Part B Complex Asymptotics

* Chapter 4: Complex Analysis
* Chapter 5: Rational and Meromorphic Asymptotics
* Chapter 6: Singularity Analysis of GFs
* Chapter 7: Applications of Singularity Analysis
* Chapter 8: Saddle-point Methods

(A+1 125 -----

N! for N=2,...,50

14 5 5

2nN

Real analysis?
Some bunctions are too complicated to be expanded
e.g. = TRAINS
Some GF's are not even explicit
e.g. = unlabelled, non-plane trees

$$U(z) = z \exp(U(z) + \frac{1}{2}U(z^2) + \frac{1}{3}U(z^3) + \cdots)$$

"Universality" phenomena are not apparent
- schemas applying to mide classes
- lemit laws shared by ----

PRINCIPLE: Assign to the variable (2) complex. Values =>

View a GF as a geometric transformation from C -> G

4

ANALYTIC FUNCTIONS

GFs are (usually) analytic functions near 0.

- Analytic aka holomorphic functions
- Meromorphic functions
- Integrals and residues
- Singularities and exponential growth orders

Let f(z) be defined from D (open connected set) to E:

Definition. • f(z) is analytic at z_0 iff *locally*: $f(z) = \sum_{n \ge 0} c_n (z - z_0)^n$.

• f(z) is complex differentiable iff

$$\exists \left| \lim_{h \to 0, h \in \mathbb{C}} \frac{f(z_0 + h) - f(z_0)}{h} \right| =: \left| f'(z_0) \right| \equiv \left| \frac{d}{dz} f(z) \right|_{z=z_0}$$

 $\rightsquigarrow f$ analytic/ differentiable in Ω , etc.

Integration and residues

Theorem. Let f be analytic in Ω and γ be contractible to a single point in Ω . Then

$$\int_{\gamma} f(z) \, dz = 0.$$

In particular $\int_{A}^{B} f(z) dz$ does not depend on path.

Definition. g(z) is meromorphic in Ω iff near any z_0 , one has $g(z) = \frac{A(z)}{B(z)}$, with A, B analytic. A point z_0 such that $B(z_0) = 0$ is a pole. Its order is the multiplicity of z_0 as root of B (assume $A(z_0) \neq 0$). Pole of order m: $g(z) = \frac{c_{-m}}{(z-z_0)^m} + \dots + \frac{c_{-1}}{(z-z_0)} + c + 0 + \dots$ c_{-1} is called *residue* of g(z) at z_0 .

Complex analysis: LOCAL vs GLOBAL
Computing integrals global mis local !!!

$$\int_{\infty}^{+\infty} \frac{dx}{1+x^{4}} = \lim_{R \to \infty} \int_{-R}^{\infty} \int_{-R}^{\infty} \int_{R}^{\infty} \int_{R}^{$$

Complex analysis: coeffs at 0 ~> elsewhere

• Estimating coefficients: $d_n := \mathbb{P}[\text{derangement}]$ over \mathcal{P}_n .

$$d_n = [z^n] \frac{e^{-z}}{1-z} = \frac{1}{2i\pi} \int_{|z|=1/2} \frac{e^{-z}}{1-z} \frac{dz}{z^{n+1}}.$$

Evaluate instead on |z| = 2:

$$J_n = \frac{1}{2i\pi} \int_{|z|=2}^{\infty} \frac{e^{-z}}{1-z} \frac{dz}{z^{n+1}} = O(2^{-n})$$
$$= \frac{\operatorname{Res}_{z=0} + \operatorname{Res}_{z=1}}{z} = \frac{d_n - e^{-1}}{z}.$$

Thus: $d_n = e^{-1} + O(2^{-n})$.

Exercise: Double derangement: $[z^n]e^{-z-z^2/2}/(1-z)$. Generalize!

Pringsheim's Theorem. If $f_n \ge 0$, one such singularly is positive.

the circle of convergence the at least one singularity here

Exponential growth of coefficients

$$f_n(R-\epsilon)^n \to 0; \qquad f_n(R+\epsilon)^n$$
 is unbounded.

