Séminaire de Probabilités, Paris June 2010

The Digital Tree:

Analysis and Applications

Philippe Flajolet, INRIA Rocquencourt

- A (finite) tree associated with a (finite) set of words over an alphabet A.
- Equipped with a randomness model on words, we get a random tree, indexed by the number n of words.
- Characterize its probabilistic properties, mostly with COMPLEX ANALYSIS.

CAMBRIDGE

DIGITAL TREE aka "TRIE":= STOP descent by pruning long one-way branches.

"Only places corresponding to 2+ words (and their immediate descendants) are kept.

"The digital tree is finite as soon as built

out of distinct words.

E={a..., bba..., bbb...}

TOP-DOWN construction: Set E is separated into $E_a,...,E_z$ according to initial letter; continue with next letter...

INCREMENTAL construction: start with the empty tree and insert elements of E one

after the other...
(Split leaves as the need arises.)

SUMMARY:

Alphabet
$$\mathcal{A} \mapsto W$$
 and $\mathcal{W} = \mathcal{A}^{\infty} \mapsto W$ Branches "Sets" (n —seq.) of words $\mathcal{W}^n \mapsto W$ Digital tree

Random word model on $\mathcal{W} \mapsto \mathbf{Random} \ \mathbf{Tree}_n$.

Memoryless (Bernoulli) p,q; Markov, CF

Algorithms: 1 - Dictionaries

- Manage dynamically dictionaries; hope for O(log n) depth?
- Save space by "factoring" common prefixes; hope for O(n) size?
- However, worst-case is unbounded...

(Fredkin, de la Briandais ~1960)

Analysis?

A random trie on n=500 uniform binary sequences; size =741 internal nodes; height=18

Algorithms: 2 -Hashing

- Data may be highly structured and share long prefixes. Use a transformation h: W -> W' called "hashing" (akin to random number generators.)
- Uniform binary data are meaningful!

Analysis?

Algorithms: 3 -Paging

- Data may be accessible by blocks, e.g., pages on disc. Stop recursion as soon as "b" elements are isolated (standard: b=1).
- Combine with hashing = get index structure.

Analysis?

Algorithms: 4-MultiDim

Data may be multidimensional & numeric/ geometric.

quad-trie

Analysis?

Algorithms: 5-Communication

- Data may be distributed and accessible only via a common channel (network).
- Everybody speaks at the same time; if noise, then SPLIT according to individual coin flips.

tree protocol

Analysis?

2. Expectations

- ◆ Bernoulli vs Poisson models
- Mellin technology
- ◆ Fluctuations and error terms

Theorem (Knuth +De Bruijn, 1965+)

For n uniform binary words:

• Expected number of internal nodes (size) \overline{S}_n is such that \overline{S}_n/n has no limit; it fluctuates with amplitude about 10^{-6} :

$$\left| \frac{\overline{S}_n}{n} \approx \frac{1}{\log 2} \pm 10^{-6} \right|$$

• Expected depth \overline{D}_n of a random leaf satisfies

$$\overline{D}_n = \log_2 n + O(1)$$

(Proof in a "modernized" version follows....)

Algebra...

- **Assumption 1.** the number N of elements is \mathcal{P} oisson(x).
- **Assumption 2**: a binary alphabet with probabilities p, q. Let $\sigma(E)$ be the number of internal nodes in the tree:

$$\sigma(E) := \mathbf{1}_{[\#E \geq 2]} + \sigma(E_0) + \sigma(E_1).$$

Let $S(x) := \mathbb{E}_{\mathcal{P}(x)}(\sigma)$. Since thinning of a $\mathcal{P}(x)$ by a Bernoulli RV of parameters p, q gives $\mathcal{P}(px)$, $\mathcal{P}(qx)$:

$$S(x) = [1 - (1+x)e^{-x}] + S(px) + S(qx).$$

Algebra...

