Boltzmann Sampling and Random Generation of Combinatorial Structures

Philippe Flajolet

Based on joint work with Philippe Duchon, Éric Fusy, Guy Louchard, Carine Pivoteau, Gilles Schaeffer

GASCOM’06, Dijon, September 12, 2006
\mathcal{C} is a class of combinatorial structures.

$\mathcal{C}_n =$ collection of objects of size n.

Draw uniformly at random from \mathcal{C}_n?:

$$\mathbb{P}(\gamma) = \frac{1}{C_n}, \quad C_n := ||\mathcal{C}_n||.$$

E.g.: trees, permutations, words, graphs, mappings, maps, etc.

Classification theory [Van Cutsem]; image synthesis [Viennot]; random testing in software eng. [J. Fayolle], combinatorics; simulation & statistical analysis of models in genetics [Denise], ecology [de Reffie], . . .
Random Generation and Combinatorics

- **Bijective method**: find bijection with simpler (product) set.
- **Surjective method**: find a “multiple” set that is simpler.
- **Rejection method**: find a larger set and filter.
- **Markov method**: superimpose Markov chain structure & travel.
- **Recursive method**: decompose according to counting probabilities.

Boltzmann: This talk!
Bijective method

Find bijection with simpler set

Class \mathcal{C} is such that $|C_n|$ is a product.

Words: $\mathcal{W}_n \cong \{a, b\}^n \Rightarrow n$ random flips.

Permutations: $\mathcal{P}_n \cong [0] \times [0..1] \times \cdots \times [0..n-1] \Rightarrow n$ RVs

Dyck bridges: $\mathcal{B}_{2n} \cong \binom{2n}{n}$:

![Graph](image.png)

[Note: Vitter]

⚠️ Usually requires pure product form!
Surjective method

Find many-to-one uniform correspondence between \(C_n \) and simpler set \(A_n \).

\[
divisibility: \quad C_n \mid A_n.
\]

Dyck excursions: by conjugacy with bridges \(\rightsquigarrow \) Catalan trees.

\[
C_n = \frac{1}{2n+1} \binom{2n+1}{n}.
\]

Jean-Luc Rémy’s algorithm for binary trees.

Planar maps: cf Schaeffer et al.: by tree conjugation.

⚠️ Usually requires pure product form!
Rejection method

Find larger set such that $C_n \subset D_n$, with simpler D.

\implies Draw $\delta \in D$. Test whether $\delta \in C$; repeat if needed.

Problem: Probability of success is $\frac{C_n}{D_n}$.

E.g. **Prime numbers; irreducible polynomials.** Cf Ruskey.

E.g. Florentine algorithm for **Dyck/Motzkin meanders**.

Avoid exponentially small probabilities?
Markov method

— View elements of a class S_n as states of a Markov chain
— Set up transitions (e.g., via transformations)
If the graph is regular, then the stationary distribution is uniform.

Reversible Markov chains, Coupling [Propp-Wilson, Jerrum, …].

⇒ Self-avoiding walks, dimer coverings, “hard” combinatorial objects.

⚠ May need information on mixing speed λ_2.
Recursive method

- **Use counting sequences to decide splitting probabilities.**

 E.g.: Binary trees with n external nodes, class B_n.

 - A. Set up recurrence $B_n = \sum_{k=1}^{n-1} B_k B_{n-k}$.

 - B. Split $n \mapsto \langle k, n - 1 - k \rangle$ with probability $\frac{B_k B_{n-k}}{B_n}$.

Theorem (Recursive method)

Complexity of preprocessing is $O(n^2)$ large integer operations.

Complexity of boustrophedonic random generation is $O(n \log n)$ arithmetic operations.

- **ECO systems.** • Wilf’s path approach.

 J. van der Hoeven: Preprocessing in time $O(n^{1+\varepsilon})$. A. Denise & P. Zimmermann: Floating point implementations. Also: Maple Combstruct.
Boltzmann framework

Principle:

- Generate according to a **distribution spread over all** C, depending on **control parameter** x.
- **Size** becomes a **random variable** (RV).
- Target **choice of x** to get objects of size near n with fair probability.

Cf Statistical Physics: $\mathbb{P}(\gamma) = \frac{1}{Z} \exp \left(-\frac{\beta}{T} E[\gamma] \right)$.
Assign to $\gamma \in C$ probability proportional to exponential of its size:

$$\mathbb{P}(\gamma) \propto x^{\lvert \gamma \rvert} \implies \mathbb{P}(\gamma) = \frac{x^{\lvert \gamma \rvert}}{C(x)},$$

$C(x) = \sum_n C_n x^n$ is ordinary generating function (OGF). Requires $x \leq \rho_C$, where ρ_C is the radius of convergence of $C(x)$.

