analysed by (F. 1990).

Sample of size $\leq b$:
depth $d = 0, 1, 2, \ldots$

Alg: Adaptive Sampling *(without multiplicities)*
Get a sample of size m from S’s values.

Set $b := 4m$ *(bucket capacity)*;
— Oversample by adaptive method;
– Get sample of m elements from the $(b \equiv 4m)$ bucket.
Analysis.

View collection of records as a set of bitstrings.

Digital tree aka trie, paged version:

\[
\begin{align*}
\text{Trie}(\omega) & \equiv \omega \text{ if } \text{card}(\omega) \leq b \\
\text{Trie}(\omega) &= \text{Trie}(\omega \setminus 0) \quad \text{Trie}(\omega \setminus 1) \quad \text{if } \text{card}(\omega) > b
\end{align*}
\]

(Underlies dynamic and extendible hashing, paged DS, etc)

Refs: (Knuth Vol 3), (Sedgewick, Algorithms), Books by Mahmoud, Szpankowski. General analysis by (Clément-F-Vallée, Alg. 2001), etc.

Depth in Adaptive Sampling is length of leftmost branch; Bucket size is # of elements in leftmost page.
For recursively defined parameters: \(\alpha[\omega] = \beta[\omega \setminus 0] \):

\[
\mathbb{E}_n(\alpha) := \sum_{k=0}^{n} \frac{1}{2^n} \binom{n}{k} \mathbb{E}_k(\beta).
\]

Introduce \textit{exponential generating functions (EGF)}:

\[
A(z) := \sum_n \mathbb{E}_n(\alpha) \frac{z^n}{n!} \quad \text{&c. Then } \quad A(z) = e^{z/2} B\left(\frac{z}{2}\right).
\]

For recursive parameter \(\phi \):

\[
\Phi(z) = e^{z/2} \Phi\left(\frac{z}{2}\right) + \text{Init}(z)
\]

Solve by iteration, extract coefficients; Mellin-ize \(\sim \) later!
Bonus: Second Counting Algorithm for cardinalities.

Let \(d := \) sampling depth; \(\xi := \) sample size.

Theorem [F90]: \(X := 2^d \xi \) estimates the cardinality of \(S \) using \(b \) words of memory, in a way that is unbiased and with standard error \(\approx 1.20/\sqrt{b} \).

- \(1.20 \approx 1/\sqrt{\log 2} \): with \(b = 1,000 \text{W} \), get 4% accuracy.
- Distributional analysis by (Louchard RSA 1997).
- Related to folk algorithm for leader election on channel: “Talk, flip coin if noisy; sleep if Tails; repeat!”
- Related to “tree protocols with counting”

\(\Rightarrow \) Ethernet. Cf (Greenberg-F-Ladner JACM 1987).
3 APPROXIMATE COUNTING

The oldest algorithm (Morris CACM:1977), analysis (F, 1985). Maintain F_1, i.e., counter subject to $C := C + 1$.

Theorem: Count till n probabilistically using $\log_2 \log n + \delta$ bits, with accuracy about $0.59 \cdot 2^{-\delta/2}$.

Beats information theory(!?): 8 bits for counts $\leq 2^{16}$ w/ accuracy $\approx 15\%$.

Alg: Approximate Counting

Initialize: $X := 1$;
Increment: do $X := X + 1$ with probability 2^{-X};
Output: $2^X - 2$.

In base $q < 1$: increment with probability q^X; output $(q^{-x} - q^{-1}) / (q^{-1} - 1)$; use $q = 2^{-2^{-\delta}} \approx 1$.

20
10 runs of APCO: value of $X (n = 10^3)$
Methodology:

Paths in graphs \mapsto Generating Functions: $(f_n) \mapsto f(z) := \sum_n f_n z^n$.

Here: Symbolically describe all paths:

$$(a_1)^* b_1 (a_2)^* b_2 (a_3)^* \quad \text{since} \quad \frac{1}{1-f} = 1 + f + f^2 + \cdots \simeq (f)^*.$$

Perform probabilistic valuation $a_j \mapsto q^j; b_j \mapsto 1 - q^j$:

$$H_3(z) = \frac{q^{1+2} z^2}{(1 - (1 - q)z)(1 - (1 - q^2)z)(1 - (1 - q^3 z))}.$$

(Prodinger’94) Euler transform $\xi := z/(1-z)$: $z H_k(z) = \frac{q^{(k)} \xi^{k-1}}{(1 - \xi q) \cdots (1 - \xi q^k)}$.

