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1733: Countess Buffon drops her knitting kit on the floor.

Count Buffon picks it up and notices that about 63% of
the needles intersect a line on the floor.

Oh-0Oh! 0.6366 is almost 2/pi (I)...
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® A large body of literature on

real-number simulations,
starting with von Neumann, Ulam, Metropolis,...

® | uc Devroye’s monumental synthesis, which is
available on the web:
) http://cg.scs.carleton.ca/~luc/
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What to do if you travel and don’t want to carry
floor planks and knitting needles?

 Assume you have a coin!|

Insist on PERFECT
simulations!

\ J
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® Assume you have a coin.
+ Insist on perfect simulations.

£ ® The problem is trivial!!!!!!
sa Everything that is computable can be simulated.

e Numbers: *

approximate « with u,, < o < v,,, where u,,, v, € Q. J

s

T 7 106 113 33102 33215
. | /1T 3 22 3337 355° 103993 ° 104348

0

7/22 B 1/3
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® Assume you have a coin.
+ Insist on perfect simulations.

2 o The problem is trivial!!!!!!

s Everything that is computable can be simulated.

-+

® Functions:

approximate «v(x) with u,(x) < alx) < v, (x), where

Un(T), vn(x) € @'["IT]'

[Nacu & Peres 2005]
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® Needs large computational power:

requires arbitrary-precision routines;
program size is HUGE & computational
complexity is hard to assess precisely.

® Does not qualify as “simple process’;
typically, not human-implementable.
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'B(p)

® A Buffon machine is a machine or program
that has access to a pure source of perfect
coin flips and outputs {0, | }-values, or, in
some cases, integers.

¢ |t may not involve multi-precision

arithmetics, only basic probabilistic
processes, be simple(!) and efficient(!).

® Buffon machines have no permanent memory

=> they can only pbroduce i.i.d random variables;
typically, Bernoulli.

Wednesday, October 21, 2009
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® Can you do such numbers as

1
1/vV2, et log2, =, =m—3, ,
T e — 1

'~
°~d

N |

with only basic coin flips and no
arithmetics.

Simulation: expected # flips is finite.

v

Strong simulation: + has exponential tails.

~
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® A Buffon machine may also call black boxes
sampling from Bernoulli distributions of
unknown parameters.

® A machine computes @(p), if given a
machine [ B(p) for Bern(p) [p unknown!] as
subroutine, its output is a Bern(¢q(p)).

® |n this way Buffon machines can be
composed from simpler ones...
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e Meta-thorem: You can do, constructively, simply
and efficiently:

® All rational numbers and functions in (0, 1)

® All positive algebraic functions (context-free)

® Closure under half-sum, product, composition

® Exponentials, logarithms; polylogs; trig functions
® C(Closure under integration; inverse trigs

® Hypergeometrics of “binomial type”

® + Poisson and logarithmic-series generators

Wednesday, October 21, 2009
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4.141592653580793238462643383279502884197169399375108
b197494459230781640628620899862803482534811706792«
480b50313282306647093844609550882231725359408128401117
45028410770193852110855964462294895493038196/.<881097
866593344v°847564823378678316528712019091475485669234
6034861045435084821339360726024914127377+887006606315
58817488152092050282925409171536436775259036001133083
054882046652138414c7819415116094775872703657595919830
921861173819326117931001854807-462379962749567351888
788724891227938183011949157°275367336244065664308602139
494639522473719070817982C 34 T0R7708392171762931767823
84674818467669405132°7U56812871.7263560827785771342787
789609173637178722/58440901224955.7014654958537108079
R2796892589238/1.01995611212902196080127344181598136297
747713099607 7°570721134999999837297804957058731732816
09631859°C<44594553469083026425223082858334 3850352619
311881740100031378387528865887533208381420617.77669147
307798R534904R87554687311595628638823837878937003877
C188778083217122680661300192787661119590921642019850,,

® We shall see nine ways to get T, some
with 5 coin flips on average, with typically
about a dozen lines of code...
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® Builds on ideas of
von Neumann, Knuth-Yao

® Encapsulates constructions by
Wastlund, Nacu, Peres, Mossel

® Develops new constructions:
VN-generator, integration; Poisson &
logarithmic distributions.

Wednesday, October 21, 2009
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2. Basic construction

FUICS




¢ Decision trees and loopless programs
Do Bernoulli of param. 3/8,5/8; dyadic rationals

“Compute” Boolean combinations

Conditional (P — Q|R)

if R() = 1 then return(P()) else return(Q())

P.q
| -
AND > Pq i
(P*q)/2
2
P
Name realization function
Conjunction (P A Q) if P() = 1 then return(Q()) else return(0) pAqg=p-q
Disjunction (P V Q) if P() = 0 then return(Q()) else return(1) pVg=p+q—pq
Complementation (-P) if P() = 0 then return(1) else return(0) 1—p
Squaring (P A P) PQ

rp+ (1 —1)gq.