Size becomes a random variable:

$$\mathbb{P}({\text{Size}} = n) = \frac{C_n x^n}{C(x)}.$$
Develop design rules given combinatorial specifications.

— Basic constructions: \cup, \times, SEQ
— Labelled models: add SET, Cyc
— Return to unlabelled models: add $\text{MSet}, \text{Pset}, \text{Cyc}$

Do optimization w.r.t. size at the end: complexity issues.

Based on [DuFlLoSc04] in CPC for labelled; [FlFuPi06] for unlabelled.
Cf. F. + Sedgewick, Analytic Combinatorics.
Unions, products

Lemma (Disjoint unions)

\[\text{Boltzmann sampler } \Gamma C \text{ for } C = A \cup B: \]
With probability \(\frac{A(x)}{C(x)} \) do \(\Gamma A(x) \) else do \(\Gamma B(x) \)

Lemma (Products)

\[\text{Boltzmann sampler } \Gamma C \text{ for } C = A \times B: \]
Generate independent pair \(\langle \Gamma A(x), \Gamma B(x) \rangle \).

Proofs = One-liners! Using basic definitions of probability.

| Disjoint union: | \(|\gamma| = n \iff \gamma \in A \) then \(\mathbb{P}_C(\gamma) = \frac{x^n}{A(x)} \cdot \frac{A(x)}{C(x)} \) . . . |
| Product: | \(\mathbb{P}_C(\gamma) = \frac{x^k}{A(x)} \cdot \frac{x^{n-k}}{B(x)} = \frac{x^n}{C(x)} \). |
Lemma (Sequences)

Boltzmann sampler ΓC for $\mathcal{C} = \text{SEQ}(\mathcal{A})$:

- Generate K which is geometric with parameter $A(x)$
- Generate independent K-tuple $\langle \Gamma A(x), \ldots, \Gamma A(x) \rangle$.

Proof. Recursive equation: $\mathcal{C} = 1 + \mathcal{A} \mathcal{C}$ with $+, \times$ constructions.

With probability $\frac{1}{A(x)}$ STOP; else $\Gamma A(x)$ and continue rec. with $\Gamma C(x)$.

Number of trials of Bernoulli RV till success is Geometric.
Specifications with \{∪, ×, SEQ\}

<table>
<thead>
<tr>
<th>Specs</th>
<th>GF</th>
<th>Sampler</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) or (\mathcal{Z}) (atom)</td>
<td>1 or (x)</td>
<td>(\Gamma C :=) output (1) or (\bullet)</td>
</tr>
<tr>
<td>(C = A \cup B)</td>
<td>(C(x) = A(x) + B(x))</td>
<td>(\Gamma C(x) := \frac{A(x)}{C(x)} \rightarrow \Gamma B(x)</td>
</tr>
<tr>
<td>(C = A \times B)</td>
<td>(C(x) = A(x) \times B(x))</td>
<td>(\Gamma C(x) := \langle \Gamma B(x), \Gamma C(x) \rangle)</td>
</tr>
<tr>
<td>(C = SEQ(A))</td>
<td>(C(x) = \frac{1}{1 - A(x)})</td>
<td>(\Gamma C(x) :=) Geom([A(x)]) \implies \Gamma A(x))</td>
</tr>
</tbody>
</table>

Compile sampler from specification automatically.
Specifications with \(\{\cup, \times, \text{SEQ}\} \) — continued

Theorem (Complexity Minithemorem)

Given oracle that provide the finitely many values of GFs, complexity is linear in size of object produced.

Proof \(\{\cup, \times, \text{SEQ}\} \): overhead \(O(1) \) per node of derivation tree. Complexity model: exact computations over \(\mathbb{R} \); in practice, “floats” (more later).

Definition

Regular specification = iterative (nonrecursive) with \(\{\cup, \times, \text{SEQ}\} \).

Contex-free specification = recursive with \(\{\cup, \times, \text{SEQ}\} \).

Proposition

Regular structures *and* context-free structures have Bolzmann samplers of linear-time complexity.
Specifications with \(\{ \cup, \times, \text{SEQ} \} \) — continued (2)

Regular specifications

- **Binary words** with **longest run** of a’s of length < 17.
 \[
 \text{SEQ}_{<17} (\{a\}) \cdot \text{SEQ} (b \text{SEQ}_{<17} (\{a\})).
 \]

- **Codes**, e.g., \(\{aba, abaaa, abba\} \).

- **Polyominos** that have rational GF, e.g., Vertically convex.

- **Languages** recognized by deterministic **finite automata** E.g., Strings containing three times the pattern “abracadabra”.

- **Paths in digraphs** even in the presence of **sinks**.
Contex-free specifications.

