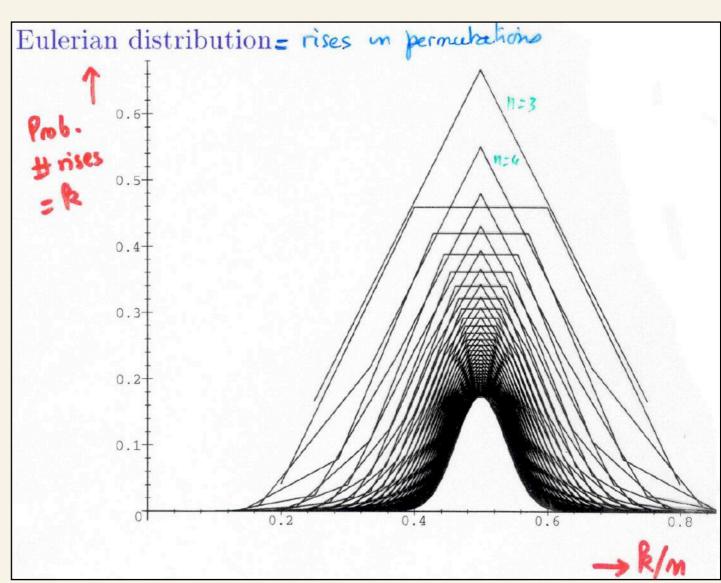
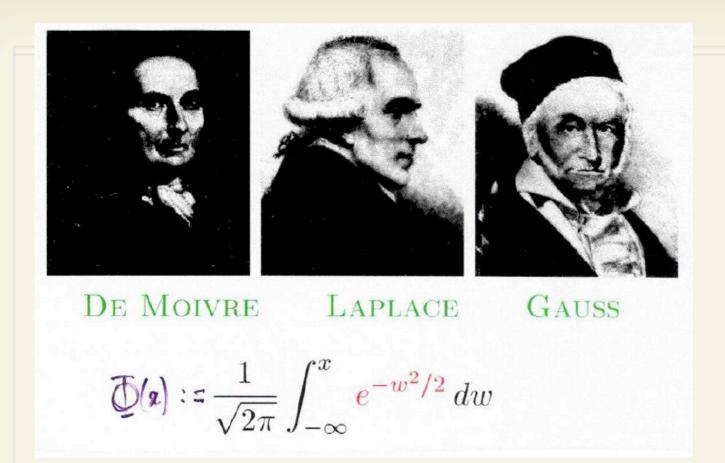
Part C. Random Structures

Chapter 9. Multivariate Generating Functions and Limit distributions

Large random combinatorial structures are (often) predictable!



Concentration? Limit law? Relation to Bivariate GFs C(z, u) and singularities?



Why is the binomial distribution asymptotically normal?

- <u>De Moivre</u>: approximation of $\frac{1}{2^n} \binom{n}{k}$.
- <u>Laplace/Gauss:</u> as sum of many RV's + <u>Lévy</u>: ...: because of characteristic functions $\rightarrow e^{-t^2/2}$.
- Analytic combinatorics: because of bivariate GF $\frac{1}{1-z(1+u)}$ and smoothly varying singularity!

Quasi-Powers Theorem: "If you resemble a power, then your limit law is normal".

Proof. "Analytic expansions are differentiable": this gives moments.

Limit law results from Lévy's continuity theorem.

Speed results from Berry-Esseen.

 \ll Bender, Richmond⁺.