Exact moments of X and estimate q^X via Heine’s transformation of q-calculus: mean is unbiased, variance ~ 0.59.

\[\]
Partial fraction expansions ~ asymptotic distribution
= quantify typical behaviour + risk! (Exponential tails \(\gg\) Chebyshev ineq.)

We have \(\mathbb{P}_n(X = \ell) \sim \phi(n/2^\ell)\), where \((q)_j := (1 - q) \cdots (1 - q_j)\).

\[\phi(x) := \sum_{j \geq 0} \frac{(-1)^j q^{(j)}_2 e^{-xq^{-j}}}{(q)_\infty (q)_j}\]

Fluctuations: \ldots, \frac{n}{2L}, \ldots, \frac{n}{4}, \ldots depend on \(L = \lfloor \log_2 n \rfloor\).

cf. Szpankowski, Mahmoud, Fill, Prodinger, \ldots

Analyse storage utilization via Mellin transform
Approximate Counting
Mean(X) – $\log_2 n$:

The Mellin transform (F. Régnier Sedgewick 1985); (FLGoDu 1995)

$$f^*(s) := \int_0^\infty f(x)x^{s-1} \, dx.$$

(P_1) Mapping properties (complex analysis):
Asympt$(f) \iff$ Singularities(f^*). Pole at $\sigma \rightarrow \approx x^\sigma$

(P_2) Harmonic sums (superposition of models)

$$\left[\sum_k \lambda_k f(\mu_k x) \right] \rightarrow \left[\sum_k \lambda_k (\mu_k)^{-s} \right] f^*(s).$$
EXAMPLE: dyadic sum, $F(x) = \sum \phi \left(\frac{x}{2^\ell} \right) \sim F^*(s) = \frac{f^*(s)}{1 - 2^s}$.

Standard asymptotic terms + $x^{i\chi} \equiv \exp(i\chi \log x)$.

25
Cultural flashes

— Morris (1977): Counting a large number of events in small memory.
— The power of probabilistic machines & approximation (Freivalds IFIP 1977)
— The FTP protocol: Additive Increase Multiplicative Decrease (AIMD) leads to similar functions (Robert et al, 2001)
— Probability theory: Exponentials of Poisson processes (Yor et al, 2001)
4 CARDINALITY ESTIMATORS

$F_0 = \text{Number of different values}$

— 1984–1990: (Wegner) (F90 COMP) Adaptive Sampling
— 1996: (Alon et al, STOC) F_p statistics \sim later
— 2000: (Indyk FOCS) Stable Law Counting \sim later
— 2001: (Estan-Varghese SIGCOMM) Multiresolution Bitmap
— 2003: (Durand-F ESA) Loglog Counting
4.1 Probabilistic Counting

Third Counting Algorithm for cardinalities:

Alg: Probabilistic Counting
Input: a stream S; Output: cardinality $|S|$
For each $x \in S$ do /* $\rho \equiv$ position of leftmost 1-bit */
 Set BITMAP[ρ(hash(w))] := 1; od;
Return P where P is position of first 0.
— P estimates $\log_2(\varphi n)$ for $\varphi \approx 0.77351$

— **Average** over m trials $A = \frac{1}{m}[A_1 + \cdots + A_m]$; return $\frac{1}{\varphi} 2^A$.

— In fact, use **stochastic averaging**, which needs only **one** hash function: $S \mapsto (S_{000}, \ldots, S_{111})$.

— Analysis provides

$$\varphi = \frac{e^\gamma}{\sqrt{2}} \prod_{m \geq 2}^- m^{\epsilon(m)}, \quad \epsilon(m) := (-1)^{\sum \text{bits}(m)}.$$

$\epsilon(19) = \epsilon(\langle 10011 \rangle_2) = (-1)^3 = -1$. **Standard error** is $0.78/\sqrt{m}$ for m Words of $\log_2 N$ bits. **+ Exponential Tails \gg Chebyshev.**

(AMS96) and subsequent literature claim wrongly that **several** hash functions are needed!
Theorem [FM85]: Prob. Count. is asymptotically unbiased. Accuracy is $\frac{0.78}{\sqrt{m}}$ for m Words of size $\log_2 N$. E.g. 1,000W = 4kbytes \sim 2.5% accuracy.

