Part C. Random

Structures

Chal:)ter 9. Multivariate Generating Functions and
|_imit distributions




Large random combinatorial structures are (often)
predictable!

Eulerian distributions rises wnm ).we.mm}a,hrfm
R 0.6
LANDO M Coniosimons of n=loc m‘ 1
' an&l& |
8 IR o
fﬂﬂnﬂ lllllllll ﬁ;ﬂnunﬂlpn . :& i
3.44;
H n : a A A B B Ao
............................................
i 0.3
é: “ [
Ammnaslas el o o fhHHRH “I
T
lﬂﬁllnlnllﬁ—:—ﬂ lllll -i]l]l ql lllllllll ql‘.{'llml IEl r) l_":
|
0

Concentration? Limit [aw?
Relation to Bivariate GFs C(z, u) and singularities?
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Why is the binomial distribution asymptotically normal?

. . . 1
e De Moivre: approximation of o (;I> .

e Laplace/Gauss: as sum of many RV's + Lévy: ...: because of char-
acteristic functions — ¢~ /2.

e Analyfic combinatorics: because of bivariate GF 1— -y and smoothly
varying singularity!
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Quasi-Powers Theorem: "If you resemble a power, then your

imit law is normal”.

Proof. "Analyfic expansions are differenfiable”: this gives moments.
Limitf law results from Lévy’s continuity theorem.

Speed results from Berry-Esseen.
<Bender, Richmond™.
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Quasi-Powers Theorem |Bender+Hwang]

Assume (X,,) are RV's with probability GF (PGF) f,.(u) = E(u"*") and
for A(w), B(u) analyfic at 1:

() = A(u) B(u)®" (1 +o(- )> |

foru =~ 1, with 3, kn — oo, aNd Var(B(w)) > 0. Then

e Mean: ju,, = E(X,, ) ~ 3, B'(1 1); s-dev.: T ~ ;ian-n‘("B.).

2 dw

e NOrmMallimit: |P(X,, < j,, + xo,)

Ve

e Speed of convergence is O(x. ' + 3, /7).
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Distribution function,
Characteristic function aka Fourier transform,

Moment GF aka Laplace transform
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Bender (1973), Bender & Richmond (1983), Hwang (1994)
Quasi-Powers
(= A(u)B(u)"")

l
Meromorphic'+ Alg-log®  Exp-log”

! Analysis of meromorphic functions

() = 5§ 1) o

24w
[2"]f(2) = Residue 4 exponentially small

° Singularity analysis

e All Gaussian laws eventually based on perturbation of

sineularities
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Example 1.| Supercritical sequences I

Let F = SEQ(G), so that number of components has BGF

|

Flzu) = 1 —uG(z)

Assume that ¢/(») > 1 where r:=radius of conv. of G(z).

Theorem. T'he number of G-components in a random F-
sfructure is asympftofically normal.
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Theorem. T’he number of G-components in a random F-
sfructure is asympftoftically normal.

Proof. A. Lef p € (0.r) be such that (p) = 1. This is ro.c. of
F(z) = F(z.1). There is a simple pole.

B. Equation 1 — uG(z)|= 0 has root p(u), where p(u) depends analyti-
cally on w for w = 1.

C. Funcfion F'(z,«), with « parameter, has simple pole af p(u«) and

(2" F(z,u) ~ c(u)p(u)™".

D. Uniformity is grantfed (by integral representations), so that Quasi-
Powers Theorem applies. QED
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Example 1. Supercrifical sequences (continued)

— Compositions: arbitrary; with (2-excluded or (2-forced sum-
mands. Compositions info prime summands, G(z) = 2% 4+2° 42" 4- - -,
Same for twin primes ().

— Surjections aka ordered set partitions, G(z) = ¢* — 1. Same
with (2-constraints.

— k—components in compositions, surjections, etc.
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Example 2.| Cycles n perms l

| . 1 |
F(z, u) =exp (1/ log: " ) =(1—2z)"".

NS

A. By singularity analysis, get main approximation : [z"|F(z, u)

n®— 1

(w) °
B. Approximation is uniform by nature of singularity analysis process
(contour integration).

C. Rewrite as Quasi-Powers approximation:

_ ,, ‘ 1 4y logn
[Z”.n]F(:.ll) ~ — . ((,\u 1)) .

Thus, scale is now /3,, ~ log n.

D. Quasi-Powers Theorem applies. QED

11

Wednesday, June 2,2010



|“Assemblies of logarithmic structures”l

Example 3. Exp-Log schema.
Let F = SET(G), so that number of components has BGF
F(z,u) = "),

1

Assume that ¢(z) Is logarithmic: G(z) ~ Alog 1—.

Theorem. The humber of G—components in a random F-=structure is
asymproftically normal, with logarithmic mean and variance.

Application: Random mappings, etc. > Arratia-Barbour-Tavare.
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Example 4.| Polynomials over finite fields '

e Polynomial is a G- of coeffs: P has Polar singularity.
e By unique factorization, P is also D ullisel of 1
7 has log singulariy.
n
—= Prime Number Theorem for Polynomials I,, ~ (/)_2

e Marking number of 7—factors is approx uth power:

Variable Exzponent == N ormality of # of irred. factors.

