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• Read off CF identities from combinatorics

• Solve combinatorial & discrete probabilistic 
models via CFs and Orthogonal Polynomials

ANALYTIC COMBINATORICS,
by P. Flajolet & R. Sedgewick

Cambridge 2009, 824p
free download:   algo.inria.fr/flajolet/

OPS

= exactly solvable models + asymptotics

Continued fractions associated with power series
 are tightly linked to lattice paths

CF
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LATTICE PATHS

are comprised of steps

Ascents (a :↗);
Descents (b :↘);
Levels (c :→);

never go below horizontal axis.

Excursions start and end at 0–altitude.

Main theorem: Equivalence between:

— Sum of all excursions encoded with altitudes;

— Universal continued fraction of Jacobi type.
☛
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FORMALITIES (i)

Quasi-inverses. Let A be a ring; by telescoping:

(1− f )(1 + f + · · · + f n) = 1− f n+1.

If f n → 0, then
1

1− f
= 1 + f + f 2 + f 3 + · · · .

Distributivity: (x + y)n =
∑

|w |=n

w (all words of length n).

Corollary A. If a =↗, b =↘, c =→ , then [e.g., n ≡ 3]

(c+ab)n =

n blocks︷ ︸︸ ︷
→→→ + ↗↘→→ + → ↗↘→ + ↗↘↗↘↗↘ + · · · .

Corollary B. Combining with the sum of a geometric progression

1

1− c − ab
=

∑
any # blocks

︷ ︸︸ ︷
(→ ↗↘→→ ↗↘) .
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FORMALITIES (ii)

Recall:
1

1− c − ab
=

∑
→ ↗↘→→ ↗↘.

Substitute further ab %→ a 1
1−d b. Then:

Corollary C. With a =↗, b =↘, c =→ , d =⇒, in C[[a, b, c , d ]]:

1

1− c − a
1

1− d
b

=
∑

(all diagrams of height ≤ 1)

=
∑
→ ↗⇒⇒⇒ ↘→→ ↗⇒ ↘ .

And get Corollaries D, E, F, G, H, I, J, K, L, M,. . .

☺
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FORMALITIES GIVE A THEOREM...

Theorem [The main continued fraction theorem]

1

1− c0 −
a0b1

1− c1 −
a1b2

1− c2 −
. . .

=
∑

(all lattice paths)

1

1− c0 −
a0b1

1− c1 −
a1b2

1− c2 −
. . .

1− ch

=
∑ (

all lattice paths
with height ≤ h

)

☛

=Ph/Qh

a
c

b
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Equivalently, with weighting rules, aj !→ αjz , bj !→ βjz , cj !→ γjz :

1

1− γ0z −
α0β1 · z2

1− γ1z −
α1β2 · z2

1− γ2z −
. . .

≡
∑

π: excursion

z |π| weight(π)

universal J–fraction ≡ generating function
of [weighted] excursions

Excursions : J–fraction

—, bounded height :
Ph

Qh
(convergent)

Paths ending at k : QkJ − Pk

—, traversing k–strip :
1

Qk
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• J. Touchard [1952]: chord diagrams (i)

• I.J. Good [1958]: discrete birth-death processes

• A. Lenard [1961]: statistical physics

• G. Szekeres [1968]: Rogers-Ramanujan identities

• D. Jackson [1978]: Ising model

• R. Read [1979]: chord diagrams (ii)

• P. Flajolet [1978-80]: “File histories”. Discr. Math.
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What next?

1. Simple applications

2. Convergents and orthogonal polynomials

3. Arches

4. Snakes

5. Addition formulae

6. Elliptic matters
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1. Simple applications
(ballots, coins)
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A SOLUTION (?!) TO THE BALLOT PROBLEM

“Two candidates, Alice and Bob, with (eventually) each n votes.
What is the probability that Alice is always ahead or tied?”
Do a !→ z ; b !→ z ; c !→ 0 . By main theorem:

C :=
1

1−
z2

1−
z2

. . .

=
∑

β ballot sequence

z |β| =
∑

n

Cnz
2n.

We get Catalan numbers [Euler-Segner 1750; Catalan 1850]

C =
1

1− z2C
=⇒ C =

1−
√

1− 4z2

2z2
=⇒ Cn =

1

n + 1

(
2n

n

)
.

The probability is
Cn(2n
n

) =
1

n + 1
.
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COIN FOUNTAINS

C (q) = 1 + q + q2 + 2q3 + 3q4 + 5q5 + 9q6 + 15q7 + 26q8 + · · ·

[Odlyzko-Wilf, 1988]
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Do: aj !→ 1, bj !→ qj . Then:

C (q) =
1

1−
q

1−
q2

1−
q3

· · ·

=

∑
(−1)n

qn2+n

(1− q)(1− q2) · · · (1− qn)
∑

(−1)n
qn2

(1− q)(1− q2) · · · (1− qn)

.

Number of coin fountains: Cn ∼ 0.31 · 1.73566n.