Proof:

trie analysis

\[1 \cdot (e^{x/8} - 1)(e^{x/4} - 1)(e^{x/2} - 1) \cdot (1 - q)(1 - q^2)(1 - q^4) \cdots = \sum_n (-1)^\epsilon(n) \sum \text{bits}(n) q^n. \]

Distribution:

\[Q(x) := e^{-x/2} \prod_{j=0}^{\infty} (1 - e^{-x2^j}) \]

\[\Pr_n(X = \ell) \sim Q\left(\frac{n}{2^\ell}\right) \]

+ Mellin requires $N(s) := \sum_{n \geq 1} \frac{\epsilon(n)}{n^s}$. One finds $\log_2 \varphi \equiv -\Gamma'(1) - N'(0) + \frac{1}{2}$, &c.
Data mining of the Internet graph

(Palmer, Gibbons, Faloutsos2, Siganos 2001)

Internet graph: 285k nodes, 430k edges.

For each vertex v, define ball $B(v; R)$ of radius R.

Want: histograms of $|B(v, R)|$ $R = 1 \ldots 20$

Get it in minutes of CPU rather than a day (400× speedup)

b) Histogram of diameters
Update procedure: $(h - 1) \mapsto h$ is

for each edge (u, v) do $B(v, h) := B(v, h) \cup B(u, h - 1)$

Use: Probabilistic Counting. Operate in core.

$$\text{Card}_{PC}(S \cup T) = \text{Card}_{PC}(S) \lor \text{Card}_{PC}(T).$$

where Card_{PC} is BITMAP evaluator of cardinalities.

Allows for fully distributed implementation.
4.2 LogLog Counting

Fourth Counting Algorithm for cardinalities: (Durand-F, ESA 2003)

Claim: the best algorithm on the market!

- Hash values and get $\rho(h(x)) = \text{position of leftmost 1-bit} = \text{a geometric RV} \ G(x)$.

- To set S associate $R(S) := \max_{v \in S} G(v)$.

- Max of geometric RVs are well-known (Prodinger*).

$R(s) \text{ estimates } \sim \log(\hat{\varphi} \ \text{card}(S))$, with $\hat{\varphi} := e^{-\gamma} \sqrt{2}$.
• Do stochastic averaging with \(m = 2^\ell \):

E.g., \(S \cong \langle S_{00}, S_{01}, S_{10}, S_{11} \rangle \): count separately.

Return \(\frac{|m|}{\phi} 2^{\text{Average}} \).

++ Switch to Coupon Collector Counting for small cardinalities.
++ Optimize by pruning discrepant values \(\sim \) superLogLog.
Theorem. LogLog needs m “bytes”, each of length $\log_2 \log N$.

Accuracy is: $\frac{1.30}{\sqrt{m}}$ (BASIC) or $\frac{0.95}{\sqrt{m}}$ (SUPER)

Proof: Generating Functions + Saddle-point depoissonization (Jacquet-Szpankowski) + Mellin. $1.30 \hat{=} \sqrt{\frac{1}{12} \log^2 2 + \frac{1}{6} \pi^2}$.

Whole of Shakespeare:

$m = 256$ small “bytes” of 4 bits each = 128bytes

Estimate $n^\circ \approx 30,897$ against $n = 28,239$ distinct words

Error is $+9.4\%$ for 128 bytes(!!)
An aside: **Analytic depoissonization** (JaSz95⁺)

- **Problem**: Recover asympt. f_n from $f(z) = \sum_n f_n \frac{z^n}{n!}$?

- Intuition: “with luck” $f_n \sim \phi(n)$ where $\phi(z) := e^{-z} f(z)$ is Poisson g.f. (Here: “Luck” means good lifting of $\phi(z)$ to $\mathbb{C} \equiv$ Poisson flow of complex rate!)

\[
\begin{align*}
 f_n &= \frac{n!}{2i\pi} \oint f(z) \frac{dz}{z^{n+1}} \\
 &\approx \phi(n)
\end{align*}
\]
Features: Errors \approx Gaussian, seldom more than $2\times$ standard error.
Algorithm \textit{scales down} (for small cardinalities) and Algorithm \textit{scales up} (large memory size): HYBRIDIZE with Collision Counting.