Quasi-Powers Theorem | Bender+Hwang|

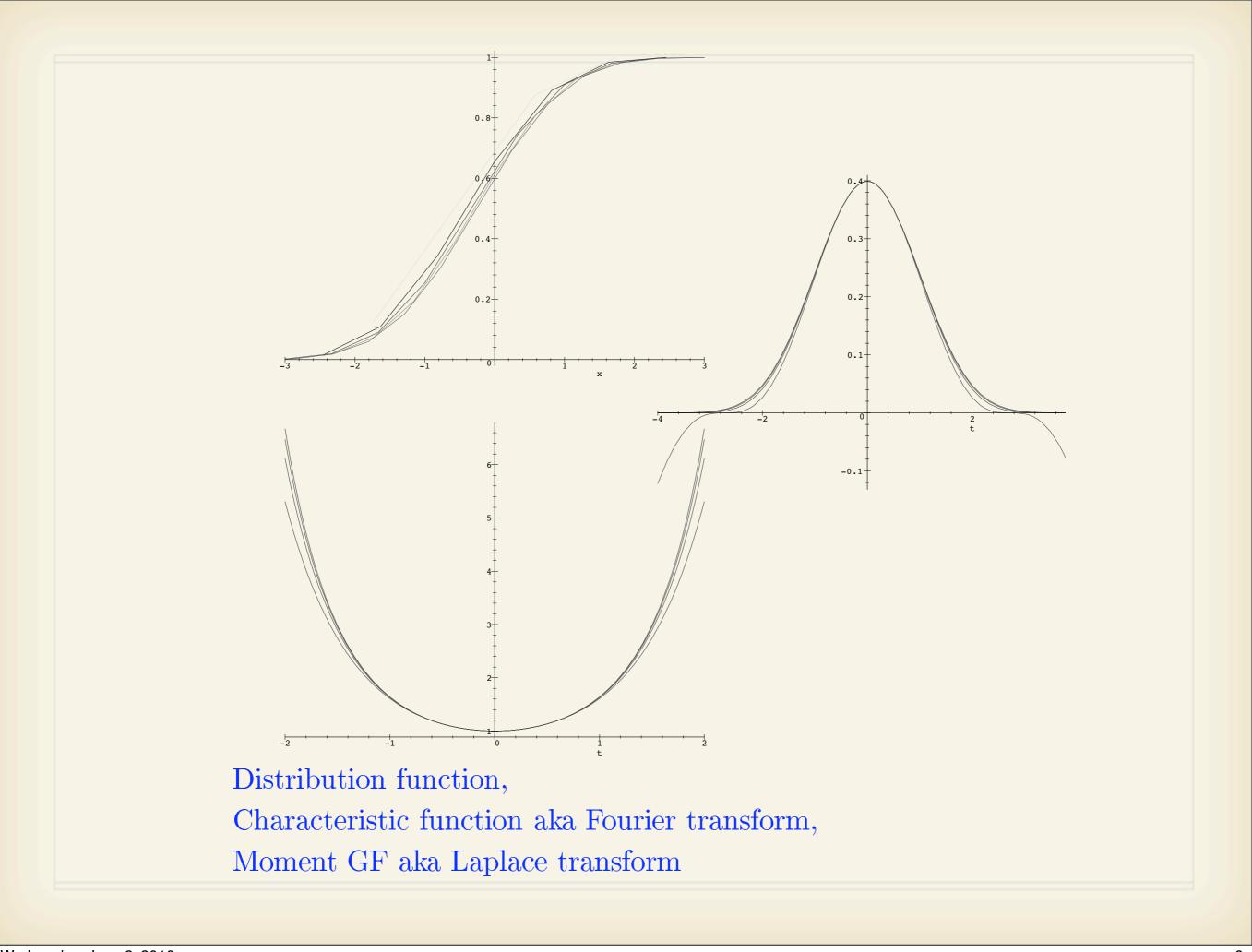
Assume (X_n) are RV's with probability GF (PGF) $f_n(u) = \mathbb{E}(u^{X_n})$ and for A(u), B(u) analytic at 1:

$$f_n(u) = A(u)B(u)^{\beta_n} \left(1 + O(\frac{1}{\kappa_n})\right),$$

for $u \approx 1$, with $\beta_n, \kappa_n \to \infty$, and $\mathbb{V}ar(B(u)) > 0$. Then

- mean: $\mu_n = \mathbb{E}(X_n) \sim \beta_n B'(1)$; s-dev.: $\sigma_n^2 \sim \beta_n \mathbb{V}ar(B)$.
- normal limit: $\mathbb{P}(X_n \le \mu_n + x\sigma_n) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-w^2/2} dw$

• Speed of convergence is $O(\kappa_n^{-1} + \beta_n^{-1/2})$.



