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C is a class of combinatorial structures.
Cn = collection of objects of size n.

Draw uniformly at random from Cn?: P(γ) =
1

Cn
, Cn := ||Cn||.

E.g.: trees, permutations, words, graphs, mappings, maps, etc.

Classification theory [Van Cutsem]; image synthesis [Viennot]; random testing in software eng. [J. Fayolle],
combinatorics; simulation & statistical analysis of models in genetics [Denise], ecology [de Reffie], . . .
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Bijective method
Surjective method
Rejection method
Markov method
Recursive method

Random Generation and Combinatorics

Bijective method: find bijection with simpler (product) set.

Surjective method: find a “multiple” set that is simpler

Rejection method: find a larger set and filter.

Markov method: superimpose Markov chain structure & travel!

Recursive method: decompose according to counting probabilities

Boltzmann: This talk!
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Bijective method

Find bijection with simpler set
Class C is such that Cn = ||Cn|| is a product.

Words: Wn
∼= {a, b}n =⇒ n random flips.

Permutations: Pn
∼= [0]× [0 . . 1]× · · · × [0 . . n − 1] =⇒ n RVs

Dyck bridges: B2n
∼=

(2n
n

)
: [Vitter]

Usually requires pure product form!
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Surjective method

Find many-to-one uniform correspondence between Cn and simpler set An.

divisibility: Cn

∣∣ An.

Dyck excursions: by conjugacy with bridges  Catalan trees.

Cn =
1

2n + 1

(
2n + 1

n

)
.

Jean-Luc Rémy’s algorithm for binary trees.

Planar maps: cf Schaeffer et al.: by tree conjugation.

Usually requires pure product form!
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Rejection method

Find larger set such that Cn ⊂ Dn, with simpler D

=⇒ Draw δ ∈ D. Test whether δ ∈ C; repeat if needed

Problem: Probability of success is
Cn

Dn
.

E.g. Prime numbers; irreducible polynomials. Cf Ruskey.

E.g. Florentine algorithm for Dyck/Motzkin meanders.

Avoid exponentially small probabilities?
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Markov method

— View elements of a class Sn as states of a Markov chain
— Set up transitions (e.g, via transformations)
If the graph is regular, then the stationary distribution is uniform.

Reversible Markov chains, Coupling [Propp-Wilson, Jerrum,. . . ].
 Self-avoiding walks, dimer coverings, “hard” combinatorial objects.

May need information on mixing speed λ2.
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Recursive method

• Use counting sequences to decide splitting probabilities.

E.g.: Binary trees with n external nodes, class Bn.

— A. Set up recurrence Bn =
n−1∑
k=1

BkBn−k .

— B. Split n 7→ 〈k, n − 1− k〉 with probability
BkBn−k

Bn
.

Theorem (Recursive method)

Complexity of preprocessing is O(n2) large integer operations.
Complexity of boustrophedonic random generation is O(n log n)
arithmetic operations.

• ECO systems. • Wilf’s path approach.
J. van der Hoeven: Preprocessing in time O(n1+ε). A. Denise &
P. Zimmermann: Floating point implementations. Also: Maple Combstruct.
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Boltzmann framework

Principle:

• Generate according to a distribution spread over all C,
depending on control parameter x .
• Size becomes a random variable (RV).
• Target choice of x to get objects of size near n with fair probability.

Cf Statistical Physics: P(γ) =
1

Z
exp

(
− β

T
E [γ]

)
.
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Ordinary (unlabelled) Boltzmann models

Assign to γ ∈ C probability proportional to exponential of its size:

P(γ) ∝ x |γ| =⇒ P(γ) =
x |γ|

C (x)
,

C (x) =
∑

n Cnx
n is ordinary generating function (OGF).

Requires x ≤ ρC , where ρC is the radius of convergence of C (x).

 Size becomes a random variable:

P(Size = n) =
Cnx

n

C (x)
.
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Unions, products, and sequences
Labelled models, sets and cycles
Unlabelled sets and cycles

Boltzmann Samplers: the Plan!

Develop design rules given combinatorial specifications.

— Basic constructions: ∪,×,Seq
— Labelled models: add Set,Cyc
— Return to unlabelled models: add MSet,Pset,Cyc

Do optimization w.r.t. size at the end: complexity issues.

Based on [DuFlLoSc04] in CPC for labelled; [FlFuPi06] for unlabelled.

Cf. F.+Sedgewick, Analytic Combinatorics.
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Unions, products

Lemma (Disjoint unions)

Boltzmann sampler ΓC for C = A ∪ B:
With probability A(x)

C(x) do ΓA(x) else do ΓB(x)

Lemma (Products)

Boltzmann sampler ΓC for C = A× B:
Generate independent pair 〈ΓA(x), ΓB(x)〉.

Proofs = One-liners! Using basic definitions of probability.

— Disjoint union: |γ| = n =⇒ if γ ∈ A then PC(γ) =
xn

A(x)
· A(x)

C (x)
. . .