Mahābhārata: 8MB, 1M words, 177601 diff.
HTTP server: 400Mb log pages 1.8 M distinct req.

<table>
<thead>
<tr>
<th>m</th>
<th>2^6 (50by)</th>
<th>2^{10} (0.8kby)</th>
<th>2^{14} (12kb)</th>
<th>2^{18} (200kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs:</td>
<td>8.9%</td>
<td>2.6%</td>
<td>1.2%</td>
<td>0.32%</td>
</tr>
<tr>
<td>σ:</td>
<td>11%</td>
<td>2.8%</td>
<td>0.7%</td>
<td>0.36%</td>
</tr>
</tbody>
</table>
Summary

Analytic results \((\lg \equiv \log_2)\): Alg/Mem/Accuracy

<table>
<thead>
<tr>
<th>CouponCC</th>
<th>AdSamp</th>
<th>ProbC</th>
<th>LogLog</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\approx \frac{N}{10}) bits</td>
<td>(m \cdot \lg N) Words</td>
<td>(m \cdot \lg \frac{N}{m}) Words</td>
<td>(m \cdot \lg \lg \frac{N}{m}) Bytes</td>
</tr>
<tr>
<td>(\approx 2%)</td>
<td>(\frac{1.20}{\sqrt{m}}) W</td>
<td>(\frac{0.78}{\sqrt{m}}) W</td>
<td>(\approx \frac{1.30-0.95}{\sqrt{m}}) By</td>
</tr>
</tbody>
</table>

\(F_0\) statistics, \(N = 10^8\) & 2% error

- Coupon Collector Counting = 1 Mbyte
- Adaptive Sampling = 16 kbytes
- Probabilistic Counting: = 8 kbytes
- Multiresolution bitmap (analysis?) = 5 kbytes?
- Loglog Counting = 2 kbytes

(NB: LogLog counting + compression \(\sim \lg \lg N + O(m)\) bits !?)
5 FREQUENCY MOMENTS

5.1 AMS’s F_2 algorithm

Recall: Alon, Matias, Szegedy (STOC 1996)***

$$F_2 := \sum_v (f_v)^2,$$

where f_v is frequency of value v.

A beautifully simple idea: $\text{flip}(x) \equiv \epsilon(x) = \pm 1$ based on $\text{hash}(x)$.

\text{Alg: } F2;
Initialize $Z:=0$;
For each x in S do $Z := Z + \text{flip}(x)$.
Return Z^2.
Collect m Z-values and average, with T-transform.

$$
\mathbb{E}(Z^2) = \mathbb{E}\left(\sum_{x \in S} \epsilon(x)\right)^2 = \mathbb{E}\left(\sum_j f_j \cdot \epsilon(j)\right)^2 = \sum_j (f_j)^2.
$$

(Actually, they prove stronger complexity result by complicated (impractical?) algorithm.) (What about stochastic averaging?)
5.2 Indyk’s F_p algorithm

A beautiful idea of Piotr Indyk (FOCS 2000)*** for F_p, $p \in (0, 2)$.

- Stable law of parameter $p \in (0, 2)$: $\mathbb{E}(e^{itX}) = e^{-|t|^p}$.

No second moment; no 1st moment if $p \in (0, 1)$.

$c_1 X_1 + c_2 X_2 \overset{\mathcal{L}}{=} \mu X$, with $\mu := (c_1^p + c_2^p)^{1/p}$.

Alg: F_p;
Initialize $Z:=0$;
For each x in S do $Z := Z + \text{Stable}_\alpha(x)$.
Return Z.

Estimate F_p parameter from m copies of Z-values.

Remark: Use of $\log(|Z|)$ to estimate seems better than median(?)
6 CONCLUSIONS

For streams, using practically $O(1)$ storage, one can:
— Sample positions and even distinct values;
— Estimate F_0, F_1, F_2, F_p ($0 < p \leq 2$) even for huge data sets;
— Need no assumption on nature of data.

The algorithms are based on randomization \mapsto Analysis fully applies
— They work exactly as predicted on real-life data;
— They often have a wonderfully elegant structure;
— Their analysis involves beautiful methods for AofA: “Symbolic modelling by generating functions, Singularity analysis, Saddle Point and analytic depeoissonization, Mellin transforms, stable laws and Mittag-Leffler functions, etc.”
That’s All, Folks!