Solving by iteration

$$S(x) = g(x) + S(px) + S(qx).$$

yields, e,g., with $p=q=rac{1}{2}$ and $g(x)=1-(1+x)e^{-x}$, for size:

$$S(x) = \sum_{k \geq 0} 2^k g\left(\frac{x}{2^k}\right).$$

In general, get
$$S(x) = \sum_{k,\ell} \binom{k+\ell}{k} g(p^k q^\ell x) \equiv \sum_{w \in \{0,1\}^*} g(p_w x).$$

With \overline{S}_n the expected tree size when the tree contains n elements and S(x) the Poisson expectation:

$$S(x) = \sum_{n>0} \overline{S}_n e^{-x} \frac{x^n}{n!}.$$

The Poisson expectation S(x) is like a generating function of $\{\overline{S}_n\}$. Go back — "depoissonize" — by Taylor expansion. E.g.:

$$\overline{S}_n = \sum_{k} \left[1 - \left(1 - \frac{1}{2^k} \right)^n - \frac{n}{2^k} \left(1 - \frac{1}{2^k} \right)^{n-1} \right], \qquad p = q = \frac{1}{2}.$$

Many variants are possible and one can justify that

$$\overline{S}_n = S(x) + \text{small when } x = n.$$
 (elementary)

Analysis...

The Mellin transform

$$f(x) \stackrel{\mathcal{M}}{\leadsto} f^{\star}(s) := \int_{0}^{\infty} f(x) x^{s-1} dx$$

(It exists in strips of $\mathbb C$ determined by growth of f(x) at $0, +\infty$.)

Property 1. Factors *harmonic sums*:

$$\sum_{(\lambda,\mu)} \lambda f(\mu x) \stackrel{\mathcal{M}}{\leadsto} \left(\sum_{(\lambda,\mu)} \lambda \mu^{-s} \right) \cdot f^*(x).$$

Property 2. Maps asymptotics of f on singularities of f^* :

$$f^* pprox rac{1}{(s-s_0)^m} \implies f(x) pprox x^{-s_0} (\log x)^{m-1}.$$

Proof of P_2 is from Mellin inversion + residues:

$$f(x) = \frac{1}{2i\pi} \int_{c-i\infty}^{c+i\infty} f^*(s) x^{-s} ds.$$

Mellin and Tries

$$p = q = 1/2$$
: $S(x) = \sum_{k} 2^{k} g(x/2^{k})$, with $g(x) = 1 - (1+x)e^{-x}$.

• Harmonic sum property:

$$S^{\star}(s) = \left(\sum 2^k 2^{ks}\right) \cdot (s+1) \Gamma(s) = \frac{\Gamma(s)}{1-2^{1+s}}.$$

• Mapping properties: S^* exists in $-2 < \Re(s) < -1$. Poles at $s_k = -1 + 2ik\pi/\log 2$, for $k \in \mathbb{Z}$.

Location of pole (s_0) \rightsquigarrow Asymptotics of $f(x) \approx x^{-s_0}$ $s_0 = \sigma + i\tau$ \rightsquigarrow $x^{-\sigma}e^{i\tau \log x}$

Theorem (Knuth + De Bruijn, 1965+)

For n uniform binary words, $p = q = \frac{1}{2}$:

• Expected number of binary nodes (size) \overline{S}_n is such that \overline{S}_n/n has no limit; it satisfies

$$\overline{S}_n = \frac{n}{\log 2} + nP(\log_2 n) + O(1),$$

where P(u) is a Fourier series of amplitude about 10^{-6} .

Proof above is for Poisson expectation; it transfers to \overline{S}_n . Also, things work similarly for depth: $\overline{D}_n = \log_2 n + Q(\log_2 n) + o(1)$.

Memoryless sources (I)

Correspond to $p \neq q$. Dirichlet series is $\frac{1}{1 - p^{-s} - q^{-s}}$.

Theorem (Knuth 1973; Fayolle, F., Hofri 1986, ...)

Let $H := p \log p^{-1} + q \log q^{-1}$ be the entropy.

- In the periodic case, $\frac{\log p}{\log q} \in \mathbb{Q}$, there are fluctuations in \overline{S}_n .
- In the aperiodic case, $\frac{\log p}{\log q} \notin \mathbb{Q}$:

$$\overline{S}_n \sim \frac{n}{H}$$
 and $\overline{D}_n \sim \frac{1}{H} \log n$,

Philippe Robert & Hanene Mohamed relate this to the periodic/aperiodic dichotomy of *renewal theory* (2005+).