(cf Erdés-Kac for integers. )

— Useful for analysis of polynomial factorization algorithms.
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Funetional equations and limit laws
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Perturbation of rational functions

— Regular languages & automata, under irreducibity condi-
fions. Auxiliary mark « induces a smooth singularity dislacement.

Occurrences of pafterns in random texts. Works for sets of pai-
ferns.

~ Extends CLIT for finite Markov chains.
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Perfurbation of algebraic functions: for irreducible systems,
The Drmota-Lalley-Woods Theorem implies \/——singulorh‘y.

Example 5. Non-crossing graphs (Noy-F)

= Perturbation of algebraic equation.

22 < 2)(G~ |

oy ol - ’ ff — y g

4 A J \ )

Movable singularity scheme applies: N ormality.

+ Patterns in context-free languages, in combinatorial tree models, in

functional graphs: Drmota’s version of Drmota-Lalley-Woods.
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Perturbation of differential eguc’rions.

Example 6. Profile of Quadirees.
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| | o [* dx 2L dry T2  dxa
Flz,u) =14+ 2°u / / - / F(xa., u) —
| Jo z1(l—x1)Jo 1 —m2 Jpo o 1 —x3

Solution is of the form (1 — 2) =) for algebraic branch c.(u):
Variable Exponent = AN ormality of search costs.

Applies to many linear differential models that behave like cycles-in-permes.
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Other Properties

Local Limit Theorem. If the Quasi-Powers approximation

holds on the circle |u| = 1, then

o, Pr{X, = i, + xo,} — e

=] arge deviations. If the Quasi-Powers approximation holds

on an interval containing 1, then

1 _
T logpn,mﬁn < W(Qj) + @(ﬁn 1)°

n
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Counting U =

Moments u=14+ —

1

O

Large deviations u=|1-mn,14+n

Central limit w=1+

Local limit u| =1

Local limat

/

Moments

— Counting

Large deviations
(right)

Central limait

Large deviations

(left)
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Rises in permutations

EXAMPLE. Eulerian Numbers = Rises in permutations.
1 u(l — u)
F(z,1) = . F(z,u) = s
_ _logu[I 2zk7r]
r= = u—1" u—1
1 dz
" F = — F(z,
O IR LCU
= plu)" + 027
—> ,unN%n,a%N%n
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Figure 6.5 Distribution of runs, 3 < N < 60 (k-axes scaled to N)
FEulerian numbers
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Runs in perms: mean ~ n/2. Proba of deviation by more

than 10% from mean is

1,000 10,000 100,000
10—6 10—65 10—6&3

~20F
~40F
-60

-80
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‘ Non-Gaussian Laws ' Use singularity diagrams

u=1-—¢€ =1

1 1
l—zu 1-—:z

F(z,u) =

plu)y=1 plu)=1

Z—l Z—'_’ Z—'_’

Wednesday, June 2,2010

23



I(n) = — e (2) d»
| 20T

double saddle point at ¢ = (,, : Al (C)=h!(() =0

- 3
via: ¢/ (¢ / exp(—t—\hﬁ:’(C)Mt
| 3
| 1)~ 5 (0 s

Normalization to:
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Maps are planar graphs with an embedding in the plane
(or sphere) plus a rooted edge.

Consider:

e Maps M of sorts;

e Core maps C C M with higher connectivity;

Wednesday, June 2,2010
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C: class of 2-connected Ioopless maps

)




Awry function

A solution of v — zy = 0 ‘,\"H‘l\ "r'l’ | |
| bg el B el b |4 ¥ L
| f I |

l | | | | | | |

‘M I ||| | ‘|' 'u
: 1 e (zt+t3/3) AR "ﬂl I |
Ai(z) = — ’ 20 dt o
0 = o [ |
1 ~—TI((n+1)/3) {2+ 1) /13 )]

A () (317%)

n=>0

Core size in maps |BallSeSo|

2 .\ " o,
A(x) = 2exp (;ﬂ) (J’Ai(,z’z) — Ai'(z7)) .

| i . _9/9 34/)) Il .~
Pr(X, =k)~ Kn “/°A 1 x| . k = 3= rn
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The distribution of core size
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./ The Random Graph with n vertices, m edges has
phases
Gas (m = o(n)); Liquid (m ~ %);
Solid (m ~ 5nlogn); Hypersolid (m > nlogn)
At critical stage m ~ %, RG is "almost™ a forest of

unrooted trees and unicyclic graphs.

1 1 T T2
=T —=T?%/2 — — log .

Airy functions have been observed in FI-Knuth-Pittel and
the “Giant paper’ by Janson-Knuth-tuczak-Pittel!

+ I, Salvy, Schaetter 2006
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./ There is another class of Airy-related distributions:

Theorem. [Louchard; Takacs; Fl-Poblete-Viola| Area

below excursions, path length of trees, and displacement

In linear probing hashing all converge to a law determined
by its moments as (roughly)

Ai'(z)
Ai(z)

MGF =~
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That's All, Folks!
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