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Th�eorie formelle des processus de naissance et de mort,

combinatoire des chemins, et fractions continues

R�esum�e : Les travaux classiques de Karlin-McGregor et Jones-Magnus ont �etabli une
correspondance g�en�erale entre les processus de naissnace et de mort en temps continu et les
fractions continues de type Stieltjes-Jacobi ainsi que les polynômes orthogonaux associ�es.
Cette correspondance fondamentale est r�e�examin�ee ici �a la lumi�ere de la relation connue
en analyse combinatoire qui lie chemins valu�es et fractions continues, �Etant donn�e que les
trajectoires de la châ�ne de Markov incluse sont des chemins, les transform�ees de Laplace
d'un grand nombre de caract�eristique transitoires peuvent être obtenues syst�ematiquement.
Les applications incluent l'analyse des �evolutions dans une bande, des travers�ees de bande,
ainsi que le temps, l'aire, ou le nombre de transitions sous conditions g�eom�etriques.

Mots-cl�e : Combinatoire des chemins, fractions continues, polynômes orthogonaux,
processus de naissance et de mort, premiers passages, excursions, caracteristiques transi-
toires
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Introduction

Many systems occurring in diverse �elds of applications, like physics, modelling of telecommu-
nications networks, queueing theory, population growth, or analysis of dynamic data structures,
are described by means of transient characteristics associated with a birth-and-death process. In
favourable situations, explicit forms for probability distribution functions or at least for Laplace
transforms of the main characteristics of interest can be obtained. This is often achieved via
methods that combine general properties, like the Chapman-Kolmogorov equations or the strong
Markov property, together with ad hoc calculations that re
ect probabilistic decompositions of
sorts.

Various aspects of the connection between birth-and-death processes, continued fractions and
orthogonal polynomial systems have been investigated early in the literature. The �rst outstanding
results date back to the papers by Karlin and McGregor in the 1950's [28, 29, 30], where it was
shown that the Chapman-Kolmogorov equation satis�ed by the transition probabilities of a birth-
and-death process can be solved via the introduction of an orthogonal polynomial system and a
spectral measure. This was notably used in the study of transience and recurrence in a purely
analytic way. (The results of Karlin and McGregor are thus of great interest to the community
dealing with the properties of orthogonal polynomials; see for instance [24].) Proceeding along
di�erent lines, Jones and Magnus developed around 1977 a direct treatment of some Laplace
transforms associated to birth-and-death processes by means of continued fractions [26, 27].

In this paper, we adopt a radically di�erent point of view. We �rst note that transient charac-
teristics of a birth-and-death process are frequently de�ned by means of geometric conditions, for
instance the time spent by the process in a set of states or the state of the process at an arbitrary
instant, starting from given initial conditions. The trajectories of the process are lattice path, and
an adequate morphism provides a representation of the Laplace transforms of probabilities of the
corresponding transient characteristics (Section 1). On the other hand, the combinatorial theory
due to Flajolet at al [10, 11, 12, 13] leads to a formal representation of geometric classes of lattice
paths in terms of continued fractions and their associated orthogonal polynomials (Section 2).
Accordingly, the results of the paper lead directly to a representation of the Laplace transform of
a transient characteristic in terms of continued fractions (Section 3) and othogonal polynomials
(Section 4). This approach not only allows us to recover in a simple way a number of results often
obtained previously by special-purpose methods, but also to derive new results somewhat di�cult
to obtain by straight probabilistic arguments.
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2 P. FLAJOLET AND F. GUILLEMIN

As is well-known, continued fractions prove useful, either symbolically or numerically. Indeed,
symbolically, a large number of continued fraction expansions of formal power series or analytic
functions are known and closed form expressions in terms of classical special functions can often
be attained by reverse-engineering and table lookup in classical treatises like Wall's [36] or Chi-
hara's [7]. This is especially useful for processes whose birth-and-death rates are given by \regular
laws", typically M=M=1 or M=M=1 queues, population models, etc; see Section 5. Numerically,
it is to be noted that continued fractions are also instrumental in the evaluation of underlying
probability distributions, although this topic is out of the scope of the paper. Continued fraction
based analyses of specials processes are to be found in [18, 19, 35] for the distribution of transient
characteristics in an M=M=1 system and in [20] for the tail behaviour of the cumulative waiting
time in a busy period of an M=M=1 queue; see also the arguments developed by Abate and Whitt
in [1, 2] in combination with their Laplace transform inversion algorithm speci�ed in [3].

The main objective of this paper as regards birth-and-death processes is to separate clearly
the formal apparatus from the analytic-probabilistic machinery, and neatly delineate parameters
that are amenable to a systematic treatment by means of continued fractions and orthogonal
polynomials. Section 1 describes the basic connection between lattice path theory and birth-
and-death processes. The Laplace transform of a transient characteristic speci�ed by a geometric
condition is shown to derive throughby an appropriate morphism from the combinatorial generating
function of a set of lattice paths. In Section 2, several results from the literature on lattice path
combinatorics are gathered and cast in a uni�ed and self-contained framework. The theory exposed
in the �rst two sections is applied next in Sections 3, 4 where several analyses, some old and some
new, are obtained in this way for transient characteristics of a general birth-and-death process. We
�nally outline a specialization of this theory to three of the classical models (M=M=1, M=M=1,
population growth) in Section 5.