Bender (1973), Bender & Richmond (1983), Hwang (1994)

Quasi-Powers
$$(\approx A(u)B(u)^{\beta_n})$$

$$\downarrow$$
Meromorphic^{1,2} Alg-log² Exp-log²

¹ Analysis of meromorphic functions

$$[z^n]f(z) = \frac{1}{2i\pi} \oint f(z) \frac{dz}{z^{n+1}}$$

 $[z^n]f(z) =$ Residue + exponentially small

² Singularity analysis

$$f(z) \approx (1-z)^{-\alpha}$$

$$[z^n]f(z) \approx n^{\alpha - 1}$$

The methods are *uniform* w.r.t. parameters

• All Gaussian laws eventually based on perturbation of

Example 1. Supercritical sequences

Let $\mathcal{F} = \text{Seg}(\mathcal{G})$, so that number of components has BGF

$$F(z,u) = \frac{1}{1 - uG(z)}.$$

Assume that G(r) > 1 where r:=radius of conv. of G(z).

Theorem. The number of G-components in a random F-structure is asymptotically normal.

Theorem. The number of G-components in a random F-structure is asymptotically normal.

Proof. A. Let $\rho \in (0,r)$ be such that $G(\rho) = 1$. This is r.o.c. of $F(z) \equiv F(z,1)$. There is a simple pole.

- **B**. Equation 1 uG(z) = 0 has root $\rho(u)$, where $\rho(u)$ depends analytically on u for $u \approx 1$.
- C. Function F(z, u), with u parameter, has simple pole at $\rho(u)$ and

$$[z^n]F(z,u) \sim c(u)\rho(u)^{-n}.$$

D. Uniformity is granted (by integral representations), so that Quasi-Powers Theorem applies.
QED

Example 1. Supercritical sequences (continued)

- Compositions: arbitrary; with Ω -excluded or Ω -forced summands. Compositions into prime summands, $G(z) = z^2 + z^3 + z^5 + \cdots$. Same for twin primes (!!).
- Surjections aka ordered set partitions, $G(z) = e^z 1$. Same with Ω -constraints.
- k-components in compositions, surjections, etc.

Example 2. Cycles in perms

$$F(z, u) = \exp\left(u\log\frac{1}{1-z}\right) = (1-z)^{-u}.$$

- A. By singularity analysis, get main approximation: $[z^n]F(z,u) \sim$ $\frac{n^{u-1}}{\Gamma(u)}$.
- B. Approximation is uniform by nature of singularity analysis process (contour integration).
- C. Rewrite as Quasi-Powers approximation:

$$[z^n]F(z,u) \sim \frac{1}{\Gamma(u)} \cdot \left(e^{(u-1)}\right)^{\log n}$$
.

Thus, scale is now $\beta_n \sim \log n$.

D. Quasi-Powers Theorem applies.

QED

11

"Assemblies of logarithmic structures"

Example 3. Exp-Log schema.

Let $\mathcal{F} = \mathbf{Set}(\mathcal{G})$, so that number of components has BGF

$$F(z, u) = e^{uG(z)}.$$

Assume that G(z) is logarithmic: $G(z) \sim \lambda \log \frac{1}{1-z/\rho}$.

Theorem. The number of \mathcal{G} -components in a random \mathcal{F} -structure is asymptotically normal, with logarithmic mean and variance.

Application: Random mappings, etc. ≫Arratia-Barbour-Tavaré.

Example 4. Polynomials over finite fields

```
> Factor(x^7+x+1) mod 29;
3 2 2 2
(x + x + 3 x + 15) (x + 25 x + 25) (x + 3 x + 14)
```

- \mathcal{P} olynomial is a $\mathfrak{S}_{equence}$ of coeffs: \mathcal{P} has Polar singularity.
- By unique factorization, \mathcal{P} is also $\mathfrak{M}ultiset$ of $\mathcal{I}rreducibles$: \mathcal{I} has log singulariy.
- \Longrightarrow Prime Number Theorem for Polynomials $I_n \sim \frac{q^n}{n}$.
- Marking number of \mathcal{I} -factors is approx uth power:

$$P(z,u) \approx \left(e^{I(z)}\right)^u$$
.

Variable Exponent $\Longrightarrow \mathcal{N}$ ormality of # of irred. factors. (cf Erdős-Kac for integers.)

Useful for analysis of polynomial factorization algorithms.

