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What is a digital tree, aka “TRIE”?

= a data structure for dynamic dictionaries

TOP-DOWN construction: Set E is
split into Ea,...,Ez , according to
initial letter; continue with next
letter; stop when elements are
separated.

INCREMENTAL construction:
start with the empty tree and insert
elements of E one after the other.

E={a..., bba..., bbb...}

A = Finite alphabet
W = infinite sequences

E : Wn -> tree
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What does a trie look like?

A random trie on n=500 uniform binary sequences; 
size =741 internal nodes; height=18

n

(mean size)

here: uniform data
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n

Expected size seems to be 
asymptotically linear.

Convergence to asymptotic 
regime seems to be fast.

What does a trie look like?

But...Things are not 
quite as they seem!
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Probabilistic model: Memoryless sources

A finite alphabet A = {a1, . . . , ar}.
Letters drawn independently to form words from W = A∞:

P(aj) = pj .

Words drawn independently: model is Wn.

Want fixed number, n items, to build the trie.

Often use N = Poisson(x) items:

P(N = n) = e−x xn

n!
.

Expect (±elementarily) P(x) ≈ fixed-n, when x ≈ n.

Poisson
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1965: Knuth & De Bruijn analyse binary tries, with Pr(0)=Pr(1)=1/2, 
showing oscillations.

1973: Knuth discusses biased bit models, including golden-section 
case [Ex 5.2.2-53]

1986: Fayolle-F-Hofri exhibit periodicity criterion, extended by, e.g., 
Schachinger [2000]; Jacquet-Szpankowski-Tang [2001]

1990-2000: Convergence to asymptotic regime often wrongly 
assumed to be fast. Caveats by Schachinger (~2000).

2010; this paper: convergence to asymptotic regime is very slow and 
depends on fine arithmetic properties of probabilistic model.

Memoryless sources (Bernoulli)
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The periodic case

Definition

The probability vector (p1, . . . , pr ) is periodic if

— all ratios
log pj

log pk
are rational. (E.g.,

log p2

log p1
∈ Q; binary alph.)

Theorem (Periodic sources; folklore)

Expected size Sn is, with Φ a smooth periodic function:

Sn =
n

H
+ nΦ(log n) + O(n1−A), A > 0.

=⇒ Oscillations (O(n)), plus good error term.

• These cases are exceptional: the pj are algebraic numbers. Such families are
a denumerable set; hence have measure 0.
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The aperiodic case (main result)

Definition

The probability vector (p1, . . . , pr ) is aperiodic if

— at least one ratio
log pj

log pk
is irrational. (E.g.,

log p2

log p1
!∈ Q; binary a.)

Theorem (Aperiodic sources; this paper)

Expected size Sn is, for “diophantine sources” (generic case)

Sn =
n

H
+ O

(
n exp(− θ

√
log n)

)
, θ > 1.

This is better than n/(logn)a, any a; much worse than n1−ε, any ε.

• For remaining “Liouvillean sources” (rare), error term can
come arbitrarily close to o(n).

=⇒ No oscillation, but poor error term.

• This case is generic: it has has measure 1.
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1. Basics

Fundamental intervals

+ Mellin

= Formal analysis
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View source model 
in terms of 
fundamental intervals:
    
w -> pw

Size = Number of 
places occupied by at 
least two prefixes

Mellinize ->...

(0) (1)[Vallée 1997++]
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The Mellin transform

f (x)
M! f !(s) :=

∫ ∞

0
f (x)x s−1 dx

(It exists in strips of C determined by growth of f (x) at 0,+∞.)
Property 1. Factors harmonic sums:

∑

(λ,µ)

λf (µx)
M!

( ∑

(λ,µ)

λµ−s

)
· f !(x).

Property 2. Maps asymptotics of f on singularities of f !:

f ! ≈ 1

(s − s0)m
=⇒ f (x) ≈ x−s0(log x)m−1.

Proof of P2 is from Mellin inversion + residues:

f (x) =
1

2iπ

Z c+i∞

c−i∞
f !(s)x−s ds.

Singularities?
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Lambda(s)

Geometry of the poles of

Singularities?

Harmonic sum!
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2. Geometry of poles

Poles are associated with simultaneous 
approximations to logs of probabilities

Distinguish:
-- Diophantine = badly approximable (generic);
-- Liouvillean = unusally well approximable (rare)
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Poles of Λ(s) near !(s) = 1

• Look for s: ps
1 + ps

2 = 1 , s = σ + it.

pσ
1 pit

1 + pσ
2 pit

2 = 1, p1 + p2 = 1.