- **Binary trees**: $B = \mathbb{Z} + B \times B$.
 - Solve quadratic equation $B = x + B^2$ numerically, given x;
 - Output single node with probability $\frac{x}{B}$;
Else: Do two independent recursive calls to $\Gamma B(x)$.

For **rooted unlabelled trees**, Boltzmann model reduces to branching process.

Generate **Motzkin trees** [≠ Alonso-Schoot], (unbalanced) **2–3-trees; random walks with finite step sets (dice)**, etc.

Noncrossing graphs:
Exponential (labelled) Boltzmann models

• For labelled classes, model is called exponential or labelled Boltzmann model

\[\mathbb{P}(\gamma) \propto \frac{x^{\mid \gamma \mid}}{\mid \gamma \mid !} \implies \mathbb{P}(\gamma) = \frac{1}{C(x)} \frac{x^{\mid \gamma \mid}}{\mid \gamma \mid !} \]

\[C(x) := \sum_n^n C_n \frac{x^n}{n!} \] is exponential GF (EGF).

— Replace Cartesian product by labelled product (distribute labels).
— **Unions, products, sequences**: work like before, *but* with EGFs.
— **Sets and cycles** = to do!
Poisson law: \(P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!} \).

Logarithmic law: \(P(X = k) = \frac{1}{L} \frac{\lambda^k}{k} \), \(L := \frac{1}{\log(1 - \lambda)} - 1 \).

Lemma

Labelled sets and labelled cycles are obtained by a Poisson and Logarithmic generator resp.

\[C = \text{SET}(A) : \text{Pois}(A(x)) \implies \Gamma A(x) \]

\[C = \text{CYC}(A) : \text{Loga}(A(x)) \implies \Gamma A(x) \]

Cf: \(C = \text{SEQ}(A) : \text{Geom}(A(x)) \implies \Gamma A(x) \).
Applies to any specifiable class of combinatorial objects

- For each x, need \textit{finite \# of computable real constants}.
- Linear-time random generation.
- Size is not controlled (yet)

Example: \textbf{Cayley trees} $= \mathcal{T} = \mathcal{Z} \star \text{SET} (\mathcal{T})$.

- Solve $T(x) = x e^{T(x)}$ numerically.
- Generate root (\mathcal{Z});
- Choose random root degree as $\Delta := \text{Pois}(T(x))$;
- Call Δ independent copies of $\Gamma(x)$;
- Hope for the best regarding size (\leadsto later)
Examples:

Set partitions. $\mathcal{S} = \text{SET}(\text{SET}_{\geq 1}(\mathbb{Z}))$.

components is $\text{Pois}(e^x - 1)$; each comp. is $\text{Pois}(x)$ $\geq 1 = \text{Vershik}.$

Ordered set partitions. Geometric triggers Poisson.

Assemblies of filaments. Poisson triggers geometric.
[Pólya] Carbon has valency 4; hydrogen has valency 1. How to generate a random alcohol?

= Nonplane unlabelled tree with node degrees \(\in \{0, 3\} \).

Need to take care of symmetries to generate object only once!
Unlabelled sets

- The **multiset** construction $\mathcal{C} = \text{MSET}(\mathcal{A})$: form all finite multisets,

$$\mathcal{C} \cong \prod_{\alpha \in \mathcal{A}} \text{SEQ}(\{\alpha\}).$$

(i) **Gedanken Alg.** Scan \mathcal{A} & generate α with multiplicity $\text{Geom}(x^{|\alpha|})$.

(ii) Observe GF equation: $C(x) = \exp(A(x)) \cdot \exp\left(\frac{1}{2} A(x^2)\right) \cdots$.

(iii) Do Poisson-controlled generator for \mathcal{A} with parameter $A(x)$; repeat with $\frac{1}{2} A(x^2)$; etc.

(iv) Compute when to stop. Collect multiset.

Proof involves $\text{Geom}(\lambda) \equiv \text{Pois}(\lambda) + \text{Pois}(\frac{1}{2} \lambda^2) + \cdots$.
Powersets and cycles

- **The cycle** construction: proceed from GFs. For $\mathcal{C} = \text{CYC}(\mathcal{A})$,

$$C(z) = \log \frac{1}{1 - A(z)} + \frac{1}{2} \log \frac{1}{1 - A(z^2)} + \cdots$$

Treat as infinite union, cf multisets. E.g., **Necklaces**.

- **The powerset** construction $\mathcal{C} = \text{PSET}(\mathcal{A})$: form all finite sets (no repetition!). Use identity $1 + z = \frac{(1-z^2)}{(1-z)}$.

Generate Boltzmann multiset and throw away all elements of even multiplicity.

