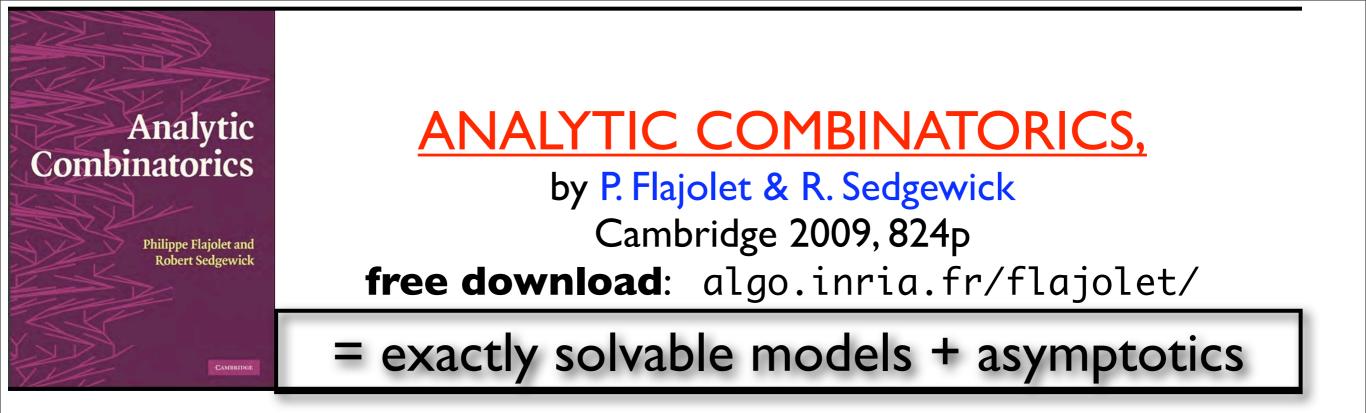
Combinatorial Models and Algebraic Continued Fractions

Philippe Flajolet INRIA-Rocquencourt, France

Orthogonal Polynomials, Special Functions and Applications Leuven, Begium, July 2009

Monday, July 20, 2009

1



Continued fractions associated with power series are tightly linked to lattice paths

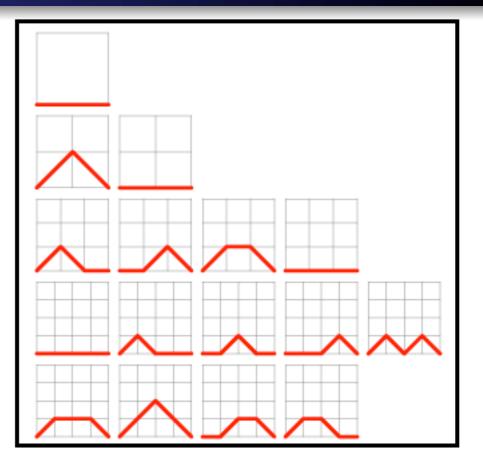
- Read off CF identities from combinatorics
- Solve combinatorial & discrete probabilistic models via CFs and Orthogonal Polynomials

CF

LATTICE PATHS

- are comprised of steps
 - Ascents (*a* : ↗);
 - Descents $(b: \searrow)$;
 - Levels $(c: \rightarrow)$;
- never go below horizontal axis.

Excursions start and end at 0-altitude.



Main theorem: Equivalence between:

- **Sum of all excursions** *encoded with altitudes;*

- Universal continued fraction of Jacobi type.

FORMALITIES (i)

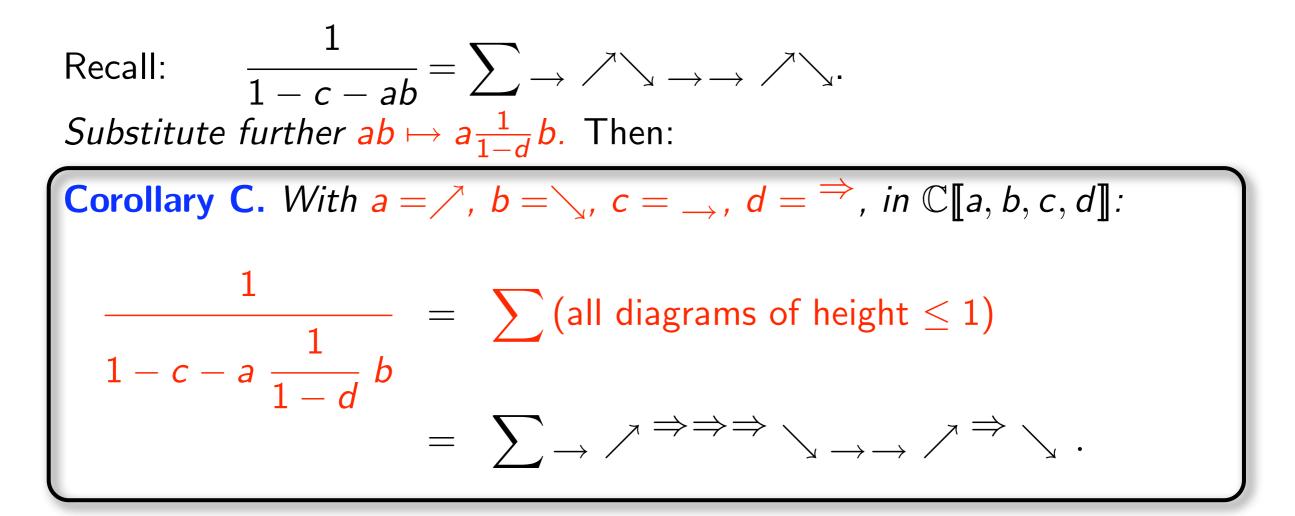
Corollary A. If
$$a = \nearrow$$
, $b = \searrow$, $c = \longrightarrow$, then [e.g., $n \equiv 3$]

$$(c+ab)^{n} = \overbrace{\rightarrow \rightarrow \rightarrow}^{n} + \swarrow \searrow \rightarrow + \rightarrow \swarrow \rightarrow + \checkmark \swarrow \checkmark \rightarrow + \checkmark \checkmark \checkmark \rightarrow + \cdots$$