Wednesday, October 21, 2009
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Finite graphs and Markov chains

Can do all rational p:

To do a [ B(3/7), flip three times;in 3 cases,
return(l); in 4 cases return(0); otherwise repeat.

do a geometric [ G(p) from a Bernoulli [ B(p)

From a [ B(p); repeatedly try till 1 is observed. If

number of trials is even, then return(1).
Computes |/(1+p) = (1-p)[|+p*+p*+ ..]
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® Mossel, Nacu, Peres, Wastlund:

Theorem 1 ([21, 22, 27]). (i) Any polynomzal f(x) with rational coefficients that maps (0,1)
into (0,1) s strongly realizable by a finite graph. (iz) Any rational function f(x) with rational
coefficients that maps (0,1) into (0,1) is strongly realizable by a finite graph.

® .. but it requires arbitrary-precision routines.
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® Choose a class of permutations with P, the number of
those of size n.

® Draw NeGeo(A) uniform Random Variables over [0, 1].

® Succeed if the order type is good = in P,

TVN[P](\) == { do { geometric
N :=TG(\);

let U := (U 1 ..., Un) be a vector of [0, 1]-uniform variables.

{ bits of the U; are produced on a call-by-need basis to determine o and 7 }
set 7 := trie(U); let o := type(U):
if o € Py then return(N) } }.
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® Choose a class of permutations with P, the number

of those of size n. Draw N=Geom(lambda).

® Probability of success with N=nis

(1 — A)P A" /n!
(1 o )‘) Zn ‘Pn-/\n/n'!

Bz

1 P\

(A) n!

® Thus, get Poisson and logarithmic distributions

permutations (P): | all (Q) | sorted (R)

cyclic (S)

A‘n
distribution: (I —=A)A" 6_)\_1
n!

geometric | Poisson

1 An.
L n’

L :=log(l —\)~!

logarithmic.

Wednesday, October 21, 2009
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® Using a digital tree (aka trie), we only need a
single string register to recognize perm classes
for Poisson and logarithmic distribs!

® Poisson = sorted perms: U< U< U3

® | ogarithmic = max-first perms: U, > U, , U3

e L
§

ct Leader election: Prodinger; Fill, Mahmoud, Szpankowski, Janson,...
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® For VN schema, path-length of tries determines
# coin flips.

PGF; n—1

1 1 /n
hin(q) = 1 — gnol-n Z on \ 1. hi(q)hn—k(q).
k=1

Proposition 1. (z) Given a class P of permutations and a parameter A\ € (0, 1), the von Neumann
schema U'VN[P](A) produces exactly a discrete random variable with probability distribution

1 FpAn
PLAY snl=;

(i2) The number K of iterations has expectation 1/s, where s = (1 — A\)P (), and its distribution
s 1 + Geo(s).

(iii) The number C of flips consumed by the algorithm (not counting® the ones in TG()\)) is a
random variable with probability generating function

+
(10) [E(q% P

BN —

where HT, H~ are determined by (9):

+ . Pn n — - Rl n
H"(z,q) = (1 —z) Z th(q)z ; H™(z,q) =(1-2) Z 1 - Nl hn(q)z
n=0 n=0 ’

The distribution has exponential tails.

Wednesday, October 21, 2009
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Theorem 2. The Poisson and logarithmic distributions of parameter A € (0,1) have a strong
stmulation by a Buffon machine that only uses a single string register.

w ©® Poisson: Declare success (1) if N=0; failure
o.w. Get exp(-\), etc.

o ® Check P: Do only one run;return(l) if
success. E.g, for Poisson, gives (|-A)exp(A)

@ ©® Use alternating (zigzag) perms & get trigs!

Theorem 3. The following functions admit a strong simulation:

e, el (1 —=z)e*, zel 7,

T 1l —=x 1

’ , (1 —z)log , rlog(l/x),
log(1 —z)~1" log(1/x) ( z)lo 1 —z og(1/z)
|
weot(x), (1 - 2)cos(a), (1 - x) tan(a)
cos(z) |
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® Polylogarithms, Bessel,...: do r experiments

Li.(z) :

0 N n

7’
~

n=1

b/

Get log(2), then T1%/24, in less than 10 flips on average

Wednesday, October 21, 2009
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4 Square roots, algebraic

& hgpergeometric functions




® Generate NeGeo(A) and succeed if we get

a balanced score from 2N flips.