Functional equations and limit laws

For a large collection of combinational classes & parameters, we have a functional equation D(z,y,u)=0 In the counting case (u=1) get a singular expansion y(2,1) = -- (1-2/p) + -A PERTURBATION of u near 1 will often induce a smooth perturbation of the expansion of 4(2,4), e.g., movable surgularity y(z,u) = --. (1-2/p(u)) d+... movable exponent y (2, u) = --- (1-2/p) d(u) + ... inth f(a) or x(a) analytic at 1

By singularity analysis

Asymptotic normality of a avani Powers

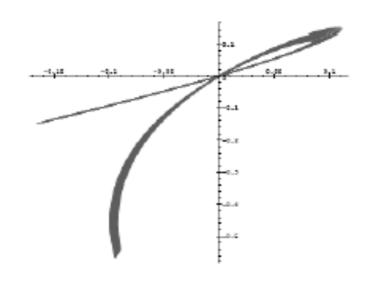
Perturbation of rational functions

— Regular languages & automata, under irreducibity conditions. Auxiliary mark u induces a smooth singularity dislacement. Occurrences of patterns in random texts. Works for sets of patterns.

 \approx Extends CLT for finite Markov chains.

Perturbation of algebraic functions: for irreducible systems, the Drmota-Lalley-Woods Theorem implies ,/-singularity.

Example 5. Non-crossing graphs (Noy-F.)



= Perturbation of algebraic equation.

$$G^{3} + (2z^{2} - 3z - 2)G^{2} + (3z + 1)G = 0$$

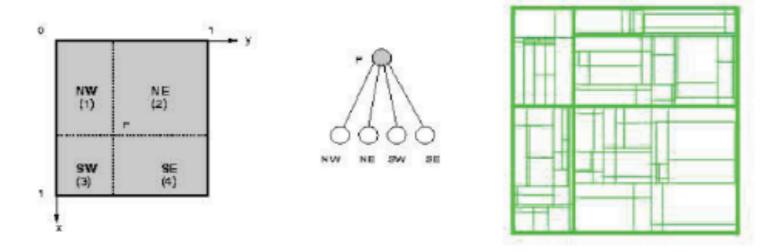
$$G^{3} + (2u^{3}z^{2} - 3u^{2}z + u - 3)G^{2} + (3u^{2} - 2u + 3)G + u - 1 = 0$$

Movable singularity scheme applies: Normality.

+ Patterns in context-free languages, in combinatorial tree models, in functional graphs: Drmota's version of Drmota-Lalley-Woods.

Perturbation of differential equations.

Example 6. Profile of Quadtrees.



$$F(z,u) = 1 + 2^3 u \int_0^z \frac{dx_1}{x_1(1-x_1)} \int_0^{x_1} \frac{dx_2}{1-x_2} \int_0^{x_2} F(x_3,u) \frac{dx_3}{1-x_3}.$$

Solution is of the form $(1-z)^{-\alpha(u)}$ for algebraic branch $\alpha(u)$; Variable Exponent $\Longrightarrow \mathcal{N}$ ormality of search costs.

Applies to many linear differential models that behave like *cycles-in-perms*.

Other Properties

Local Limit Theorem. If the Quasi-Powers approximation holds on the circle |u| = 1, then

$$\sigma_n \Pr\{X_n = \mu_n + x\sigma_n\} \to \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

Large deviations. If the Quasi-Powers approximation holds on an interval containing 1, then