Corollary B. Combining with the *sum of a geometric progression*

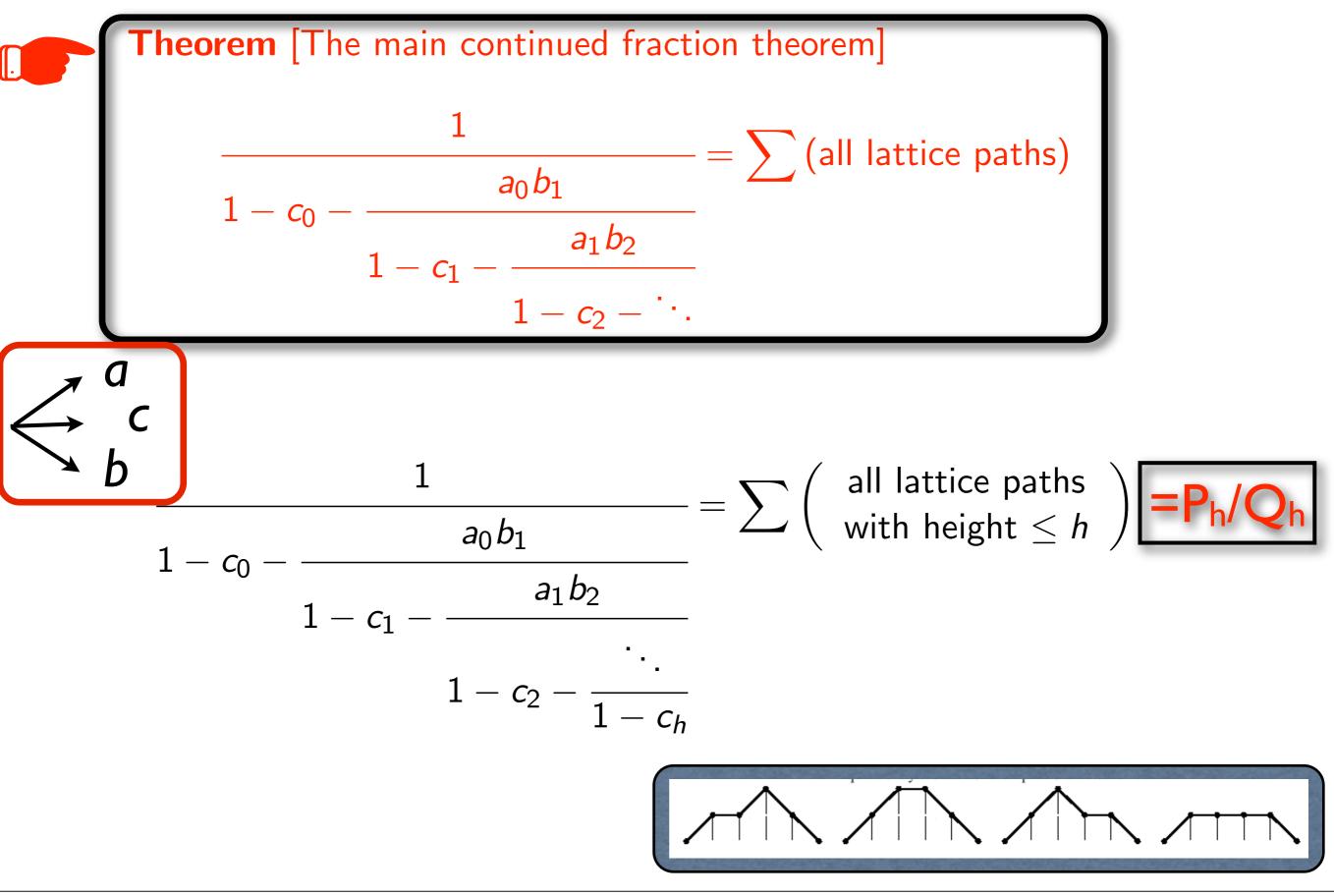
$$\frac{1}{1-c-ab} = \sum (\overrightarrow{} \rightarrow \overrightarrow{} \rightarrow \overrightarrow{}).$$

FORMALITIES (ii)