® The probability of success:

n=»_»0 1

() =) (1-MA\"w, =V1-A |,

1

Qﬁn

(

2n
n

)|

|Theore1n 4. The square-root construction of Equation (11) provides an exact Bernoulli generator
of parameter 1 — A, given a I'B(A). The mean number of coin flips required, not counting the
ones involved in the calls to TB(\), s % Hence the function /1 — x s strongly realizable.

associated with the grammar G and non-terminal S.

Theorem 5 ([21]). To each bistoch grammar G and non-termanal S, there corresponds a con-
struction (Figure 3), which can be implemented by a deterministic pushdown automaton and calls

to a TB(A) and is of type TB(A\) — T'B(S (%)) , where S(z) s the algebraic function canonically

Wednesday, October 21, 2009
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® Get hypergeometrics of binomial type.

Ramanujan:

¢ SRINIVA§A

ND/A

Wednesday, October 21, 2009

procedure Ramal(); {returns the value 1 with probability 1/7}
let S := X + X5, where X;, X5 € Geom(21);
with probability ¢ do S := S +1;

for 7 =1.2

S1.
S2.
S3.
S4.

S5.

return(1).

.3 do
draw a sequence of 2S coin flippings;

if (# Heads — # Tails) # 0 then return(0);

4

g ,v.";\“"‘f'é;é
RN

e

1 g .,‘\4; A
e : b 5 :

“
®
o
ﬂ
X
©
N
O

<l 1| coin flips on average

29



5. A Buton integrator




® |n a construction of a [B(¢p(A)) from a B(A), we
substitute a [B(UA), with U uniform. Get an
integrator:

1 A
() = —/ d(w) dw.

® We can do a product [ B(UN)=IB(U).I'B(\) by an AND
(A) as well as by emulating a uniform U with a “bag”:

Ghalf:=proc() local K;
# a geometric RV of param. 1/2
K:=-1; do K:=K+1; if flip()=0
then return(K) fi; od;

-] 00 ©

o)

bag:=proc(U) local J;
J:=1+Ghalf () ;
if type(U[J],name)
then U[J]:=£flip(); fi;
return(U[J]); end;

— b QO e O

|'—‘OO"\DOF—*'-\D-\D-\D
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Theorem 6. Any construction C that produces a TB(¢(N)) from a I'B(A\) can be transformed
into a construction of a TB(®(A)), where (N\) = %fo)‘ o(w) dw, by addition of a geometric bag.
In particular, if ¢(\) 2s realizable, then its integral taken starting from 0 s also realizable. If in
addition ¢(\) s analytic at 0, then its integral is strongly realizable.

/
® Chain:p =»p? =»1/(1+p?) =» arctan(x)

Theorem 7. The following functions are strongly realizable (0 < x < 1):

log(1 + x), arctan(z), %arcsin(:z:), / e~ /2 qu.
0

Wednesday, October 21, 2009
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o [I"Iadhava-Gregory-Leibniz} arctan(|)=T1/4

MGL: =proc () do
if bag(U)=0 then return(l) fi; if bag(U)=0 then return(1l) fi;
if bag(U)=0 then return(0) fi; if bag(U)=0 then return(0) fi; od;

end.

o [Machin machineﬂ arctan(l/2)+arctan(1/3)=11/4.

6.5 flips on average

T > T
20 25

Distribution of costs (plain & log.)

Wednesday, October 21, 2009
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MAPLE:

an interpreter
~ 60 lines

(X, v¥))), X, ONE), Y,

z, flip))))))):
> test(Z4,10000);

val(Z4);

evalf(val(zZ4));

Z4:=expn(compl(ave(flip,ave(intl(intl(intl (even(prod(z, prod
ONE), z, ONE),compl(sqrtO0(intO(ave(logp
(flip), sqrtO(prod(flip, intO(prod(¥, even(intO(even(prod(X,
X)), X, expn(prod(£flip,Z))))), ¥, expn(prod(flip,flip)))))).,

ﬁean_number_of_flips = 103.1645000

0.6313000000 (.
1
2
4 "' - 1 \
1 1 4
Sl + 5 = — |4z
/ 27
“.‘ 1+ arctan\e <
)y ) % .
\ \;" e - ) (
0.6356033009 (.
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® |Implements all earlier constructions: it works!

® Results for TT-related constants:

Rama

arcsin [1; \175 %]

arctan [1/2 4+ 1/3;1]

1

v

10.8

m

4 8
26.7 (o)

Method; constant; mean # flips
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