$$\frac{1}{\beta_n} \log p_{n,x\beta_n} \le W(x) + \emptyset(\beta_n^{-1}).$$

Counting

u = 1

Moments

 $u=1\pm\frac{1}{\infty}$

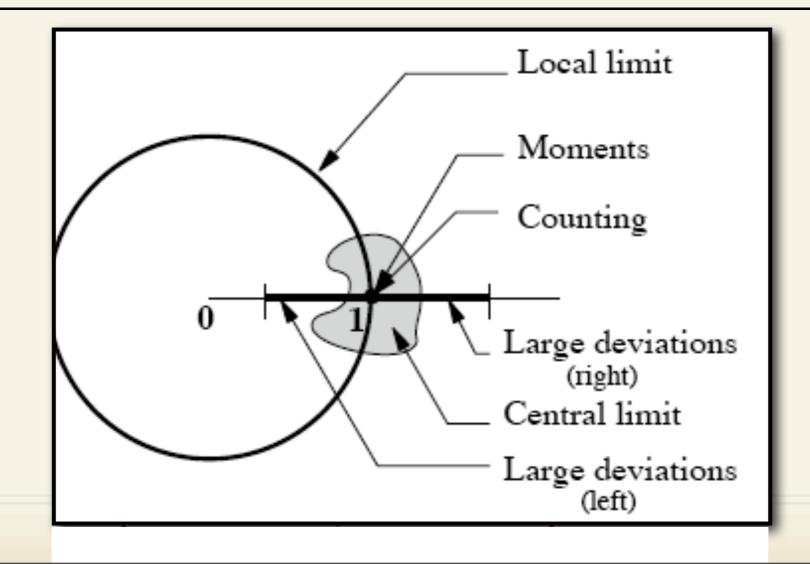
Large deviations $u = [1 - \eta, 1 + \eta]$

Central limit

 $u = 1 + \square$

Local limit

|u| = 1



Rises in permutations

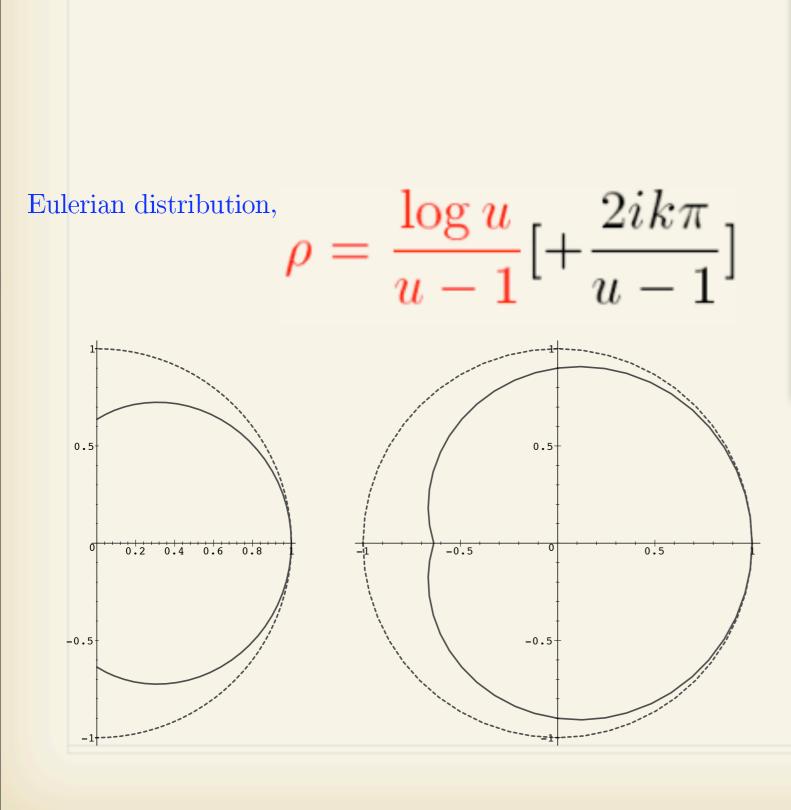
EXAMPLE. Eulerian Numbers = Rises in permutations.

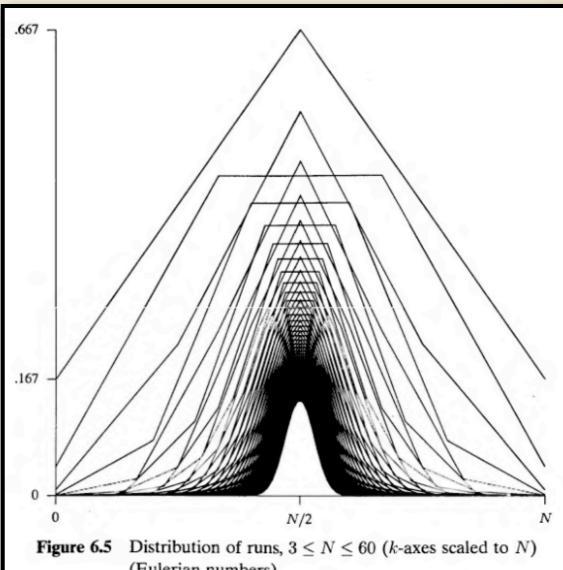
$$F(z,1) = \frac{1}{1-z} \qquad F(z,u) = \frac{u(1-u)}{e^{(u-1)z} - 1}$$

$$\rho = 1 \qquad \rho = \frac{\log u}{u-1} \left[+\frac{2ik\pi}{u-1} \right]$$

$$[z^n]F(z,u) = \frac{1}{2i\pi} \int_{|z|=1/2} F(z,u) \frac{dz}{z^{n+1}}$$
$$= \rho(u)^{-n-1} + O(2^{-n})$$
Uniformly