Implies pit
1 ≈ 1 and pit

2 ≈ 1; i.e., t ≈ 2π

log p1
q1 and t ≈ 2π

log p2
q2.

log p2

log p1
≈ q2

q1
.

Pole of Λ(s) =⇒ “good” rational approximation to
log p2

log p1
.

For general (p1, . . . , pr ), must have a common denominator q1:

∀j : q1
log pj

log p1
is a near-integer .
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Poles of Λ(s) near !(s) = 1

β = (β1, . . . ,βr ) ∈ Rr ; fix a norm ‖ ·‖ on Rr .

{x} = centred fractional part; ‖{β}‖ is distance to nearest integer lattice point.

Look at “record” approximants; measure quality by f (t).

Definition

• Q is a Best Simultaneous Approximant Denominator (BSAD), if
‖{Qβ}‖ < ‖{qβ}‖, for all q < Q.

• f (t), the approximation function, is staircase and f (t) = 1
‖{Q−β}‖ . ,

if Q−,Q+ are the BSADs that frame t. Thus:
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Basic trichotomy

For a probability vector (p1, . . . , pr ):

Periodic sources (All ratios of logs are in Q)

Aperiodic sources (Some ratios !∈ Q):
Diophantine: approximation function f (t) is polynomial;
optimal exponent is known as irrationality measure;
Liouvillean: approximation function f (t) is superpolynomial.

— Scalars π, e, tan(1), 3
√

2, ζ(3), log 5, . . . are Diophantine.
Logs of rational and algebraic numbers are Diophantine.
Also numbers with bounded continued fraction quotients, . . .

— Numbers with very fast-converging sums, e.g.,
∑

2−2n
, are Liouvillean.
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Theorem

If (p1, . . . , pr ) is Diophantine, zeros are well-separated from !(s):

All zeros are to the left of a pseudo-hyperbola;

Infinitely many zeros are to the right of a pseudo-hyperbola.

Theorem

If (p1, . . . , pr ) is Liouvillean, zeros come closer to !(s) = 1:

All zeros are to the left of a curve 1− 1/F−(t);

Infinitely many zeros are to the right of −1 + 1/F+(t).

F−(t),F+(t) are dictated by approximation functions of (log pj)/(log pk).
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Proofs

• Pole of Λ(s) =⇒ “good” rational
approximation to (log pj)(log pk).

— Follow sketch above and develop prop-
erties of “ladders”.

• “Good” rational approximation
to (log pj)/(log pk) =⇒ Pole of Λ(s)
.
— use analytic, multivariate Implicit
Function Theorem, "(s) ≈ 1; uj ≈ 0:

1− ps
1p

iu1
1 − · · · ps

r p
iur
r = 0.

ladder

1

pole 

BSAD, q

~ 1/f(q)2

++ Lapidus, 
van Frankenhuijsen
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3. Inverse Mellin analysis

Make use of integration
contour that avoids poles

Estimate global contribs: 
pole-free region matters

Poles are well-separated
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4. Tries and QuickSort
Applies to size of tries

& almost anything that contains Lambda(s).

Diophantine => error terms are
       exp-of-root-of-log

Liouvillean => error terms are 
o(n)  and very close to O(n)
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Theorem

Consider aperiodic Diophantine probabilities with irrationality
exponent µ.





trie size; Sn =
n

H
+ nΦ(n)

trie pathlength: Sn =
1

H
n log n + Cn + nΦ(n)

symbol-cost, Quicksort: Sn =
2

H
n log2 n + Cn log n + C ′n + nΦ(n),

where error term is, for any θ > µ:

Φ(x) = O

(
exp

[
− (log n)1/θ

])
,

Makes precise or improves on results of
Clément, Fill, Flajolet, Jacquet, Janson, Szpankowski, Vallée,...
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Source models
memoryless

periodic: good error terms

aperiodic: generally (very) bad error terms (us!)

Diophantine versus Liouvillean

Markov; cf Szpa+Jacquet+Tang: similar (?)

dynamical: Vallée + Cl-F-Vallée; cf Dolgopyat, B-V.

general: à la Vallée-Clément-Fill-F.
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Numerics

(Proved for Poisson; 
transfers to fixed-size)

Initial oscillations often
not seen numerically, 
for small n;
but they matter 
asymptotically
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