— Product: PC(γ) =
xk

A(x)
· xn−k

B(x)
=

xn

C (x)
.
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Sequences

Lemma (Sequences)

Boltzmann sampler ΓC for C = Seq(A):
• Generate K which is geometric with parameter A(x)
• Generate independent K-tuple 〈ΓA(x), . . . , ΓA(x)〉.

Proof. Recursive equation: C = 1 +AC with +,× constructions.

With probability
1

A(x)
STOP; else ΓA(x) and continue rec. with ΓC (x).

Number of trials of Bernoulli RV till success is Geometric.
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Specifications with {∪,×,Seq}

Specs GF Sampler

1 or Z (atom) 1 or x ΓC := output 1 or •

C = A ∪ B C (x) = A(x) + B(x) ΓC (x) :=
A(x)

C (x)
−→ ΓB(x)

∣∣ ΓC (x)

C = A× B C (x) = A(x)× B(x) ΓC (x) := 〈ΓB(x), ΓC (x)〉
C = Seq(A) C (x) =

1

1− A(x)
ΓC (x) := Geom[A(x)] =⇒ ΓA(x)

Compile sampler from specification automatically.

14 / 36



Random Generation
Boltzmann Framework

Boltzmann Samplers
Size Control and Complexity

Unions, products, and sequences
Labelled models, sets and cycles
Unlabelled sets and cycles

Specifications with {∪,×,Seq} — continued

Theorem (Complexity Minitheorem)

Given oracle that provide the finitely many values of GFs, complexity is
linear in size of object produced.

Proof {∪,×,Seq}: overhead O(1) per node of derivation tree. Complexity

model: exact computations over R; in practice, “floats” (more later).

Definition

Regular specification = iterative (nonrecursive) with {∪,×,Seq}.
Contex-free specification = recursive with {∪,×,Seq}.

Proposition

Regular structures and context-free structures have Boltzmann
samplers of linear-time complexity.
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Specifications with {∪,×,Seq} — continued (2)

Regular specifications

• Binary words with longest run of a’s of length < 17.

Seq<17({a}) · Seq (b Seq<17({a})) .

• Codes, e.g., {aba, abaaa, abba}.
• Polyominos that have rational GF, e.g., Vertically convex.

• Languages recognized by deterministic finite automata E.g.,
Strings containing three times the pattern “abracadabra”.
• Paths in digraphs even in the presence of sinks.
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Specifications with {∪,×,Seq} — continued (3)

Contex-free specifications.

• Binary trees: B = Z + B × B.
— Solve quadratic equation B = x + B2 numerically, given x ;
— Out put single node with probability x

B ;

Else: Do two independent recursive calls to ΓB(x).

For rooted unlabelled trees, Boltzammn model reduces to
branching process.
Generate Motzkin trees [6=Alonso-Schoot], (unbalanced)
2–3-trees; random walks with finite step sets (dice), etc.

Noncrossing graphs:
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Exponential (labelled) Boltzmann models

• For labelled classes, model is called
exponential or labelled Boltzmann model

P(γ) ∝ x |γ|

|γ|!
=⇒ P(γ) =

1

C (x)

x |γ|

|γ|!
,

C (x) :=
∑
n

Cn
xn

n!
is exponential GF (EGF).

— Replace Cartesian product by labelled product (distribute labels).
— Unions, products, sequences: work like before, but with EGFs.

— Sets and cycles = to do!
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Labelled sets and cycles

Poisson law: P(X = k) = e−λ λk

k
!.

Logarithmic law: P(X = k) =
1

L

λk

k
, L := 1/ log(1− λ)−1.

Lemma

Labelled sets and labelled cycles are obtained by a Poisson and
Logarithmic generator resp.

C = Set(A) : Pois(A(x)) =⇒ ΓA(x)
C = Cyc(A) : Loga(A(x)) =⇒ ΓA(x)

Cf: C = Seq(A) : Geom(A(x)) =⇒ ΓA(x).
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Applies to any specifiable class of combinatorial objects
• For each x , need finite # of computable real constants.
• Linear-time random generation.
• Size is not controlled (yet)

Example: Cayley trees = T = Z ? Set(T ).
— Solve T (x) = xeT (x) numerically.
— Generate root (Z);
— Choose random root degree as ∆ := Pois(T (x));
— Call ∆ independent copies of Γ(x);
— Hope for the best regarding size ( later)
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Examples:

Set partitions. S = Set(Set≥1(Z)).
# components is Pois(ex − 1); each comp. is Pois(x)

˛̨
≥ 1 = Vershik.

Ordered set partitions. Geometric triggers Poisson.

Assemblies of filaments. Poisson triggers geometric.
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Unlabelled sets and cycles

[Pólya] Carbon has valency 4; hydrogen has valency 1. How to
generate a random alcohol?.
= Nonplane unlabelled tree with node degrees ∈ {0, 3}.
Need to take care of symmetries to generate object only once!
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Unlabelled sets

• The multiset construction C = MSet(A): form all finite
multisets,

C ∼=
∏
α∈A

Seq({α}).