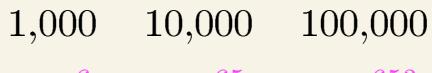
 \Longrightarrow Gaussian Law, $\mu_n \sim \frac{1}{2}n$, $\sigma_n^2 \sim \frac{1}{12}n$.

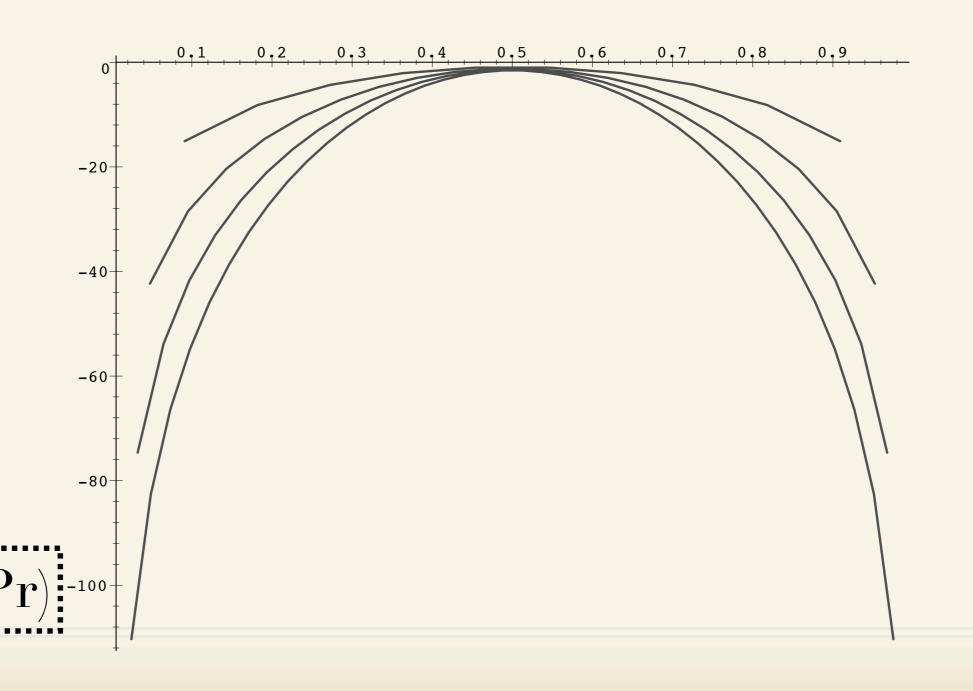




(Eulerian numbers)

Runs in perms: mean $\sim n/2$. Proba of deviation by more than 10% from mean is





Non-Gaussian Laws | Use singularity diagrams

$$F(z, u) = \frac{1}{1 - zu} \cdot \frac{1}{1 - z}$$

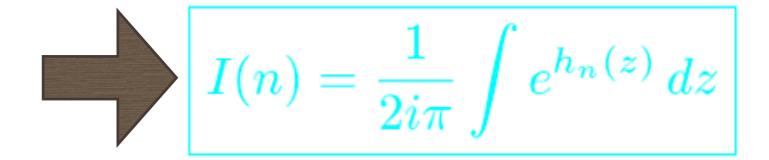
$$u = 1 - \epsilon \qquad u = 1 \qquad u = 1 + \epsilon$$