That is $\limsup |f_n|^{1/n} = \frac{1}{R}$, or

 $f_n = R^{-n}\vartheta(n)$, where $\vartheta(n)$ is "subexponental".

Also write $f_n \bowtie R^{-n}$ with R := distance to nearest sing(s).

Find exponential growth by just "looking" at GF!!

Once you find the nngularities neared to the origin, you know the exponential growth of the function's coefficients.

Exponential order of coeffs is computable:

$$f(f+g) = \min(p(f), p(g))$$

$$P(f \times g) = \min(p(f), p(g))$$

$$P(\frac{1}{1-f}) = \min(p(f), \{|z|| f(z) = 1\})$$

$$P(ef) = P(f)$$

$$P(ef) = Q(f)$$

$$P(\log \frac{1}{1-f}) = g \frac{1}{(1-f)}$$
ecursive of networks can be approached
via Implicit function theorem.

Wednesday, June 2, 2010

R

Chapter 5 Rational and Meromorphic Asymptotics

Find subexponential factors in

 $f_n \bowtie R^{-n}$, meaning $f_n = R^{-n}\vartheta(n)$,

where $\vartheta(n)$ is like n^{α} , $(\log n)^{\beta}$, $e^{\sqrt{n}}$, etc.

Here: simple case of Rat & Mero.

Coefficients of rational functions

Theorem. Each pole ζ with multiplicity r contributes to coefficients a term

 $\zeta^{-n}P(n),$

where P(n) is a polynomial of degree r-1.

Proof.
$$[z^n] \frac{1}{(z-\zeta)^r} = (-\zeta)^{-r} \binom{n+r-1}{r-1} \zeta^{-m}.$$

Poles are arranged in order of increasing modulus. Dominant ones matter for exponential growth. Multiplicities give polynomial factors.

Example 1. Denumerants.

 $D(2) = \frac{1}{1-2^{51}} \times \frac{1}{1-2^{52}} \times \cdots \times \frac{1}{1-2^{5m}}$

Poles at vanious roots of unity Worder < m at 2=1 with order exactly m

 $D_n = [2^n] D(2) \sim [2^n] \frac{1}{(1-2)^m} \frac{1}{\pi s_i}$ Schur: $\sim \frac{n^{m-1}}{(m-1)!} \times \frac{1}{\pi s_i}$

Example 2. Longest *b*-runs in strings. (cf Feller)

$$\begin{array}{l} bbb \ensuremath{\left[\mathbf{a} bb \ensuremath{\left[\mathbf{a} b \ensuremath{\left[\mathbf{a} \ensuremath{\[\mathbf{a} \ensuremath{\[\mathbf{a} \ensuremath{\[\mathbf{a} \ensuremath{\[\mathbf{a} \ensuremath{\[\mathbf{a} \ensuremath{\[\mathbf{a} \ensureman$$

$$\frac{1-2^{m}}{1-22+2^{m+1}}$$

Dominant pole at $P_m \approx \frac{1}{2}$

$$\int_m^{m+1} \frac{1}{2} \left(1 + \left(\frac{1}{2}\right)^{m+1}\right)$$

Check error from dominant pole is good
$$\int_{0}^{1} \frac{1}{2!=3/4}$$

 $Pr(Longest rom \& m) \approx \left(\frac{1}{2}p_m\right)^n \approx e^{-n/2m+1}$

 $\int_0^{1} \frac{1}{2!p_m} \int_{0}^{1} \frac{1}{2!p_m} \int_{0}^{1}$

Coefficients of meromorphic functions
Movem
EACH POLE & WITH MULTIPLICITY I CONTRIBUTES
A TERM
S⁻ⁿ P(n) with deg(P) = T-1.
AND ERROR TERM O(R^{-m})
Proof: 1) Let h(z) gather contributions of poles.
Then [g(z) - h(z)] is analytic in 1215R
Cauchy coeff. formula + trivial bounds
2) Estimate
$$\frac{1}{2in}$$
 Sg on [z] = R by residues.

Worked out Example: *derangements*

$$\begin{aligned} & \Im = \operatorname{Set} \left(\operatorname{Gy} \operatorname{cle} \left(\mathbb{Z}, \operatorname{card} \mathbb{Z} \mathbb{Z} \right) \right) \\ & \operatorname{D}(\mathbb{Z}) = \exp \left(\log \frac{1}{4 - \mathbb{Z}} - \mathbb{Z} \right) \\ & \operatorname{D}(\mathbb{Z}) = \frac{e^{-2}}{4 - \mathbb{Z}} \\ & \operatorname{D}(\mathbb{Z}) \sim \frac{e^{-1}}{4 - \mathbb{Z}} \quad \text{al singularity } \mathbb{Z} = 1 \\ & \Rightarrow \quad \underbrace{\operatorname{Dn}}_{m!} \sim \left[\mathbb{Z}^{n} \right] \frac{e^{-1}}{4 - \mathbb{Z}} = e^{-1} \\ & \underbrace{\operatorname{Prop.}}_{n \in \mathbb{Z}} \quad \operatorname{A perm is a derangement with}_{probability} \quad e^{-1} = 0.345 \dots \end{aligned}$$

$$\frac{1}{m} \frac{\text{Generalized derangements}}{D^{*}(z) = e^{-\frac{1}{2} - \frac{2^{2}}{2}}}$$

$$\frac{1}{1 - \frac{1}{2}}$$

$$\frac{D_{m}^{*}}{m!} \sim e^{-\frac{3}{2}}$$
in general, get
$$\frac{1}{proba} \sim e^{-\frac{1}{2}k} \text{ of all yills}$$

$$\frac{1}{proba} \sim e^{-\frac{1}{2}k} \text{ of all yills}$$

Example 4. Paths-in-graphs models.

Encapsulates finite automata and finite Markov chains. GFs are rational.

If the graph Γ is strongly connected and aperiodic, then there is unicity and simplicity of dominant pole (\ll Perron-Frobenius): $f_n \sim c\rho^{-n}$.

Generalized patterns in random strings (F, Nicodème, Régnier, Salvy, Szpankowski, Vallée, &c). **Example 5.** Surjections and Supercritical SEQ Schema. Random surjection \equiv ordered partition (pref. arrangement)

$$\mathcal{R} = \operatorname{Seg}(\operatorname{Set}_{\geq 1}(\mathcal{Z})) \implies R(z) = \frac{1}{2 - e^z}.$$

Pole at $\zeta = \log 2$; subdominant ones at $\zeta = \log 2 \pm 2ik\pi$, etc.

$$\frac{R_n}{n!} \sim c(\log 2)^{-n}.$$

Also, mean number of blocks via $\frac{1}{1-u(e^z-1)}$ is O(n). There is concentration, etc.

Any supercritical sequence should similarly behave \rightarrow schema.

APPLICATION: Supercritical schema (sequences) Assume $F = Seq(G) \Rightarrow F(z) = \frac{1}{1 - G(z)}$ H1: G(2) reaches 1 before il becomes angular (H2: The schema is aperiodic: Fn 20 for all n 2no.) Then $F_n \sim C \cdot p^{-n}$ $p = G^{(-1)}(1)$ Also: number of G-components in random F-pladtine has mean ~ fin ; variario ~ or =) concertration

Chapter 6 Singularity Analysis

- Singularities more general than poles.
- Subexponential factors more general than polynomials:

 $f_n \sim R^{-n} \vartheta(n),$

with $\vartheta(n)$ of the form $n^{\alpha}(\log n)^{\beta}$.

Note: May assume singularity at 1 by scaling $[z^n]f(\lambda z) = \lambda^n [z^n]f(z)$.

(earlier: Darboux-Pólya; Tauberian thms)

From functions to coefficients:

Principles of Singularity Analysis

Larger functions tend to have larger coefficients.

— Establish this for basic scales $(1 - z)^{-\alpha}$. Enrich with $\log's$, $\log \log's$, etc.

— Prove transfer theorems. If f "resembles " g via $O(\cdot)$, $o(\cdot)$, then f_n resembles g_n .

Theorem 1. Coefficients of basic scale:

$$[z^n](1-z)^{-\alpha} \sim \frac{1}{\Gamma(\alpha)} n^{\alpha-1}.$$

Also: full expansion, log's log-log's, etc.

Gamma function: $\Gamma(s) := \int_0^\infty e^{-t} t^{s-1} dt$, with analytic continuation by $\Gamma(s+1) = s\Gamma(s)$.
$$\operatorname{Coeff}[z^n] f(z) = \frac{1}{2i\pi} \oint f(z) \frac{dz}{z^{n+1}}.$$

$$\int \frac{1}{2i\pi} \int f(z) \frac{dz}{z^{n+1}}.$$

$$\frac{\Pr coF}{f(z) = (1-z)^{-\alpha}}, a \in C,$$

$$[(Avar)] \quad f_n = \frac{1}{2\pi i} \int_{\mathcal{Y}} f(z) \frac{dz}{z^{n+1}}$$

$$f(z) = (1-z)^{-\alpha}$$

$$[z^n]f(z) = \frac{1}{2i\pi} \int_{\mathcal{Y}} f(z) \frac{dz}{z^{n+1}}$$

$$\frac{f(z) = (1-z)^{-\alpha}}{\frac{H}{1-\alpha}}$$

$$\frac{f(z) = (1-z)^{-\alpha}}{\frac{H}{1-\alpha}}$$

$$\frac{f(z) = (1-z)^{-\alpha}}{\frac{H}{1-\alpha}}$$

TREES (Calculan model, knag variety)

$$B = \Box + 3 B$$

 $B(z): 1 - \sqrt{1-4z}$
 $Sing(B) = \frac{1}{4}$; exponent: $d = -\frac{1}{2}$ in form $(1-2)^{-d}$
 $B_n \sim \frac{1}{4\sqrt{1-1}}$

• Unary binary trees.

$$T = Z + ZT + ZT^{2}$$

$$\Rightarrow T = \frac{1 - 2 - \sqrt{1 - 22 - 32^{2}}}{22}$$

$$4 - 22 - 32^{2} = (4 - 32)(4 - 2)$$

$$\Rightarrow \sqrt{-\text{singularity}} \Rightarrow (\frac{1}{3}),$$

$$T_{n} \sim c. 3^{n} n^{-3/2} \leftarrow$$

In fact: universality of $n^{-3/2}$ law (later).

Example 3. Cycles in Perms.

Mean number of cycles in a random perm is $coeff[z^n]$ in

$$M(z) = \left. \frac{\partial}{\partial u} \exp\left(\frac{u}{u} \log \frac{1}{1-z} \right) \right|_{u \to 1} = \frac{1}{1-z} \log \frac{1}{1-z}.$$

Thus $[z^n]M(z) \sim \log n$.

Exercise: Holds for perms with finitely many excluded cycle lengths.

In fact: *universality* for the "exp-log" schema.

Generating Function ~~ Coefficients

Solving a "Tauberian" problem

+ Singularity analysis preserves uniformity ~> distributions.

Closures

Theorem 3. Generalized polylogarithms

$$\operatorname{Li}_{\alpha,k} := \sum (\log n)^k n^{-\alpha} z^n$$

are of S.A.-type.

Theorem 4. Functions of S.A.-type are closed under integration and differentiation.

Theorem 5. Functions of S.A.-type are closed under Hadamard product

$$f(z) \odot g(z) := \sum_{n} (f_n g_n) z^n.$$

Chapter 7 Applications of Singularity Analysis

Cayley trees:
$$T = 2e^{T}$$
 or $z = Te^{-T}$
not unrealistic if $\frac{d}{dT}(Te^{-T}) = (t-T)e^{-T} = 0$,
that is $T = 1$; $z = e^{-1}$
Square - root Songularily
 $T(z) \sim 1 \sqrt{z}\sqrt{1-ez} + O((t-ez))$
 $z \to e^{-1}$
 $[z^*] T(z) \sim e^{n}$
 $\int \sqrt{z\pi n}^{3}$
 $(=\frac{m^{n-1}}{m!})$

Theorem 1. Let ϕ have nonnegative coeffs and be entire. Then the function that solves

 $Y(z) = z\phi(Y(z))$

has a square-root singularity, so that

 $[z^n]Y(z) \sim C\rho^{-n}n^{-3/2}.$

— Characteristic equation (singular value of Y) is $\tau : \frac{d}{dy} \frac{y}{\phi(y)} = 0$, i.e., $\tau \phi'(\tau) - \phi(\tau) = 0$. Then $\rho = \frac{\tau}{\phi(\tau)}$. All is computable.

— $\sqrt{-}$ -singularity propagates via suitable compositions, so that parameters can be analysed.

- Phenomena are robust.

Example 2. Unlabelled trees. Recall

$$U(z) = z e^{U(z) + \frac{1}{2}U(z^2) + \cdots}$$

Express as T composed with an analytic function and get SQRT sing: $U = \zeta e^U$, where $\zeta := z \exp(\frac{1}{2}U(z^2) + \cdots)$. · Using BGF's and singularities

- Meir & Roon: Path length is on average ~ Cn^{3/2}
- F. Odlyzico: Height is on average ~ c'n1/2
- Marchert dal.: Width is on average ~ c" n3/2

Height is universally $O(\sqrt{n})$ with local and integral limit laws (of theta type). Similarly for width (Marckert et al.). Leaves are universally normally distributed, etc.

Example 3. Mappings (cyclic points).

$$\begin{cases} graph: G = Set(3x) \\ Connected: 3x = Cyc(G) \\ Hree: B = O * Set(B) \\ T = 2e^{T} \\ Mean number of cyclic points is \\ h_n = \frac{[2^n]}{[2^n]} \frac{3}{3u} G |_{u=1} \\ G = \frac{1}{u-uT} \end{cases}$$

Develop a theory of degree-constrained mappings: (Arney-Bender), (F.-Odlyzko).

Mean number of cyclic points is

$$\begin{aligned}
& \left\{n = \frac{\left[2^{n}\right]}{\left[2^{n}\right]} \frac{\partial}{\partial u} G \right|_{u=1} & G = \frac{1}{1-u} \\
& = \frac{\left[2^{n}\right]}{\left[2^{n}\right]} \frac{T/(1-T)^{2}}{\Lambda/(1-T)} \\
& \sim \frac{\left[2^{n}\right]^{2}(1-e^{2})^{-1}}{\left[2^{n}\right]\sqrt{2}} & \leftarrow e^{n}n^{-1/2} \\
& \left[\frac{1}{2^{n}} \frac{Mean}{\sqrt{2}} \frac{\#}{\sqrt{2}} \frac{\pi n}{2} \right]
\end{aligned}$$

Algebraic functions

Singularity analysis applies to any algebraic function

NEWTON-PUISENX THEOREN

Around any point 5, y(2) admits a fractional power expansion

$$y(z) = \sum_{j \ge -m} c_j(z-\xi)^{\alpha_j} \quad \alpha = \frac{m}{q} \in \mathbb{Q}$$

Algebraic function \implies Fractional exponents @ singularities.

<u>Theorem</u> [Newton-Puiseux] At a singularity solutions group them selves into "cycles" that can be expanded into <u>fractional power series (Puiseux series</u>):

$$y(z) = H((z - z_0)^{1/r}), \qquad H(w) = \sum_{j=-m}^{\infty} h_j w^j.$$

Newton diagram

<u>**Theorem</u>** Let f(z) be an alg. fun. (branch).</u>

— One dominant singularity at α_1 :

$$f_n \sim \alpha_1^{-n} \left(\sum_{k \ge k_0} d_k n^{-1-k/\kappa} \right),$$

where $k_0 \in Z$ and κ is an integer ≥ 2 . — Several: a finite linear combination of such plus exponentially smaller error terms.

Exponential * n ^{rational}	to to
	63 64

APPLICATIONS of ALGEBRAIC FUNCTIONS

- ✓ Trees with a finite set of node degrees
- ✓ Excursions with finite set of steps [Lalley, BaFl]
- Maps embedded into the plane [Tutte,...]
 Gimenez-Noy: Planar graphs
- Context-free structures =
 Drmota-Lalley-Woods Thm.

Theorem [DLW]. Assume positive irreducible system.

All y_j have same dominant singularity ρ . \exists functions h_j analytic at the origin such that

$$y_j = h_j \left(\sqrt{1 - z/\rho} \right) \qquad (z \to \rho^-).$$

All other dominant sing. of the form $\rho\omega^{j}$, with ω root of unity—this, iff strongly periodic.

Asymptotics of the form (single sing.)

$$[z^n]y_j(z) \sim \rho^{-n} \left(\sum_{k \ge 1} d_k n^{-1-k/2} \right)$$

EXAMPLE. Noncrossing graphs [F.Noy, Disc. Math'99]

$$\begin{array}{lll} \hline \text{Configuration / OGF} & \text{Coefficients (exact / asymptotic)} \\ \hline \text{Trees (EIS: A001764)} & z+z^2+3z^3+12z^4+55z^5+\cdots \\ T^3-zT+z^2=0 & \frac{1}{2n-1}\binom{3n-3}{n-1} \\ \sim \frac{\sqrt{3}}{27\sqrt{\pi n^3}}(\frac{27}{4})^n \\ \hline \text{Forests (EIS: A054727)} & 1+z+2z^2+7z^3+33z^4+181z^5\cdots \\ F^3+(z^2-z-3)F^2+(z+3)F-1=0 & \sum_{j=1}^n\frac{1}{2n-j}\binom{n}{j-1}\binom{3n-2j-1}{n-j} \\ \sim \frac{0.07465}{\sqrt{\pi n^3}}(8.22469)^n \\ \hline \text{Connected graphs (EIS: A007297)} & z+z^2+4z^3+23z^4+156z^5+\cdots \\ T^3+C^2-3zC+2z^2=0 & \frac{1}{2n-1}\sum_{j=n-1}^{2n-3}\binom{3n-3}{n+j}\binom{j-1}{j-n+1} \\ \sim \frac{2\sqrt{6}-3\sqrt{2}}{18\sqrt{\pi n^3}}\left(6\sqrt{3}\right)^n \\ \hline \text{Graphs (EIS: A054726)} & 1+z+2z^2+8z^3+48z^4+352z^5+\cdots \\ T^3+(z^2-3z-2)G+3z+1=0 & \frac{1}{n}\sum_{j=0}^{n-1}(-1)^j\binom{n}{j}\binom{2n-2-j}{n-1-j}2^{n-1-j} \\ \sim \frac{\sqrt{140-99\sqrt{2}}}{4\sqrt{\pi n^3}}\left(6+4\sqrt{2}\right)^n \end{array}$$

-

Singularity Analysis applies to

- non-linear ODEs = models of "logarithmic trees"
- the holonomic framework = solutions of linear ODEs with rational coefficients.

• <u>"Holonomic" functions</u>. Defined as solutions of linear ODE's with coeffs in $\mathbb{C}(z)$ [Zeilberger] $\equiv \mathcal{D}$ -finite.

$$\mathcal{L}[f(z)] = 0, \qquad \mathcal{L} \in \mathbb{C}(z)[\partial_z].$$

• Stanley, Zeilberger, Gessel: Young tableaux and permutation statistics; regular graphs, constrained matrices, etc.

 $\begin{array}{l} \mbox{Fuchsian case (or "regular" singularity)} & (Z^{\beta} \log^{k} Z): \\ & [z^{n}]f(z) \approx \sum \omega^{n} n^{\beta} (\log n)^{k}, \qquad \omega, \beta \in \overline{\mathbb{Q}}, \quad k \in \mathbb{Z}_{\geq 0}. \end{array}$ $\mbox{S.A. applies automatically to classical classification.} \\ \mbox{Asymptotics of coeff is decidable} \\ & - \mbox{ general case: modulo oracle for connection problem;} \\ & - \mbox{ strictly positive case: "usually" OKay.} \end{array}$

EXAMPLE 6. Quadtrees—Partial Match [FGPR'92] Divide-and-conquer recurrence with coeff. in Q(n)Fuchsian equation of order d (dimension) for GF $Q_n^{(d=2)} \simeq n^{(\sqrt{17}-3)/2}$.

E.g., d = 2: Hypergeom $_2F_1$ with algebraic arguments.

Extended by Hwang et al. Cf also Hwang's *Cauchy ODE* cases. Panholzer-Prodinger+Martinez, ...

Chapter 8 Saddle-point Asymptotics

Figure VIII.2. The "tripod": two views of $|1 + z + z^2 + z^3|$ as function of $x = \Re(z)$, $y = \Im(z)$: (left) the modulus as a surface in \mathbb{R}^3 ; (right) the projection of level lines

Cauchy coefficient integrals

Saddle-point method:

= concentration + local quadratic approximation.

Figure VIII.5. Plots of $|e^{z}z^{-n-1}|$ for n = 3 and n = 30 (scaled according to the value of the saddle-point) illustrate the essential concentration condition as higher

The simple saddle point (review) $I(n) = \frac{1}{2i\pi} \int e^{h_n(z)} dz$ saddle point at $\zeta \equiv \zeta_n$: $h'_n(\zeta) = 0$ via: $e^{h_n(\zeta)} \int \exp(\frac{t^2}{2}h_n''(\zeta)) dt$ + concentration as $n \rightarrow \infty$ $I(n) \sim \frac{1}{2\pi} \left((2!)^{1/2} \Gamma(1/2) \right) \frac{1}{\sqrt{h_n''(\zeta)}} e^{h_n(\zeta)}.$

The saddle-point theorem:

$$\frac{1}{2i\pi}\int_A^B e^{f(z)}\,dz \sim \varepsilon e^{-i\phi/2}\frac{e^{f(\zeta)}}{\sqrt{2\pi|f''(\zeta)|}} = \pm \frac{e^{f(\zeta)}}{\sqrt{2\pi f''(\zeta)}}.$$

under conditions: concentration + local quadratic approximation

> + Hayman: *admissible functions* = closure properties

Class	EGF	radius (r)	angle (θ_0)	coeff [z ⁿ] in EGF
urns Set (\mathcal{Z})	e ^z	п	n ^{-2/5}	$\sim \frac{e^n n^{-n}}{\sqrt{2\pi n}}$
(Ex. VIII.3, p. 555)				
involutions Set(CYC _{1,2} (\mathcal{Z}))	$e^{z+z^2/2}$	$\sim \sqrt{n} - \frac{1}{2}$	n ^{-2/5}	$\sim \frac{e^{n/2 - 1/4}n^{-n/2}}{2\sqrt{\pi n}}e^{\sqrt{n}}$
(Ex. VIII.5, p. 558)				
set partitions SET(SET $\geq 1(\mathcal{Z})$)	e^{e^z-1}	$\sim \log n - \log \log n$	$e^{-2r/5}/r$	$\sim \frac{e^{e^r - 1}}{r^n \sqrt{2\pi r (r+1)e^r}}$
(Ex. VIII.6, p. 560)				
fragmented perms SET(SEQ $\geq 1(\mathcal{Z})$) (Ex. VIII.7, p. 562)	$e^{z/(1-z)}$	$\sim 1 - \frac{1}{\sqrt{n}}$	n ^{-7/10}	$\sim \frac{e^{-1/2+2\sqrt{n}}}{2\sqrt{\pi}n^{3/4}}$
(Ex. VIII.7, p. 562)				

Conclusions: Saddle-point method

 Applies to many entire functions: involutions, set partitions, etc.

 Applies to function with violent growth at singularity(-ies): integer partitions

 Applies to coefficients of large order in large powers