(i) Gedanken Alg. Scan A & generate α with multiplicity Geom(x |α|).
(ii) Observe GF equation: C (x) = exp(A(x)) · exp( 1

2A(x2)) · · · .
(iii) Do Poisson-controled generator for A with parameter A(x); repeat
with 1

2A(x2); etc.
(iv) Compute when to stop. Collect multset.

Proof involves Geom(λ) ≡ Pois(λ) + Pois( 1
2
λ2) + · · · .
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Powersets and cycles

• The cycle construction: proceed from GFs. For C = Cyc(A),

C (z) = log
1

1− A(z))
+

1

2
log

1

1− A(z2))
+ · · ·

Treat as infinite union, cf multisets. E.g., Necklaces.

• The powerset construction C = Pset(A): form all finite sets

(no repetition!). Use identity 1 + z = (1−z2)
(1−z) .

Generate Boltzmann multiset and throw away all elements of even
multiplicity.

• Relativized constructions like C = MSet3(A): do ΓA(x3), etc.
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Unlabelled constructions

Theorem (Main Complexity Theorem)

For a class C specified (poss. recursively) from finite sets using

+, ×, Seq, MSet, MSetk , Cyc, Cyck ,

The Boltzman sampler ΓC (x) operates in linear time in the size of
the object produced.

Also allow for powersets as soon as ρ < 1.
Examples. Integer partitions, nonplane unlabelled trees,
alcohols, mapping patterns [functional graphs], series-parallel
circuits, etc
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Partition of integer

Cyclic composition

Partition of integer into distinct summands
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Nonplane tree — w/o automorphism Acyclic alcohol

27 / 36



Random Generation
Boltzmann Framework

Boltzmann Samplers
Size Control and Complexity

Unions, products, and sequences
Labelled models, sets and cycles
Unlabelled sets and cycles

Functional graph
Series-parallel circuit
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Complexity

Size control

PGF(Size) =
C (ux)

C (x)
=⇒ Ex(Size) =

xC ′(x)

C (x)
.

Usually requires x → ρC to get large structures.

29 / 36



Random Generation
Boltzmann Framework

Boltzmann Samplers
Size Control and Complexity

Size control
Discrete samplers

Size control (1)

Free Boltzmann samplers: produce objects with randomly
varying sizes!
E.g., VC-polyominos: 37, 158, 389, 91, 21, 110, . . .

Tuned Boltzmann samplers: choose x so that expected size
= n.

Analysis of size distribution of free sampler determines
complexity.
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Size control (2)

“Frequent” profiles: [cf Analytic Combinatorics]

General Trees
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Peaked Bumpy Flat

Depends on singularity type of generating function.
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Theorem (Complexity I)

“Bumpy type” is granted for Hayman-admissible models.
Approximate-size complexity = O(n). Exact size = o(n2).

Applies to GFs that are of type Exp ◦ Fast-growth.

Theorem (Complexity II)

“Flat type” is granted for algebraic-logarithmic sing. + infinite
Approximate-size complexity = O(n). Exact-size = o(n2).

Theorem (Complexity III)

For “critical sequences”:
Exact-size complexity = O(n).

Renewal type of algorithm at critical ρ.
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Size control (3): Pointing

Pointing: If A is a class, then C = A• is the set of objects with
one atom pointed, and

Cn = nAn, C (z) = z
d

dz
A(z).

Uniformity at given size is preserved (only size profile is altered).
Transforms peaked (inefficient) distributions to flat (efficient).
E.g., binary trees B:

B = Z + B × B =⇒
{
B = Z + B × B
B• = Z + B• × B + B × B•.

All simple families of trees: it works!
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Discrete samplers

• Real arithmetics versus bit [boolean] complexity?

— Do bit-level generators for Bernoulli, Geometric, Poisson,
Logarithmic.

1

π
= 〈0.010100010111110011000〉2.

Bernoulli: return bit at position Geom(1
2); Geometric: iterate till 1.

Cf. Knuth-Yao (1976); Von Neumann. Soria-Pelletier et al.

— Integrated samplers for set partitions, etc? Expect low bit-complexity!

• In practice do 40D evaluations of constants and be happy!
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Conclusions

• Allow computation over the reals and get linear or
subquadratic time samplers.

• Practically get objects of sizes in the range 104 to 108.

• Allow for other operations: Fusy = planar graphs in
quasi-linear time � [Noy-Gimenez]

• Cf Bodini-Fusy-Pivoteau; Bassino-Nicaud [Nancy]
Plane partitions; random automata, . . .

• Have systematic design principles! Get largely auto-
mated implementations?

A plane parttion of size 15,000 [Carine Pivoteau]
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Some literature (all on the web!)
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