Memoryless sources (II)

- The geometry of poles of $\frac{1}{1 p^{-s} q^{-s}}$ intervenes.
- ullet This geometry relates to Diophantine properties of $lpha:=rac{\log p}{\log q}$

Theorem (F., Roux, Vallée, 2010)

If α has a finite irrationality measure, then $\exists \theta$:

$$S_n = \frac{n}{H} + O\left(\exp\left(-(\log n)^{1/\theta}\right)\right), \quad \theta > 1.$$

Such is the case for almost all $p \in (0,1)$ and all rational $p \neq \frac{1}{2}$.

Definition (Irrationality measure)

The number $\alpha \notin \mathbb{Q}$ has irrationality measure $\leq m$ iff the number of solutions of $\left|\alpha - \frac{a}{b}\right| < \frac{1}{b^m}$ is finite.

(pi, e, tan(1), log2, z(3), ...)

[Lapidus & van Frankenhuijsen 2006]

MICHEL L. LAPIDUS MACHIEL van FRANKENHUIJSEN

Fractal Geometry, Complex Dimensions and Zeta Functions

3. Distributions

- Analytic depoissonization & Saddle-points
- ◆ Gaussian laws ...

Saddle-points & analytic depoissonization

Height H of a b-trie (cf paging) with uniform binary words.

$$\mathbb{P}_n(H \leq h) = n! \cdot \operatorname{coeff.}[z^n] e_b\left(\frac{z}{2^h}\right)^{2h}, \quad e_b(z) := 1 + \frac{z}{1!} + \dots + \frac{z^b}{b!}.$$

- Cauchy: $\left[[z^n] f(z) = \frac{1}{2i\pi} \int_{\gamma} f(z) \frac{dz}{z^{n+1}} \right]$
- + Saddle-point contour: concentration + local expansions.

= Throw n balls into 2^h buckets, each of capacity b

Theorem (F. 1983)

The expected height of a b-trie is $\sim (1+1/b)\log_2 n$. The size of the perfect tree embedding satisfies $\mathbb{E}(2^H) \times n^{1+1/b}$. The distribution is of of double-exponential type $F(x) = e^{-e^{-x}}$, with periodicities.

Analytic depoissonization

Theorem (Jacquet–Szpankowski 1995+)

Let $X(\lambda)$ be a Poissonized expectation. Need X_n , which corresponds to conditioning upon Poisson RV = n. Assume:

- (i) $X(\lambda)$ for complex λ near real axis has standard asymptotics;
- (ii) $e^{\lambda}X(\lambda)$ is "small" in complex plane, away from real axis.

Then the Poisson approximation holds: $X_n \sim X(n)$

Proof: use Poisson expectation as a GF, plus Cauchy, plus saddle-point.

DISTRIBUTIONS: size, depth, and path-length

Theorem (Jacquet-Régnier-Szpankowski, 1990++)

For general (p, q), the distribution of size is asymptotically normal. The depth of a random leaf is asymptotically normal, if $p \neq q$. The depth of a random leaf is asymptotically $\approx e^{-e^{-x}}$, if p = q. The path-length $(\equiv \sum depths)$ is asymptotically normal.

$$(p=q=1/2)$$

Start with bivariate generating function F(z,u).

$$F(z, u) = uF(\frac{z}{2}, u)^{2} + (1 - u)(1 + z)$$

Analyse log

$$\log F(z, u) = 2\log(F(z/2, u) + \cdots$$

Analyse perturbation near u=1.

$$\log F(z, e^{it}) \approx z + i\mu_z t - \frac{1}{2}\sigma_z^2 t^2 + \cdots$$

Use analytic depoissonization

$$get[z^n]F(z,e^{it})\approx\cdots$$

© Conclude by continuity theorem for characteristic fns.

$$\mathbb{E}[e^{itS_n}] \rightsquigarrow e^{-t^2/2}$$

(case of size, p=q=1/2)

Profile of tries, after Szpankowski et al.

+ Cesaratto-Vallée 2010+

4. General sources

- Comparing and sorting real numbers
- Continued fractions
- ◆ Fundamental intervals...

Comparing numbers & sorting by continued fractions

$$sign\left(\frac{a}{b} - \frac{c}{d}\right) = sign(ad - bc).$$

Requires double precision and/or is unstable with floats.

(Computational geometry, Knuth's Metafont,...)