- **Relativized constructions** like $\mathcal{C} = \text{MSET}_3(\mathcal{A})$: do $\Gamma A(x^3)$, etc.
Theorem (Main Complexity Theorem)

For a class \mathcal{C} specified (poss. recursively) from finite sets using $+, \times, \text{SEQ}, \text{MSET}, \text{MSET}_k, \text{Cyc}, \text{Cyc}_k$,

The Boltzmann sampler $\Gamma_{\mathcal{C}}(x)$ operates in linear time in the size of the object produced.

Also allow for powersets as soon as $\rho < 1$.

Examples. Integer partitions, nonplane unlabelled trees, alcohols, mapping patterns [functional graphs], series-parallel circuits, etc
Partition of integer

Cyclic composition

Partition of integer into distinct summands
Nonplane tree — w/o automorphism

Acyclic alcohol
Random Generation
Boltzmann Framework
Boltzmann Samplers
Size Control and Complexity

Unions, products, and sequences
Labelled models, sets and cycles
Unlabelled sets and cycles

Functional graph

Series-parallel circuit
Complexity

- Size control

\[
\text{PGF}(\text{Size}) = \frac{C(ux)}{C(x)} \quad \implies \quad \mathbb{E}_x(\text{Size}) = \frac{xC'(x)}{C(x)}.
\]

Usually requires \(x \to \rho_C \) to get large structures.
Free Boltzmann samplers: produce objects with randomly varying sizes!
E.g., VC-polyominos: 37, 158, 389, 91, 21, 110, ...
Size control (1)

- **Free Boltzmann samplers**: produce objects with randomly varying sizes!
 E.g., VC-polyominos: 37, 158, 389, 91, 21, 110, …

- **Tuned Boltzmann samplers**: choose x so that expected size $= n$.

Analysis of size distribution of free sampler determines complexity.
Free Boltzmann samplers: produce objects with randomly varying sizes!
E.g., VC-polyominos: 37, 158, 389, 91, 21, 110, . . .

Tuned Boltzmann samplers: choose x so that expected size $= n$.

Analysis of size distribution of free sampler determines complexity.
“Frequent” profiles: [cf Analytic Combinatorics]

Depends on singularity type of generating function.
Theorem (Complexity I)

"Bumpy type" is granted for Hayman-admissible models.
Approximate-size complexity = $O(n)$. Exact size = $o(n^2)$.

Applies to GFs that are of type $\text{Exp} \circ \text{Fast-growth}$.

Theorem (Complexity II)

"Flat type" is granted for algebraic-logarithmic sing. + infinite
Approximate-size complexity = $O(n)$. Exact-size = $o(n^2)$.

Theorem (Complexity III)

For "critical sequences":
Exact-size complexity = $O(n)$.

Renewal type of algorithm at critical ρ.
Size control (3): Pointing

Pointing: If \mathcal{A} is a class, then $C = \mathcal{A}^\bullet$ is the set of objects with one atom pointed, and

$$C_n = nA_n, \quad C(z) = z \frac{d}{dz} A(z).$$

Uniformity at given size is preserved (only size profile is altered).

Transforms peaked (inefficient) distributions to flat (efficient).

E.g., **binary trees** \mathcal{B}:

$$\mathcal{B} = Z + \mathcal{B} \times \mathcal{B} \quad \implies \quad \begin{cases} \mathcal{B}^\bullet = Z + \mathcal{B}^\bullet \times \mathcal{B} \\ \mathcal{B} \times \mathcal{B}^\bullet = Z + \mathcal{B}^\bullet \times \mathcal{B} + \mathcal{B} \times \mathcal{B}^\bullet. \end{cases}$$

All simple families of trees: it works!
Discrete samplers

- Real arithmetics versus bit [boolean] complexity?
 - Do bit-level generators for Bernoulli, Geometric, Poisson, Logarithmic.

\[
\frac{1}{\pi} = \langle 0.010100010111110011000 \rangle_2.
\]

Bernoulli: return bit at position Geom(\(\frac{1}{2}\)); Geometric: iterate till 1.
Cf. Knuth-Yao (1976); Von Neumann. Soria-Pelletier et al.

- Integrated samplers for set partitions, etc? Expect low bit-complexity!

- In practice do 40D evaluations of constants and be happy!
Conclusions

- Allow computation over the reals and get linear or subquadratic time samplers.
- Practically get objects of sizes in the range 10^4 to 10^8.
- Allow for other operations: Fusy = planar graphs in quasi-linear time \ll [Noy-Gimenez]
- Cf Bodini-Fusy-Pivoteau; Bassino-Nicaud [Nancy]
- Plane partitions; random automata, ...
- Have systematic design principles! Get largely automated implementations?
Some literature (all on the web!)