$$\rho(u) = 1 \qquad \rho(u) = 1 \qquad \rho(u) = 1/u$$

$$Z^{-1} \qquad Z^{-2} \qquad Z^{-2}$$

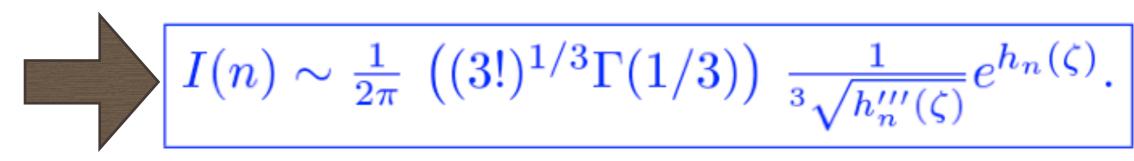
$$(\star) Z = \rho(u) - z$$

The double saddle point Non-Gaussian Laws



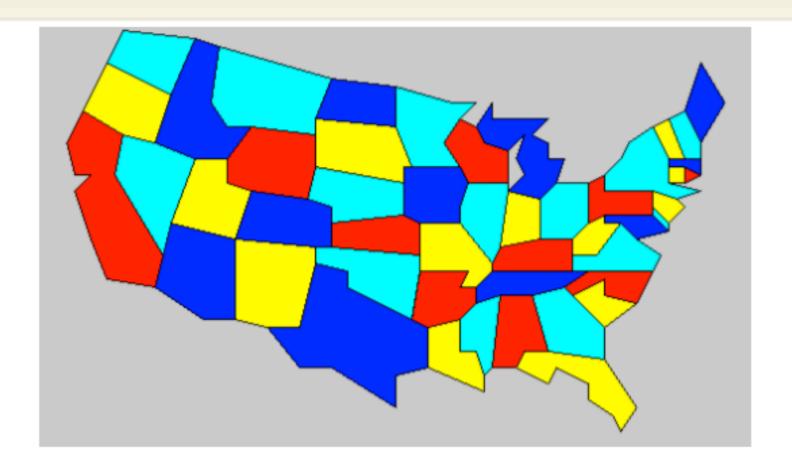
double saddle point at $\zeta \equiv \zeta_n : h'_n(\zeta) = h''_n(\zeta) = 0$

via:
$$e^{h_n(\zeta)} \int \exp(-\frac{t'^3}{3!} |h_n'''(\zeta)| dt$$



Normalization to:

Exp \circ Cubic; scales $\sqrt[3]{n}$, ...



Maps are planar graphs with an embedding in the plane (or sphere) plus a *rooted* edge.

Consider:

- Maps M of sorts;
- Core maps C ⊂ M with higher connectivity;

 \mathcal{C} : class of 2-connected loopless maps.

$$M(z) = C(zM(z)^2)$$

$$\Pr(X_n = k) = C_k \frac{[z^n]M(z)^k}{[z^n]M(z)}.$$

Airy function

A solution of y'' - zy = 0

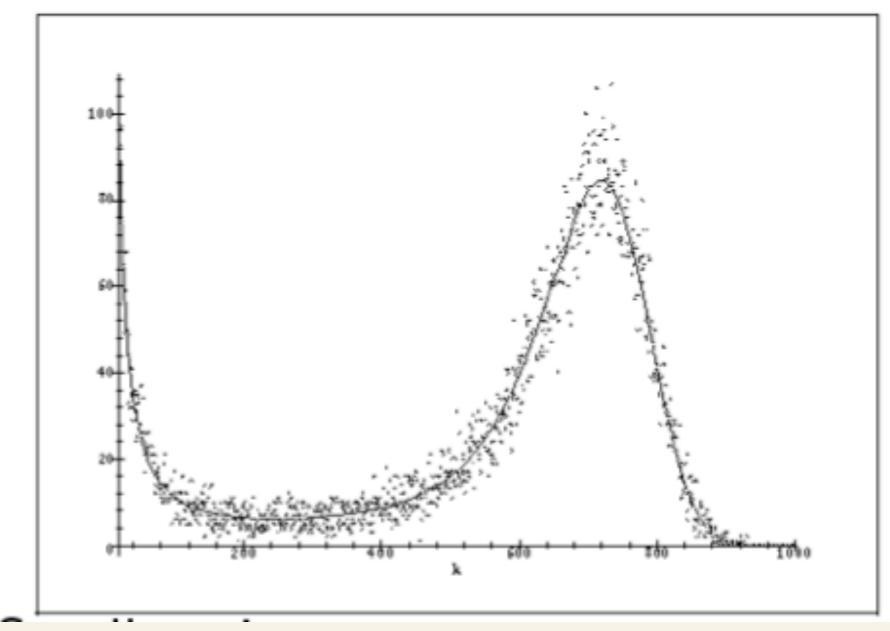
$$Ai(z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i(zt+t^3/3)} dt$$

$$= \frac{1}{\pi 3^{2/3}} \sum_{n=0}^{\infty} \frac{\Gamma((n+1)/3)}{n!} \sin\left(\frac{2(n+1)\pi}{3}\right) \left(3^{1/3}z\right)^n$$