→ HAKMEM Algorithm (Gosper, 1972)

$$\frac{36}{113} = \frac{1}{3 + \frac{1}{7 + \frac{1}{5}}}, \qquad \frac{113}{355} = \frac{1}{3 + \frac{1}{7 + \frac{1}{16}}}.$$

Theorem (Clément, F., Vallée 2000+)

Sorting with continued fractions: mean path length of trie is

$$K_0 n \log n + K_1 n + Q(n) + K_2 + o(1),$$

$$K_0 = \frac{6 \log 2}{\pi^2}, \quad K_1 = 18 \frac{\gamma \log 2}{\pi^2} + 9 \frac{(\log 2)^2}{\pi^2} - 72 \frac{\log 2\zeta'(2)}{\pi^4} - \frac{1}{2}.$$

and $Q(n) \approx n^{1/4}$ is equivalent to Riemann Hypothesis.

[Vallée 1997++]

View source model in terms of fundamental intervals:

- Revisit the analysis of tries (e.g, size)
- Mellinize:

$$\begin{cases} E_{\mathcal{P}(x)}[\mathsf{Size}] = \sum_{w \in \mathcal{A}^*} g(p_w x) \\ g(x) = 1 - (1 + x)e^{-x}. \end{cases}$$

$$\begin{cases} S^*(s) = -(s + 1)\Gamma(s)\Lambda(s) \\ \Lambda(s) := \sum_{w} p_w^{-s} \end{cases}$$

Vallée 1997-2001, Baladi-Vallée 2005+, ...

$$\mathcal{G}_s[f](x) = \sum_{h \in T^{(-1)}} h'(x)^s f \circ h(x).$$

$$\begin{cases} \Lambda(s) = \frac{1}{1 - p^{-s} - q^{-s}} \\ \Lambda(s) = \cdots \frac{\zeta^{-+}(s, s)}{\zeta(2s)}. \end{cases}$$

...and Nörlund integrals complete the job!

- Poisson
- + Mellin = Newton
- -> Nörlund= fixed-n model

$$A(x) = \sum_{n} a_n e^{-x} \frac{x^n}{n!}$$

$$A^{\star}(s) = \Gamma(s) \sum_{n} a_{n} \frac{s(s+1)\cdots(s+n-1)}{n!}$$

$$a_n = \frac{1}{2i\pi} \int A^*(s) \frac{n! ds}{s(s+1)\cdots(s+n-1)}$$

cf [F. Sedgewick 1995]

Q.E.D.

5. Other trie algorithms

- ◆ Leader election
- ◆ The tree communication protocol
- "Patricia" trees
- ◆ Data compression: Lempel-Ziv...
- Probabilistic counting
- Quicksort is $O(n (\log n)^2)...$

Leader election = leftmost boundary of a random trie (1/2,1/2).

Theorem (Prodinger-Fill-Mamoud-Szpankowski)

The number R_n of rounds satisfies

$$\mathbb{P}(R_n \leq \lfloor \log_2 n \rfloor + k) \sim \frac{\beta(n)2^{-k}}{\exp(\beta(n)2^{-k}) - 1},$$

where $\beta(n) := n/2^{\lfloor \log_2 n \rfloor}$. There is a <u>family of limit distributions</u> based on $\{\log_2 n\}$, **not** a single distribution.

Proof: tree decompositions + Mellin...

tree protocol = trie with arrivals

$$\psi(z) = \tau(z) + \psi(\lambda + pz) + \psi(\lambda + qz).$$

Theorem (Fayolle, Flajolet, Hofri; Robert-Mohamed 2010)

The tree protocol, with p = q = 1/2 is **stable** till arrival rate $\lambda_0 \doteq 0.36017$, root of

$$-\frac{1}{2} = \frac{e^{-2y}}{1-2y} \sum_{j\geq 0} 2^{j} h\left(\frac{y}{2^{j}}\right), \quad h(y) \equiv e^{-2y} \left[e^{-y}(1-y) - 1 + 2y + 2y^{2}\right]$$

A curiosity (cf Mellin):

$$S := \sum_{n=1}^{\infty} (-1)^n \frac{\left(\frac{99}{100}\right)^n}{1 + \left(\frac{99}{100}\right)^{2n}}$$

 $(=-1/2+10^{-211}:$ there are 208 consecutive nines)