Ramanujan’s fraction:

1

1 +
e−2π

√
5

1 +
e−4π

√
5

1 +
e−6π

√
5

· · ·

= e2π/
√

5





√
5

1 + 5

√
53/4

(1/2+1/2
√

5)5/2 − 1
− 1 +

√
5

2





= 0.9999992087 · · · .
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2. Convergent polynomials

Revisiting the ballot problem

Orthogonality

14Monday, July 20, 2009



“Two candidates, Alice and Bob, with (eventually) each n votes.
If Alice is always ahead (or tied), what is the probability that she
never leads by more than h?”
The number of favorable cases has generating function (GF), with
z2 !→ z :

C [h](z) =
1

1−
z

1−
. . .

1− z





h stages.

1

1
,

1

1− z
,

1− z

1− 2z
,

1− 2z

1− 3z + z2
, · · · ,

Fh+1(z)

Fh+2(z)
,

where Fh+2 = Fh+1 − zFh are Fibonacci polynomials.

“Constant-coefficient” recurrence; Lagrange inversion.

Roots are 1/(4 cos2 θ), θ = kπ
h ; partial fractions.

+ Chebyshev
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Lagrange [1775] & Lord Kelvin & De Bruijn, Knuth, Rice [1973]

C [h]
n =

∑

k

· · · 4n cos2n

(
kπ

h

)
=

∑

k

· · ·
(

2n

n − kh

)
.

Related to Kolmogorov–Smirnov tests in statistics:
Compare X1, . . . ,Xn and Y1, . . . ,Yn? “Sort and vote!”

Pólya [1927]: totally elementary proof of elliptic-theta
transformation:

∞∑

ν=−∞
e−ν2t2

=

√
π

t2

∞∑

ν=−∞
e−π2ν2/t2

.

= Do multisection of (1 + z)2n, with h = t
√

n, in two ways!

partial fraction     /      Lagrange inversion

+ asymptotics!
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Orthogonal polynomials

Linear fractional transformations [homographies] get composed like
2× 2 matrices:

ax + b

cx + d
"→

(
a b
c d

)
.

Convergent polynomials
Ph(z)

Qh(z)
satisfy a three-term recurrence

with numers/denoms of the continued fraction.

Reciprocals of convergent polynomials are orthogonal with
respect to 〈f , g〉 = 〈f · g〉, where moments 〈zn〉 are
coefficients in the expansion of the continued fraction.
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• Orthogonal polynomials must appear in 
counting of paths of bounded height and in 
“equivalent” structures.

In all generality:
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3.Arches and such

Colouring rules

Hermite polynomials
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In how many ways can one join 2n points on the line in pairs?

↗ ↗ ↗ ↗ ↘ ↘ ↘ ↘ ↗ ↗ ↘ ↘
1 2 2 1 2 1

A descent from altitude j has j possibilities: dj #→ jz , aj #→ z .

∑

n≥1

(1 · 3 · · · (2n − 1))z2n =
1

1−
1 · z2

1−
2 · z2

1−
3 · z2

. . .

.

Gauss !!
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Lagarias-Odlyzko-Zagier [1985]: Which capacity do we need to
arrange pairwise connections between 2n points, with high
probability?
• The answer lies in the zeroes of Hermite polynomials.

〈f , g〉 =

∫ ∞

−∞
f (x) · g(x) e−x2/2 dx .

Proof. For width h:

1

1 −
1 · z2

1 −
2 · z2

. . .

1 − h · z2






h levels.

Louchard & Janson: a Gaussian process = deterministic parabola
+ Brownian noise.

+ Airy connection

height
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Chord systems

Join 2n points on circle by chords. How many crossings?

Sweeping: T (z , q) ≡
∑

σ

z |σ|q#xings(σ) =
1

1−
[1] · z2

1−
[2] · z2

1−
[3] · z2

. . .

, [n] =
1− qn

1− q
.

Theorem [Touchard]. Number of crossings has generating function

T (z(1− q), q) =
∑

k≥0

q(k+1
2 )(−zk)C 2k+1; C := 1

2z

(
1−

√
1− 4z

)
.

Corollary [F-Noy 2000]: # crossings is asympt. Gaussian.

Cf [Ismail, Stanton, Viennot 1987] for nice combinatorics (q-Hermite).
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4. Snakes and curves

Arnold’s snakes

Stieltjes’ fraction

Postnikov’s Morse links
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Arnold [1992]: How many topological types of “smooth” 
functions?

D. André [1881]:  alternating perms = the coefficients of 
tan(z) and sec(z).
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↗4↘3

↗3 ↘2

↗2 ↘1

∑
(tan)2n+1z

2n+1 = 〈〈
∫ ∞

0
et tan(zt) dt 〉〉 =

z

1−
1 · 2 z2

1−
2 · 3 z3

· · ·

.

Related to a bijection of Françon and Viennot

= A continued fraction of Stieltjes

1, 2, 16, 272, ...

Ann. Fac. Sci.  Toulouse, 1894
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Theorem [F.2008]. The Morse–Postnikov numbers satisfy

Ln ∼ L̂n, where L̂n =
1

2
(2n − 1)!

(
4

π

)2n+1

.

E.g.:
L4

L̂4

.
= 0.99949.