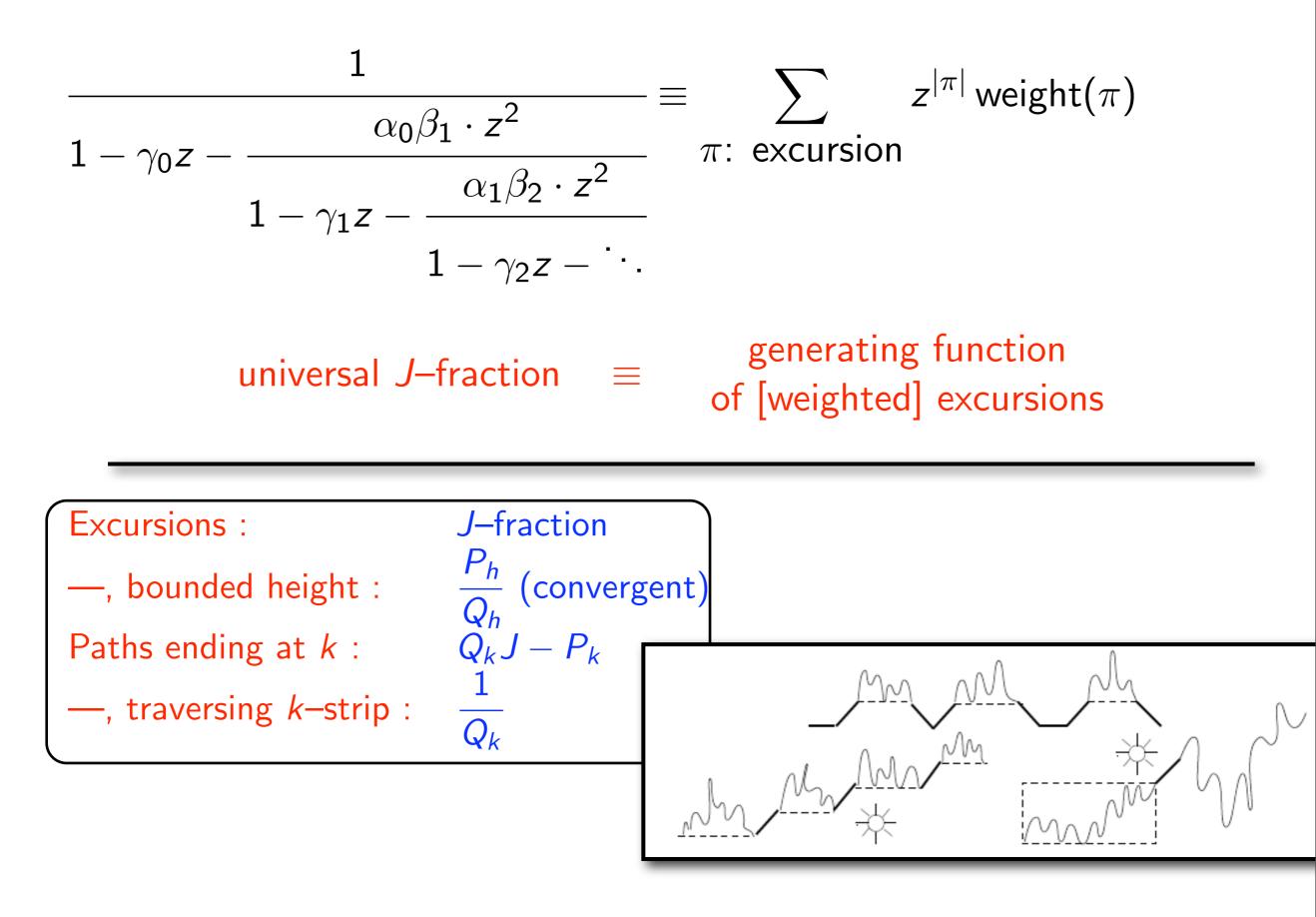


 \bigcirc

FORMALITIES GIVE A THEOREM...



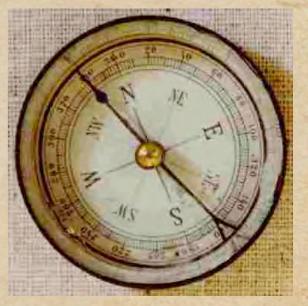
Equivalently, with weighting rules, $a_j \mapsto \alpha_j z$, $b_j \mapsto \beta_j z$, $c_j \mapsto \gamma_j z$:



- J. Touchard [1952]: chord diagrams (i)
- I.J. Good [1958]: discrete birth-death processes
- A. Lenard [1961]: statistical physics
- G. Szekeres [1968]: Rogers-Ramanujan identities
- D. Jackson [1978]: Ising model
- R. Read [1979]: chord diagrams (ii)
- P. Flajolet [1978-80]: "File histories". Discr. Math.

What next?

- 1. Símple applications
- 2. Convergents and orthogonal polynomials
- 3. Arches
- 4. Snakes
- 5. Addition formulae
- 6. Elliptic matters



1. Símple applications (ballots, coíns)

A SOLUTION (?!) TO THE BALLOT PROBLEM

"Two candidates, Alice and Bob, with (eventually) each n votes. What is the probability that Alice is always ahead or tied?" Do $a \mapsto z$; $b \mapsto z$; $c \mapsto 0$. By main theorem:



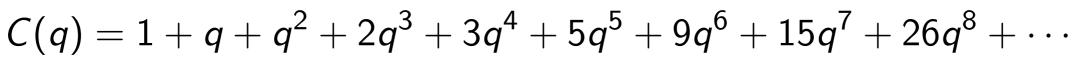
We get Catalan numbers [Euler-Segner 1750; Catalan 1850]

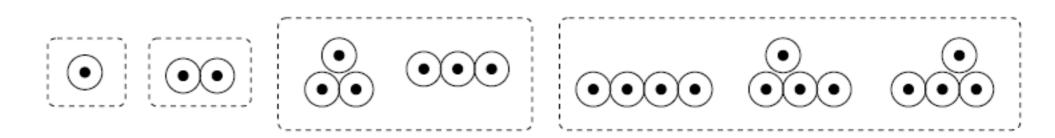
$$C = \frac{1}{1 - z^2 C} \implies C = \frac{1 - \sqrt{1 - 4z^2}}{2z^2} \implies C_n = \frac{1}{n+1} \binom{2n}{n}.$$

The probability is $\frac{C_n}{\binom{2n}{n}} = \frac{1}{n+1}.$

COIN FOUNTAINS

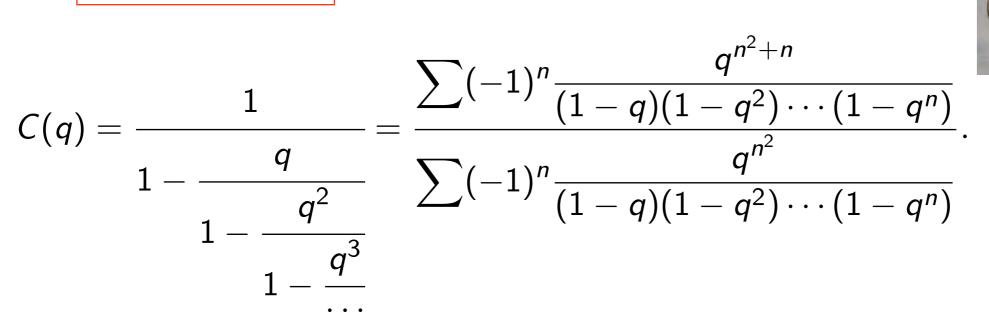
[Odlyzko-Wilf, 1988]





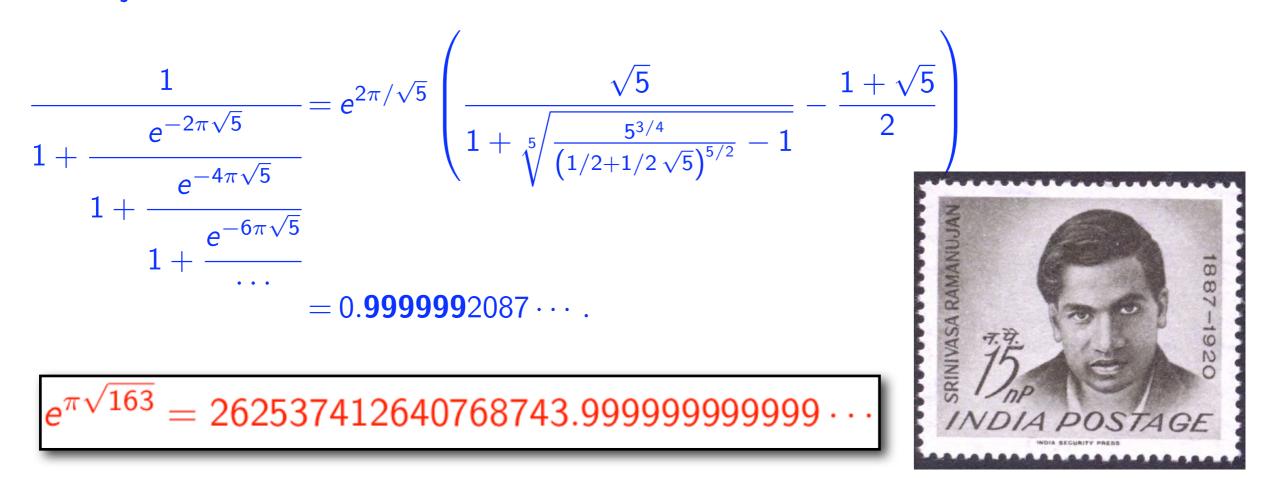
Greetings from The On-Line Encyclopedia of Integer Sequences!

Displaying 1-2 of 2 results found. Format: long <u>short internal text</u> Sort: relevance <u>references number</u> Highlight: on <u>off</u>	
A005169	Number of fountains of n coins. (Formerly M0708)
19232, 3 8281088,	2, 3, 5, 9, 15, 26, 45, 78, 135, 234, 406, 704, 1222, 2120, 3679, 6385, 11081, 3379, 57933, 100550, 174519, 302903, 525734, 912493, 1583775, 2748893, 4771144, 14373165, 24946955, 43299485, 75153286, 130440740 (list; graph; listen)
OFFSET	0,4
COMMENT	A fountain is formed by starting with a row of coins, then stacking additional coins on top so that each new coin touches two in the previous row.



Number of coin fountains: $C_n \sim 0.31 \cdot 1.73566^n$.

Ramanujan's fraction:



2. Convergent polynomíals

Revisiting the ballot problem Orthogonality

"Two candidates, Alice and Bob, with (eventually) each n votes. If Alice is always ahead (or tied), what is the probability that she never **leads** by more than h?"

The number of favorable cases has generating function (GF), with $z^2 \mapsto z$:

$$C^{[h]}(z) = \frac{1}{1 - \frac{z}{1 - \frac{\cdot}{1 - z}}} \left. \right\} h \text{ stages.}$$

 $\frac{1}{1}, \quad \frac{1}{1-z}, \quad \frac{1-z}{1-2z}, \quad \frac{1-2z}{1-3z+z^2}, \quad \cdots, \quad \frac{F_{h+1}(z)}{F_{h+2}(z)},$

where $F_{h+2} = F_{h+1} - zF_h$ are Fibonacci polynomials.

• "Constant-coefficient" recurrence; Lagrange inversion.

• Roots are $1/(4\cos^2\theta)$, $\theta = \frac{k\pi}{h}$; partial fractions.

+ Chebyshev

Lagrange [1775] & Lord Kelvin & De Bruijn, Knuth, Rice [1973]

$$C_n^{[h]} = \sum_k \cdots 4^n \cos^{2n} \left(\frac{k\pi}{h}\right) = \sum_k \cdots \binom{2n}{n-kh}.$$
partial fraction / Lagrange inversion

- Related to Kolmogorov–Smirnov tests in statistics:
 Compare X₁,..., X_n and Y₁,..., Y_n? "Sort and vote!"
- Pólya [1927]: totally elementary proof of elliptic-theta transformation:

$$\sum_{\nu=-\infty}^{\infty} e^{-\nu^2 t^2} = \sqrt{\frac{\pi}{t^2}} \sum_{\nu=-\infty}^{\infty} e^{-\pi^2 \nu^2/t^2}.$$

= Do multisection of $(1+z)^{2n}$, with $h = t\sqrt{n}$, in two ways!

+ asymptotics!

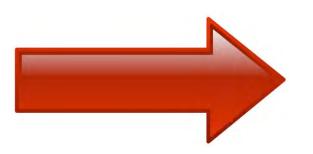
Linear fractional transformations [homographies] get composed like 2×2 matrices:

$$\frac{ax+b}{cx+d} \qquad \mapsto \qquad \left(\begin{array}{cc} a & b \\ c & d \end{array}\right).$$

- Convergent polynomials $\frac{P_h(z)}{Q_h(z)}$ satisfy a three-term recurrence with numers/denoms of the continued fraction.
- Reciprocals of convergent polynomials are orthogonal with respect to $\langle f, g \rangle = \langle f \cdot g \rangle$, where moments $\langle z^n \rangle$ are coefficients in the expansion of the continued fraction.

In all generality:

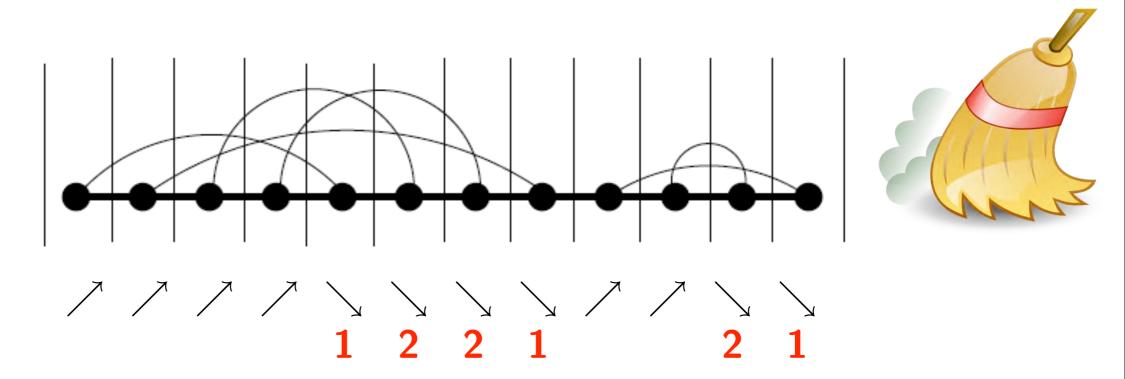
 Orthogonal polynomials must appear in counting of paths of bounded height and in "equivalent" structures.



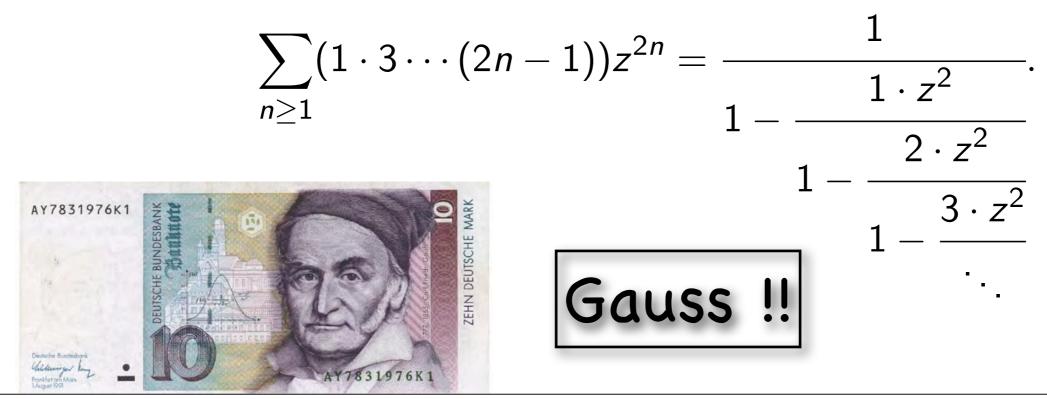
3. Arches and such

Colouring rules Hermite polynomials

In how many ways can one join 2n points on the line in pairs?



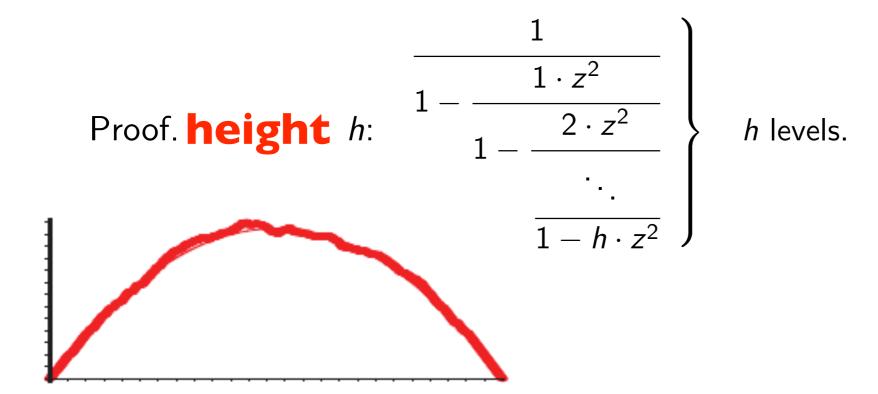
A descent from altitude *j* has *j* possibilities: $d_j \mapsto jz$, $a_j \mapsto z$.



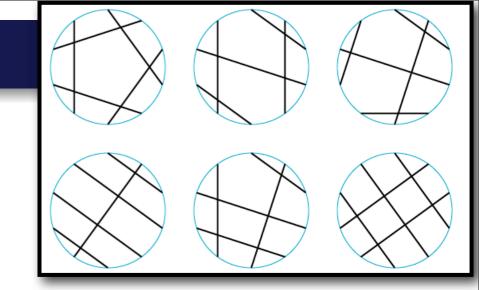
Monday, July 20, 2009

• The answer lies in the zeroes of **Hermite polynomials**.

$$\langle f,g\rangle = \int_{-\infty}^{\infty} f(x) \cdot g(x) e^{-x^2/2} dx.$$



Louchard & Janson: a Gaussian process = deterministic parabola + Brownian noise.



Join 2*n* points on circle by chords. How many crossings?

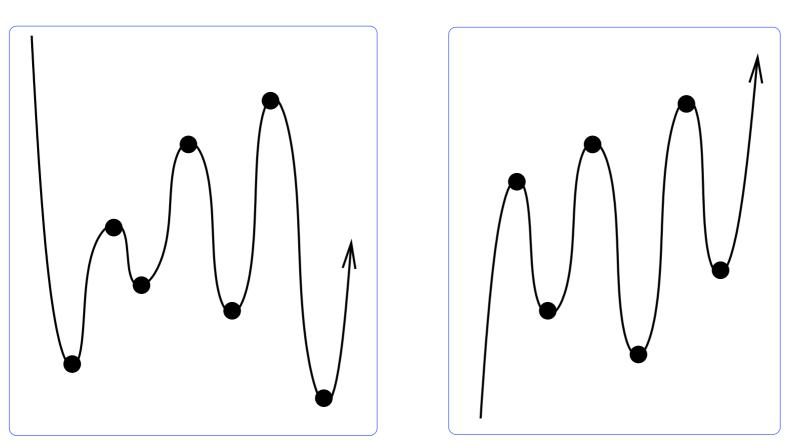


Theorem [Touchard]. Number of crossings has generating function $T(z(1-q),q) = \sum_{k\geq 0} q^{\binom{k+1}{2}}(-z^k)C^{2k+1}; \quad C := \frac{1}{2z}(1-\sqrt{1-4z}).$ **Corollary** [F-Noy 2000]: # crossings is asympt. Gaussian. Cf [Ismail, Stanton, Viennot 1987] for nice combinatorics (q-Hermite).

4. Snakes and curves

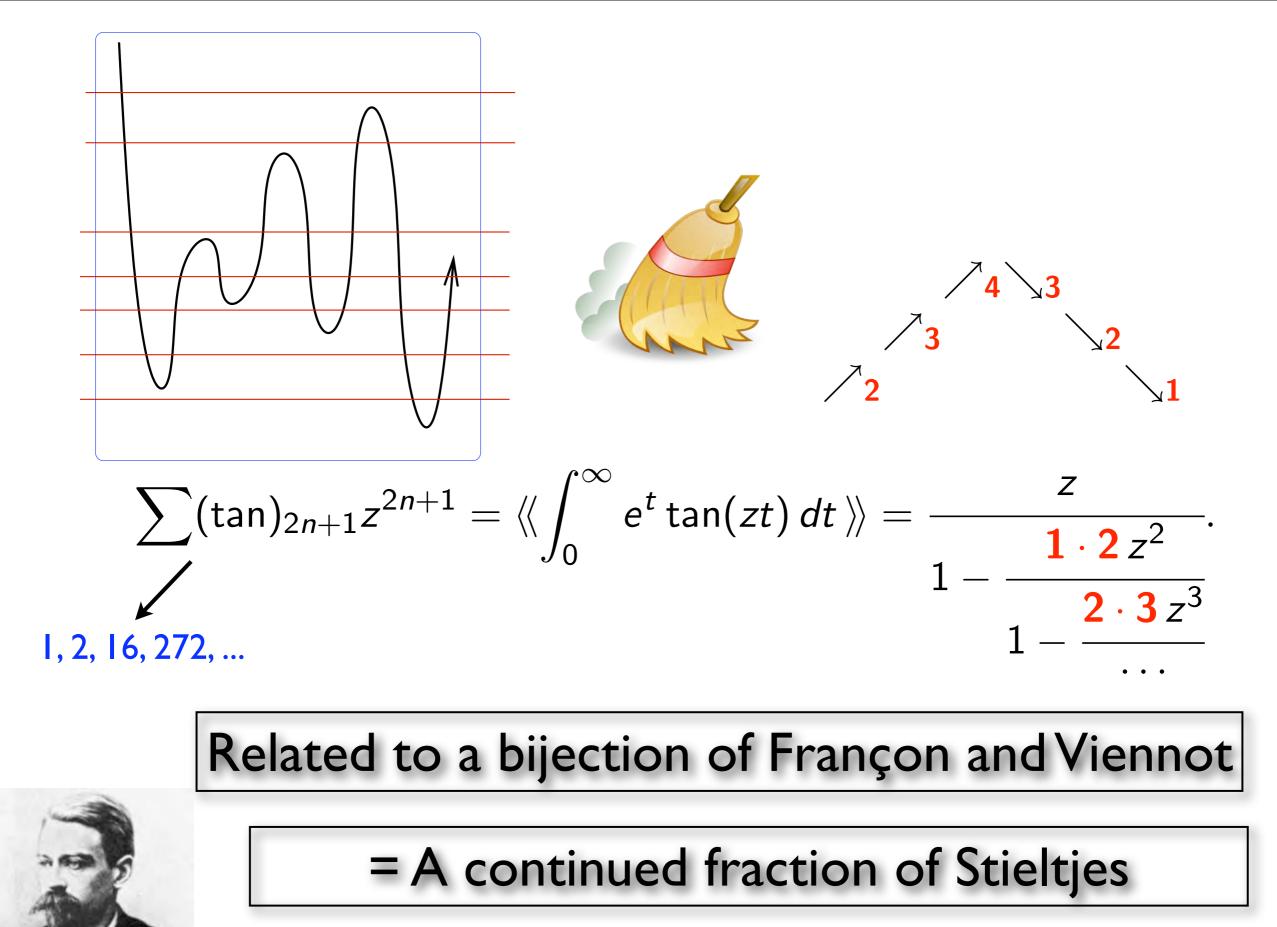
Arnold's snakes
Stieltjes' fraction
Postnikov's Morse links

Arnold [1992]: How many topological types of "smooth" functions?



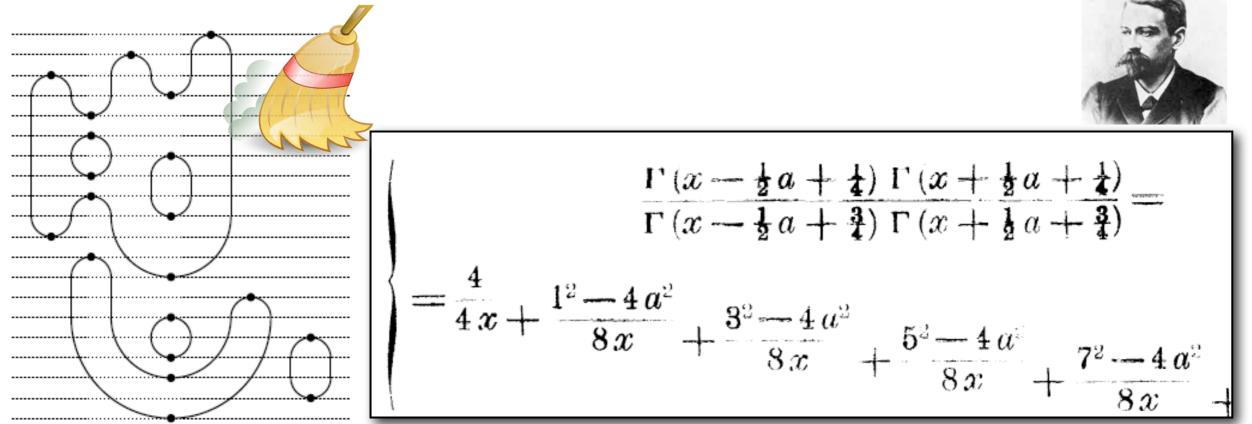
D. André [1881]: alternating perms = the coefficients of tan(z) and sec(z).

 $\begin{cases} \tan z = 1\frac{z}{1!} + 2\frac{z^3}{3!} + 16\frac{z^5}{5!} + 272\frac{z^7}{7!} + \cdots \\ \sec z = 1 + 1\frac{z^2}{2!} + 5\frac{z^4}{4!} + 61\frac{z^6}{6!} + \cdots . \end{cases}$ Proof. Decompose according to minimum and get ODE: $Y' = 1 + Y^2$ via recurrence.



A continued fraction of Postnikov (2000)

= Morse links (systems of closed Morse curves)



Theorem [F.2008]. The Morse–Postnikov numbers satisfy

$$L_n \sim \widehat{L}_n, \qquad \text{where} \quad \widehat{L}_n = \frac{1}{2}(2n-1)! \left(\frac{4}{\pi}\right)^{2n+1}.$$

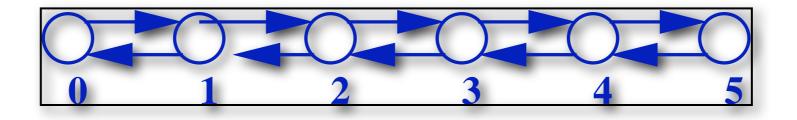
E.g.:
$$\frac{L_4}{\widehat{L}_4} \doteq 0.99949.$$

5. Addition formulae & c.

Stieltjes-Rogers
Addition formulae, paths, and OPs are all belong to a single family of identities
Applications to "processes"...

The Stieltjes–Rogers Theorem

Definition.
$$\phi(z) = \sum_{n=0}^{\infty} \phi_n \frac{z^n}{n!}$$
 satisfies an addition formula if
 $\phi(x+y) = \sum_k \omega_k \phi_k(x) \phi_k(y)$, where $\phi_k(x) = \frac{x^k}{k!} + O(x^{k+1})$.
Theorem. An addition formula gives automatically a continued
fraction for $f(z) = \sum_{n=0}^{\infty} \phi_n z^n = \langle \langle \int_0^\infty e^t \phi(zt) dt \rangle \rangle$.
 $\frac{1}{1-x-y} = \sum_k (k!)^2 \frac{x^k/k!}{(1-x)^{k+1}} \frac{y^k/k!}{(1-y)^{k+1}}$
 $\sum n! z^n = \frac{1}{1-z-\frac{1^2 z^2}{1-3z-\frac{2^2 z^2}{2}}}$
[biane, Françon-Viennot]



Systems of paths and **birth–death processes**: Number & probability of weighted paths from *a* to *b*;

- Discrete time processes: I.J. Good [1950's];
- Continuous time processes: Karlin–McGregor; F–Guillemin [AAP 2000];
- Combinatorial processes = "file histories", [F–Françon–Vuillemin–Puech, 1980+]

 \rightarrow Paths from 0 to k have exp. gen. function φ_k of addition formula.

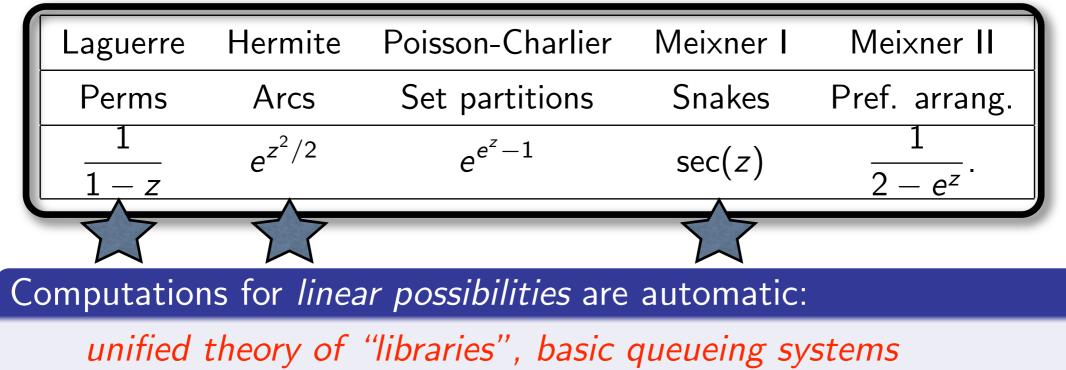
Meixner's class of special OP's

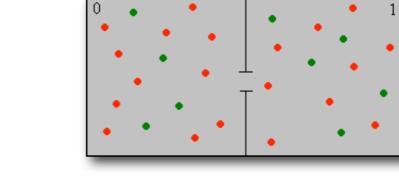
Classical orthogonal polynomials appear to share many properties.