1. Birth-and-death processes

Consider a (continuous-time) birth-and-death process (BDP) f�tg, taking values in N and with
transition rate qi;j from state i to state j de�ned by

q0;0 = ��0; q0;1 = �0;

qi;i�1 = �i; qi;i = �(�i + �i); qi;i+1 = �i; i � 1;

with qi;j = 0 otherwise, where the constants �i for i � 0 and �j for j � 1 are strictly positive. Let
fYng denote the (discrete time) Markov chain embedded at jump instants. The transition matrix
fpi;jg of fYng is given by

p0;1 = 1; pi;i�1 =
�i

�i + �i
; pi;i+1 =

�i
�i + �i

; i � 1;(1.1)

with pi;j = 0 otherwise. It proves occasionally convenient to consider an extension of the process
with a death rate �0 from state 0 and absorption at �1; the extended process gives back the basic
process upon setting �0 = 0.

In order to simplify the discussion, we assume throughout the paper that the birth-and-death
process is ergodic. This implies in particular [5]

(C1)
1X
n=0

�n <1 and
1X
n=0

1

�n�n
=1;

where the fundamental quantities �n are de�ned by

�0 = 1; �n =
�0 : : : �n�1
�1 : : : �n

; n � 1:(1.2)

The �n are known to express the long term behaviour of the system [31], the stationary probability
of state j being

pj =
�jP
�k
:(1.3)
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Trajectories of the Markov chain fYng are sequences of nonnegative integers that can be alter-
natively described as lattice paths de�ned as follows.

De�nition 1 (Lattice path). A (lattice) path � = (U0; U1; : : : ; Un) is a sequence of points in the
lattice N � N such that if Uj = (xj ; yj), then xj = j and jyj+1 � yjj � 1. An edge hUj ; Uj+1i
is called an ascent (a) if yj+1 � yj = +1, a descent (b) if yj+1 � yj = �1, and a level step (c) if
yj+1 � yj = 0.

The quantity n is the length of the path, o(�) := y0 is the initial altitude, h(�) := yn is the �nal
altitude. The extremal quantities supf�g := maxj yj and inff�g := minj yj are called the height
and depth of the path.

It is assumed that paths are normalized by the condition x0 = 0, the variable xn denoting the
(discrete) \time" parameter. With this normalization, a path of length n is encoded by a word
with a; b; c representing ascents, descents, and level steps, respectively. What we call the standard
encoding is such a word in which each step a; b; c is (redundantly) subscripted by the value of the
y-coordinate of its associated point. For instance, w = a0a1a2b3c2c2a2b3b2b1a0c1 encodes a path
that connects the initial state U0 = (0; 0) to the state U12 = (12; 1). We freely identify a path �
de�ned as a sequence of points and its standard encoding w. With this convention, a sample path
of the Markov chain fYng is in turn identi�ed with a word without level steps. Inclusion of level
steps in De�nition 1 proves occasionally useful in some parts of the discussion: see (2.28), (3.11),
and (3.20).

Let H be the set of trajectories (\histories" in the terminology of analysis of algorithms) of the
BDP. Given a geometric condition (Q) that is expressed solely in terms of geometric constraints on
trajectories, it is then possible to associate to it a \language" H[Q] that comprises the collection
of all path encodings satisfying the condition Q. This language can be viewed either as a set or as
a formal sum,

H[Q] =
X

fw j Qg
w;

in which case it becomes the generating function in in�nitely many indeterminates of the corre-
sponding condition.

The major thread of this paper is the connection between formal languages expressing properties
of trajectories and Laplace transforms. The Laplace transform of a function g(x) is taken here as

eg(s) = Z 1

0

e�sxg(x) dx;

and the Laplace transform �X(s) = E[e�sX ] of a random variable X is the transform of its
density function if it exists. In particular, the transform of an exponential variable of rate a with
probability density function ae�ax is a=(s + a). In the context of this paper, a morphism � is a
linear application from the set of words to an algebra of functions satisfying �(u � v) = �(u)�(v).

Proposition 1 (Basic Connection). Consider a process with transition rates f�jg and f�jg, and
the probabilities

PQ(� ) = Prff�tg satis�es Q at time �g:(1.4)

Let �s be the \probabilistic morphism", de�ned by

�s(aj) =
�j

s + �j + �j
; �s(bj) =

�j
s + �j + �j

; �s(cj) = 0:(1.5)

Then, the Laplace transform of the function � 7! PQ(t) is given for s � 0 by

ePQ(s) = X
w2H[Q]

�
�s(w) �

1

s + �h(w) + �h(w)

�
;(1.6)

where h(w) is the �nal altitude of the path encoding w.
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Proof. The proof closely parallels the elementary construction of continuous-time Markov chains;
see for instance [31, Ch. 4] or [34, Sec. 2.6]. We start by conditioning upon a particular trajectoty
of the embedded chain. Given a lattice path w = w1w2 � � �wn 2 H, the probability that the process
satis�es the condition Q at time t, having followed the path w 2 H,

PQ;w(t) := Prff�ug satis�es Q at time t = wg

satis�es

PQ;w(t) = Pr
�
Se0 + � � �+ Sen�1 � t; