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Counting...
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Figure 3.1 All binary trees with 1, 2, 2, 4, and 5 external nodes
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Counting ‘and asymptotics)

~ Binary trees == Catalan numbers

~ Growth rate 1s (asymptotics) -




Counting (and probabilities
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Figare 5,11 A binary search tres built from 256 randomlv ordered ke
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Counting (methods

~ E.g. binary trees: 1,1,2,5,14,42, | <% @_ &

~ Bijective combinatorics = first principles

~ Generating function methods ...

~ Algebraic methods (e.g., symmetric tns, operator)
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Generating Functions (GFs)

Combinatorial class C; counting sequence (C,):

C = n

@ Get GFs

combinatorics ~~ algebra of special fns

@ Look at GFs as mappings of complex plane, z € C
algebra of special fns ~» complex analysis

@ For parameters, add extra variables
complex analysis ~» perturbation theory

1/1
Wednesday, June 2, 2010 6




A Calculus of Discrete Structures

Discrete Continuous

(a digital tree aka trie of size 500)
(a generating function in the complex plane)
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Analytic

Combinatorics

-~ A. Combinatorial structures

~ B. Analytic structures
~ C. Randomness properties

for objects given by e

constructions
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(Quotations (1)

- Laplace discovered the remarkable correspondence
between set theoretic operations and operations on
formal power series and put it to great use to solve

a variety of combinatorial problems. — G.—CG. ROTA

- La methode des fonctions génératrices, qui a exerce
ses ravages pendant un siecle, est tombée en

désuetude... — Claude BERGE

Wednesday, June 2,2010 10



(Quotations (2)

- Despite all appearances they |generating functions]
belong to algebra and not to analysis.

- Gombinatorialists use recurrence, generating
functions, and such transformations as the
Vandermonde convolution;
others to my horror, use contour integrals,
differential equations, and other resources of

mathematical analysis. — John RIORDAN

Wednesday, June 2,2010
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FPART |

ngbolic Methods

*1. Unlabelled structures & OGFs
* 2 Labelled structures and EGFs

*% Parameters and multivariate GFs

- Embed a [Jragment of set theory into a language of

' constructions; map to algebra(s) of special functions.
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Chap‘cer |

Unlabelled structures and
OGFs

eeeeeeeeeeeeeeeeeeee



Symbolic Methods

F’mbed a fragment of set theory into a language of

constructions;

map combinatorics to algebra(s) of special functions.




1 |UNLABELLED STRUCTURES AND OGFS

Ordinary Generating Function (OGF)

(fn) — f(2) = Z fn2".

n=>0

(fn) Is NUMber sequence, e.g., counting sequence,

Later: Exponential Generafing function (EGF): (f,) — f(z) := Z fni.

Wednesday, June 2,2010
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0

"IT Symbolic approach

e An object of size n is viewed as composed of n atoms (with
additional structure): words, trees, graphs, permutations, etc.

e Replace each atom by symbolic weight z:
— (Class: Z objects. Object: ~ ~ 2.
Gives the Ordinary Generating Function (OGF):

C o~ Cl2)=) M= Gz

vyeC n

Wednesday, June 2,2010
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E.g.: a class of graphs enumerated by # vertices

m .a. ./'\. IZI -

C(z) = zzzz zzZ z2z22Z Z

aQ
|

— 1.242.2342.74
(C,) = (0.1,0,2,2).

Principle (Symbolic method)

The OGF of a class: (i) encodes the counting sequence; (ii) is
nothing but a reduced form of the class itself.

Wednesday, June 2,2010
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How many binary frees B,, with n external nodes?

A\

KT,
A o S

W LTt

Figare 3.1 All binory trees with 1,2, 2 4, and S external nodes

B=0O + e, (Bx B).
Euler—Segner (1743): Recurrence

n—ZBan ke

Form OGF B(z) = z+ (B(z) x B(2)).
Solve equation (quadratic):

B(z) = 1(1—v1 —42) = 1 -1(1—-42)"/2

Expand:

B, = 1 <2n - 2) (Catalan numbers)
n\ n—1

Analogy: |B=0 + (eBx B)|~ |B(z) =2z + (B(z) x B(z))

Wednesday, June 2,2010
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Define a collection of consfructions

union, product, sequence, set, cycle, ...

& Cllowing for recursive aefinifions.

meta-THM1: OGFs are aufomatically compurfable (equations!)

efa-THM2: Counfing sequences are aufomartically compurable
in fime O(n?), and even O(n'*¢).

eta-THM3: Random generatfion is fast in O(nlogn) arithmeftic
op ns.

Wednesday, June 2,2010 19



Several set-theoretic constructions translate into GFs.

disjoint union Z Z + Z

AsB
cartesian product Z E Z
AxB
There is a micro-dictionary:
disjoint union C=AuB — C((z)=A(z2)+ B(2)
cartesian product C=AxB = ((z)=A(z)- B(z)

Wednesday, June 2,2010
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Theorem. There exists a dicfionary:

Construction

OGF

C=A+D5

E C=AxDB

C(z) =A(z)+ B(z)

C = SEQ(A)

1
C(z) =
(2) 1 — A(z

C = MSET(A)
C = PSET(A)

)
C(z) = Exp(A(2))

C = Cyc(A)

I

C(z) = Log T A(z)

E or 1: "neutral class” formed with element of size 0 — FE(z
Z: "atomic class” formed with element of size 1 — E(z) =

k>1

k>1

L 1 o\ =, L
Exp(g(z)) = exp (Z l—g(:" >):EX1><Q<:))<‘X1> (Z " l' g(:"i):

_. (k) o _, .
Log(g(z)) = Z "i ~ g(2*) with (k)= Euler totient.

ke>1

Wednesday, June 2,2010
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Summary:

Theorem (Symbolic method)

A dictionary translates constructions into generating functions:

Union +
Product
Sequence ] _1
Set Exp
Cycle Log

Wednesday, June 2,2010
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Roots...

~ A modicum of Polya theory (1957

Schutzenberger: languages and Gl's (~1960)
Rota-Stanley = MI'T School (1970s)

Goulden-Jackson = constructions (~19380)

Joyal's theory of species +BLL (1980s)




Example 1. Binary words

W =SEQ({a,b}) => W(z)= 1_122.

Get W,, = 2" (1?). Words starting with b and < 4 consecutive a’s:

1
_(z+z2+z3+z4)'

W?* =~ SEQ(bx (1+a+aa+aaa)) =— W?°*(z)= 3

Longest run stafistics lead to rational functions (Feller).

Wednesday, June 2,2010
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Example 2. Plane frees ("general” = all degrees allowed)

) !‘ s | EJ\‘ B St .;\ |
AT Y | P3=2 | E {\‘ ‘AI {

. P“Jg-

- N B N
PRY= 150 P POIs i—’ e d /zh-z\/
n |

(Catalan numbers again!
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Example 3. Nonplane trees (all degrees allowed)
U=2Z x MSET(U). Uy =1, Us =1, U3 =2,U4 = 5.

Cayley: recurrences; PAOlya: asymptotics of this infinite func-
flional equation.

Exercise: computable in polynomial fime (O(n?)).

Wednesday, June 2,2010
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Example 4. Words confaining a paftern (abb)

Q G- ¢- a,b
~R R GD

¢

L; := language accepted from state j.
{Eo —alq1+bLy, L1 =alq+bLy, Lo =0alq+bLs,.. }

Theorem. Regular language (finite automaton) has rational
GF

Reg +— Q(z2).

Patterns of all sorts in words. Applicatfions in patfern matching
algorithms and computational biology.

Wednesday, June 2,2010
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Example 5. Walks and excursions.

3@&\0 4\
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Let Q C Z-, be The set of allowed (out)degrees. Define

Bly) =D v

wel)

Then the simple family ) has OGF:

Y(z) = 20(Y (2)).

If ¢ Is finife, get an algebraic function.

.

=Y (2)

p
Lagrange Inversion Theorem.

1 0 by i S §

n

J

If ¢ Is finife, get multinomial sums.

Wednesday, June 2,2010
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A variety of classes == a varietv of “special
Y P

functions”

Some constructible families and generating fuctions

e Regular languages, FA, paths in graphs: ~

e Unambiguous context-free languages ~~

e [erms trees ~~ |

T;‘ee: /A :_-%> T‘:Z@(T)

Tree

Polya operators|

rational fns

algebraic functions|.

implicit functions

Wednesday, June 2,2010
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Algebraic functions (1)

~ Arise from specifications (GF grammars),
with + x. Seq

~ Flimination: system -> single equation

P(x,y)=0

~ (Coefhicients are “combinatorial sums”

e.g., Sokal, S7.C 2009




Algebraic functions (2)

~ MAPS: Tutte’s quadratic method;

ct Cori, Bousquet-Melou et al., Bordeaux School...

~ EXCURSIONS: the kernel method:
ct Lalley 1993, Banderier-I* 2001, MBM

F(z,u) =1+ z(u? 4+ u° + v’)F(z, u) — coeff [u=°|u~?F(z, u)

— solve 1 —z(u2+ u® 4+ u3) = 0.

Wednesday, June 2,2010
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Chapter P4
|_abelled structures and EGFs
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2 |LABELLED STRUCTURES AND EGFS

EGF = exponential generating function

(F)  — R =3 fsr

A labelled object has afoms that bear disfinct infeger labels
(canonically numbered on [1..n|).

Example. How many (undirected) graphs on n (distinguish-
able) vertices? " = 2n(n=1/2,

Graphs: unlabelled problem is harder (POlya theory). In general, can get
unlabelled by identification of labelled.

Wednesday, June 2,2010
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0'10'2o.o O’n

PERMUTATIONS = typical labelled objects: write o = ( b2oem )

Qs o109 - - - 0, AN View as linear digraph that is labelled:

@fb-(—ﬁ)
o DO-+® O+ D+
T B0 | e

Q+«@P<®
e &, D et

zn
DISCONNECTED GRAPHS (labelled) = no edges aka "Urns”.
."’"" "()’ | [oo]

——

EGFisU(z) = exp(z) = €7,

CYCLIC GRAPHS (dlrec’red)
. @ cﬁ} ®-6 " EGFK(z) = 1i~

Wednesday, June 2,2010 37



ROOTED TREES (graphs) nonplane and labelled
_‘77 .

-
—
—i——

1= { TEEE 'Ts =" Tl{ 64 ..

Wednesday, June 2,2010 38



Labelled product. Let A and B be labelled classes. Then the carte-
sian product A x B is not well-labelled (why?).

Given (3, ~) form all possible relabellings that preserve the order struc-
ture within 3, v, while giving rise to well-labelled objects.

o CJLJRW\ °€- K

ﬁ“‘**) D

. A% o \ :
\q, ) weld \obellad posfs

e Labelled product of two objects.
(axB):={y | v=(,8)},

where ~ is well-labelled and o’ =qr4er @ ANA 3’ =order 5.
e Labelled product of two classes.

c= |J (axB).

acA,BeB

Wednesday, June 2,2010
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Sequences, Sets, Cycles

e £ (Or 1): neutral class.

e Z: Afomic class = |1 |.

e Define(SEQ(A)) SET(A), Cyc(A) by relabellings:

SEQ(A) =1+ A+ (AxA) +--- .
(Sets: Jguotient up to perms.(Cyc: Jup to cyclic perms.




Theorem. 'here exists a dicfionary:

E or 1: "neutral class” formed with element of size 0 — E(z
Z: "atomic class” formed with element of size 1 — FE(z) = 1.

Construction EGF
C=A+B | C(z)=A(z)+ B(z)
C=Axb C(z) = A(z) - B(z)

|

C = SEQ(.A) C(z) = T A(2)

C = SET(A) C(z) = exp(A(2))

|

C=Cyc(A) | C(z) = log = A()

= 1.

Wednesday, June 2,2010
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SEQ: 14+ A+ A% 4 ... = —

1—A
2
SET: 1+%—|—%+~~=exp(_‘4).
A A o
CYC. 1+T+7+—l(_)gl_;—1.

(End of proof of Theorem)




— Perms P = SEQ(Z2)
— Urn U = SET(Z2)
— Clirculars graphs K = Cyc(Z2)

m Times

" —
— m~functions: FI™l =~/ ... xU = SEQ,, (U)

— m~=surjections: SEQ(V)., V = SET>(Z)
— Sef parfitions: SET(SET>;(Z))
— Lab. trees: 7 = Z « SET(T").




Example 1. Permutafions and cycles:

P = SET(CYC(Z)) =— P(z)=exp (log ! )

Derangements (no fixed point)

1
D = SET(CYC(Z)\Z) = D(z)=-exp (log -
D, . 1 2 =
thus| o =1-qrtg =+ |~

Example 2. Labelled (Cayley) frees:

T = Z x SET(T) — T(z) = zel®).

Thus |7, = »"~' | by Lagrange Inversion Th.

Wednesday, June 2,2010




Example 3. Sef parfitions:

Bell numbers:




Example 4. Allocations fo [1..m]:

—all: ™ ~ F, =m",
— surjective: (e*—1)™ ~ Stirling numbers, m!{™} =5~ () (—1)™~*k™.

n
(e

— Injective: (1 +2)™ ~» ( )n! (arrangement #).

T

Exercise: Birthday Problem and Coupon Collector.

E(B) = / <1+f> e tdt, E(C)= / («-“—(«-f"’"”’—.1.'>”“)(*dt.
Jo I Jo

Mulfiple birthdays, multiple collections. (Cf Poissonization.)

Wednesday, June 2,2010
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Example 5. Mappings aka functional graphs = endofunctions

of finite sef.
w\,l - ;F] 4 ’k' \

T =zel', K =log(1-T) ', M = e | M,, = n" | P(connected)=0 (7

)

Exercise: A binary functional graph is such that each = has either O
or 2 preimages (cf 2% + a mod p). @1. Construct; Q2. enumerate.

Exercise: All graphs G(z) = 14 ) 2™ ™V/2:" /nl. Q1. EGF K (z) of
n=1

connected graphs? Q2. Probability of connectedness. @3* Prove
not constructible.

Wednesday, June 2,2010
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@ Additional constructions: substitution, pointing, order constraints:

fog, of , /f.

Wednesday, June 2,2010
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Linear probing hashing' From Knuth's original derivation (rec.):

Webist s S m Pl = 0 (- k) -k Zl(’“‘"" "““9 !

MU
N

=1 mosa{i-1) - )Z[{znm(t-m--u(l"]]KMH |

331

to symbolic GFs:

Island = +

SoOOOC T OO0

(z) = 1 + /)Z (zI(2)) x 1(z)

Get nonempty island by joining two islands by means of a gluing element.

~~ wide encompassing extensions of original analyses [F-Poblete-Viola,
Pittel, Knuth 1998, Janson, Chassaing-Marckert, .. .].

Wednesday, June 2,2010 50



Some constructible families and generating fuctions

labelled
Tree - % = T=z Q1) implicit functions
ree
e Increasing trees ~» Y = [ ®(Y) differential equation
e Mappings ~~ exp o log o implicit
m - [j()
/,,o/'f I » /;' M = exp(K)
. N K= Gyele (T) K=log(1-T)!.

i ZeSH(T) I'=zexp(T)

Wednesday, June 2,2010 51



Chapter 5. Parameters
and Multivariate GFs

runs In perms

Wednesday, June 2,2010



blsaefl leoaﬂqe/,tfc H,ao(e,Q

= Enume(‘a.(/‘uﬁ\ /Countf-.j

Pri)( Pz} EN&

E['X] Z k. EN,&)

4+ Variance , ohe .

Wednesday, June 2,2010
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Bivariate GF (ordinary) (Enk) ~  E(z,u) =Y  Enju’z".

n.k

Bivariate GF (exponentidl) (Enkx) ~ FE(z,u)= Z En ku ’—

n!’
n.k

e BGF encodes exact distributions. hence, moments.

| )
Zk “nk . coeff[:"] - E(z.u)

E, ou

u=1

Variance & moment of order 2: second derivative, etfc.

Chebyshev inequalifies: o, /u, — 0 implies convergence in
probability.

Wednesday, June 2,2010
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@ Parameters: via multivariate GFs.

A ANI =4

2227227 ZZ Z Z Z Z
C(Z, ) = I B T 4 ~+
\ P ‘. J (f
JOVN | anva 1o (YW CA. /'Y ( LA b )
: (7] I3
’,/A‘ / \ R N> " =
1)U l} e o
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e BGF is reduction of combinatorial structure. Thus expect
multivariate dictionaries.

PRINCIPLE: Add variables marking parameters at
appropriate places and recycle:

Theorem (Symbolic method)

A dictionary translates constructions into generating functions:

Union +
Product
Sequence ] _1
Set Exp
Cycle Log

Wednesday, June 2,2010

56



Conclusions (Part |

-~ |Chapter 5: Multivariate GFs give access
to parameters; those that can be
obtained by “marking” in combinatorial
constructions.

~ |Chapters 1-2-3|: Exploit all this
asymptotically?
counting; mean, variance, distribution?