Theorem [Meixner 1934]: If the exponential generating function satisfies a strong decomposability property,

$$\sum_{h} \overline{Q}_{h}(z) \frac{t^{n}}{n!} = A(t) e^{zB(t)},$$

then there are only five possibilities.





 $\frac{1 \cdot N z^2}{2 \cdot (N-1) z^2}$

&

Particles switching chambers

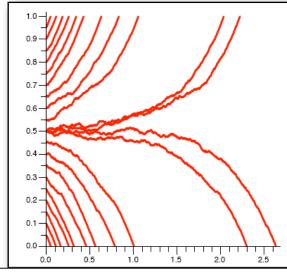
addition formula $(\cosh(z))^N$

Stieltjes; Kac 1947; Edelman-Kostlan 1994

The Mabinogion urn model

• Spread of influence in populations: $A \Longrightarrow (B \longrightarrow A), B \Longrightarrow (A \longrightarrow B).$

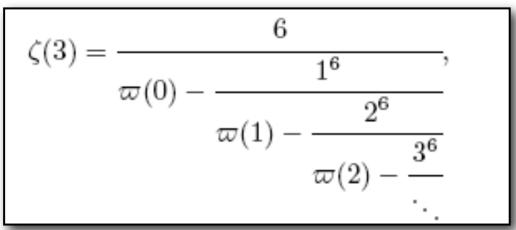
Theorem [F–Huillet 2008]. Fair urn: absorption time is $\sim \frac{1}{2}N \log N$, with limit distribution of density $\approx e^{-t}e^{-e^{-2t}}$



6. Some Elliptic matters

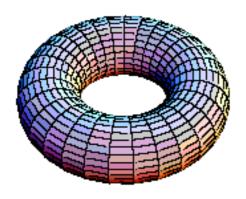
Jacobían functions
Díxonían functions
Bacher's numbers

- Pollaczek fractions have coefficients that are polynomials in the level = a mysterious class!
- Includes some Hurwitz zeta; cf Stieltjes-Apéry



 An interesting "sporadic" subclass appears to be related to <u>elliptic functions</u>

[Pollaczek, Mem. Sc. Math., 1956]



- Algebraic curves of genus 1 are doughnuts. The integrals have two "periods". The inverse functions are elliptic functions; i.e., doubly periodic meromorphic.
- Weierstraß \wp arises from $y^2 = P_3(z)$;
- Jacobian sn, cn arise from $y^2 = (1 z^2)(1 k^2 z^2);$
- Dixonian sm, cm arise from $y^3 + z^3 = 1$.

They satisfy addition formulae!

(*≠*Stieltjes-Rogers)

• **Theorem [F; Dumont 1980].** Jacobian elliptic functions count alternating perms w/parity of peaks.

• Theorem [Conrad+F, 2006]. Dixonian functions have continued fractions

$$\int_{0}^{\infty} \operatorname{sm}(u) e^{-u/x} du = \frac{x^{2}}{1 + b_{0}x^{3} - \frac{1 \cdot 2^{2} \cdot 3^{2} \cdot 4 x^{6}}{1 + b_{1}x^{3} - \frac{4 \cdot 5^{2} \cdot 6^{2} \cdot 7 x^{6}}{\dots}};$$

figure = levels in trees and an urn model (\approx Yule process), &c

• Theorem [Bacher+F, 2006]. Pseudofactorials

$$a_{n+1} = (-1)^{n+1} \sum {n \choose k} a_k a_{n-k}$$
 have a CF

$$\sum a_n z^n = \frac{1}{1+z+\frac{3\cdot 1^2 z^2}{1-z+\frac{2^2 z^2}{1+3z+\cdot \cdot}}}.$$

<u>A098777</u> $a(0)=0, a(n+1)=(-1)^{(n+1)*sum(binomial(n,k)*a(k)*a(n-k)',k'=0..n)}, n>=0.$

1, -1, -2, 2, 16, -40, -320, 1040, 12160, -52480, -742400, 3872000, 6645 411136000, -8202444800, 58479872000, 1335009280000, -10791497728000, -27

Pseudo-factorials:
$$a_{n+1} = (-1)^{n+1} \sum \binom{n}{k} a_k a_{n-k}$$

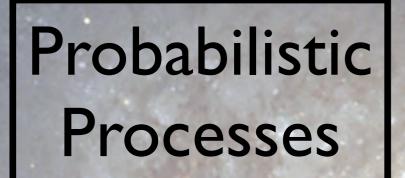
Theorem [Bacher+F, 2008]. The exponential generating function of the orthogonal polynomials attached to (a_n) is

 $\eta(t)\cosh(zJ(t)) + \chi(t)\sin(zJ(t)),$

where
$$J(t) := \int_0^t \frac{du}{\sqrt{1 - 3u^2 + 3u^4}}$$
 and η, χ are algebraic functions.

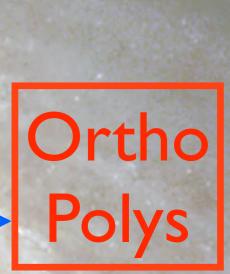
 \neq Carlitz 1960+; Ismail & Masson 1999; Lomont & Brillhart 2001; cf. Gilewicz *et al* 2006 for "sm".

Cf also: Flajolet--Bacher (an octic fraction, unpub.); Rivoal (deg=12(!)) relative to $\Gamma(1/3)^3$



Urn models, branching pr., Brownian motion,...

> Continued Fractions



Special

Functions

Meixner class, q-Hermite,...

Combinatorics

Permutations, chords,set partitions, ...

Monday, July 20, 2009