A continued fraction of Postnikov (2000)

= Morse links (systems of closed Morse curves)

26Monday, July 20, 2009



5. Addition formulae &c.

Stieltjes-Rogers

Addition formulae, paths, and OPs are 
all belong to a single family of identities

Applications to “processes”...
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The Stieltjes–Rogers Theorem

Definition. φ(z) =
∑∞

n=0 φn
zn

n!
satisfies an addition formula if

φ(x + y) =
∑

k

ωkφk(x)φk(y), where φk(x) =
xk

k!
+ O(xk+1).

Theorem. An addition formula gives automatically a continued

fraction for f (z) =
∞∑

n=0

φnz
n = 〈〈

∫ ∞

0
etφ(zt) dt〉〉.

1

1 − x − y
=

∑

k

(k!)2
xk/k!

(1 − x)k+1

yk/k!

(1 − y)k+1

∑
n!zn =

1

1 − z −
12 z2

1 − 3z −
22 z2

. . .

[Biane, Françon-Viennot]
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Systems of paths and birth–death processes:
Number & probability of weighted paths from a to b;

Discrete time processes: I.J. Good [1950’s];

Continuous time processes: Karlin–McGregor;
F–Guillemin [AAP 2000];

Combinatorial processes = “file histories”,
[F–Françon–Vuillemin–Puech, 1980+]

! Paths from 0 to k have exp. gen. function ϕk of addition formula.

0 1 2 3 4 5
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Meixner’s class of special OP’s

Classical orthogonal polynomials appear to share many
properties.

Theorem [Meixner 1934]: If the exponential generating function
satisfies a strong decomposability property,

∑

h

Qh(z)
tn

n!
= A(t)ezB(t),

then there are only five possibilities.

Laguerre Hermite Poisson-Charlier Meixner I Meixner II

Perms Arcs Set partitions Snakes Pref. arrang.
1

1− z
ez2/2 eez−1 sec(z)

1

2− ez
.

Computations for linear possibilities are automatic:

unified theory of “libraries”, basic queueing systems
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The Ehrenfest urn model

Particles switching chambers

addition formula (cosh(z))N &
1

1−
1 · N z2

1−
2 · (N − 1) z2

· · ·

.

The Mabinogion urn model

Spread of influence in populations:
A =⇒ (B −→ A), B =⇒ (A −→ B).

Theorem [F–Huillet 2008]. Fair urn: absorption time is

∼ 1
2N log N, with limit distribution of density % e−te−e−2t

.

Stieltjes; Kac 1947; 
Edelman-Kostlan 1994
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6. Some Elliptic matters

Jacobian functions

Dixonian functions

Bacher’s numbers
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• Pollaczek fractions have coefficients that are 
polynomials in the level = a mysterious class!

• Includes some Hurwitz zeta; cf Stieltjes-Apéry

• An interesting “sporadic” subclass appears to 
be related to elliptic functions

[Pollaczek, Mem. Sc. Math., 1956]
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Algebraic curves of genus 1 are doughnuts. The integrals
have two “periods”. The inverse functions are elliptic
functions; i.e., doubly periodic meromorphic.

Weierstraß ℘ arises from y2 = P3(z);

Jacobian sn, cn arise from y2 = (1− z2)(1− k2z2);

Dixonian sm, cm arise from y3 + z3 = 1.

They satisfy addition formulae!

(≠Stieltjes-Rogers)
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Theorem [F; Dumont 1980]. Jacobian elliptic
functions count alternating perms w/parity of peaks.

Theorem [Conrad+F, 2006]. Dixonian functions
have continued fractions
∫ ∞

0
sm(u)e−u/x du =

x2

1 + b0x3 −
1 · 22 · 32 · 4 x6

1 + b1x3 −
4 · 52 · 62 · 7 x6

· · ·

;

≡ levels in trees and an urn model (≈Yule process), &c

Theorem [Bacher+F, 2006]. Pseudofactorials
an+1 = (−1)n+1

∑(n
k

)
akan−k have a CF

∑
anz

n =
1

1 + z +
3 · 12 z2

1− z +
22 z2

1 + 3z +
. . .

.
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Pseudo-factorials: an+1 = (−1)n+1
∑ (

n

k

)
akan−k .

Theorem [Bacher+F, 2008]. The exponential generating
function of the orthogonal polynomials attached to (an) is

η(t) cosh(zJ(t)) + χ(t) sin(zJ(t)),

where J(t) :=

∫ t

0

du√
1− 3u2 + 3u4

and η, χ are algebraic

functions..

!= Carlitz 1960+; Ismail & Masson 1999; Lomont & Brillhart 2001;
cf. Gilewicz et al 2006 for “sm”.

Cf also: Flajolet--Bacher (an octic fraction, unpub.); 
Rivoal (deg=12(!)) relative to Γ(1/3)3
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Continued
Fractions

Probabilistic
Processes

Continued
Fractions

Continued
Fractions

Continued
Fractions

Combinatorics

Continued
Fractions

Special
Functions

Continued
Fractions

Ortho
Polys

Permutations, 

chords,set partitions, ...

Urn models, branching pr., 
Brownian motion,...

Meixner class, q-

Hermite,...
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