Core size in maps [BaFlScSo]

$$\mathcal{A}(x) = 2 \exp\left(-\frac{2}{3}x^3\right) \left(x \operatorname{Ai}(x^2) - \operatorname{Ai}'(x^2)\right).$$

$$\Pr(X_n = k) \sim K n^{-2/3} \mathcal{A}\left(\frac{3^{4/3}}{4}x\right), \qquad k = \frac{n}{3} = x n^{2/3}.$$



 \heartsuit The Random Graph with n vertices, m edges has phases

Gas
$$(m = o(n))$$
; Liquid $(m \sim \frac{n}{2})$;
Solid $(m \sim \frac{1}{2}n\log n)$; Hypersolid $(m \gg n\log n)$

At critical stage $m \sim \frac{n}{2}$, RG is "almost" a forest of unrooted trees and unicyclic graphs.

$$W_{-1} = T - T^2/2$$
, $W_0 = \frac{1}{2} \log \frac{1}{1 - T} - \frac{T}{2} - \frac{T^2}{4}$.

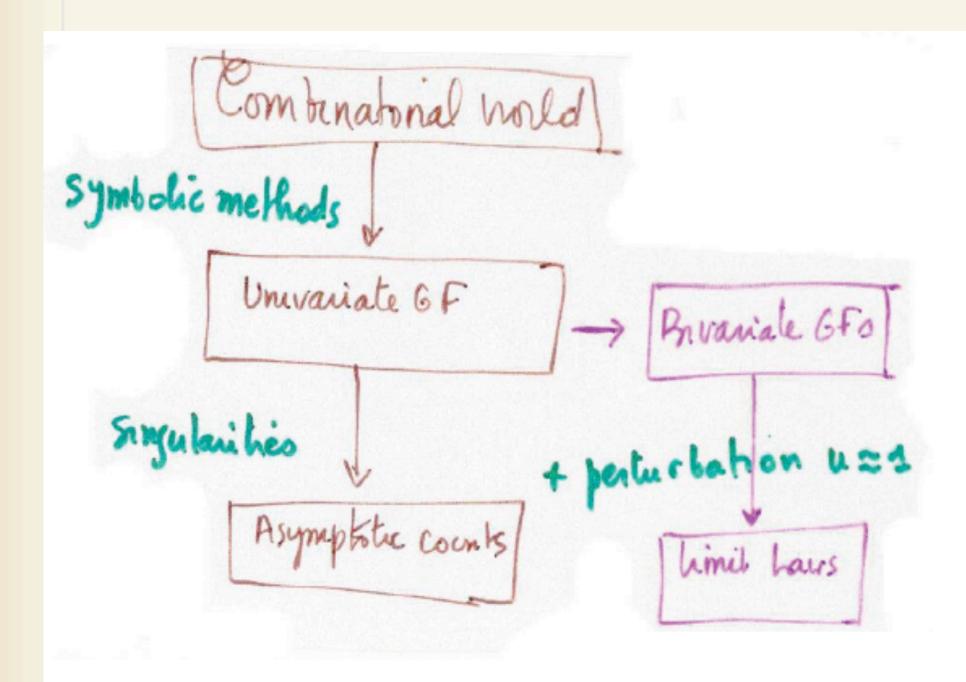
Airy functions have been observed in Fl-Knuth-Pittel and the "Giant paper" by Janson-Knuth-Łuczak-Pittel!

+[F., Salvy, Schaeffer 2006]

There is another class of Airy-related distributions:

<u>Theorem.</u> [Louchard; Takács; Fl-Poblete-Viola] Area below excursions, path length of trees, and displacement in linear probing hashing all converge to a law determined by its moments as (roughly)

$$MGF \approx \frac{\operatorname{Ai}'(z)}{\operatorname{Ai}(z)}$$



That's All, Folks!

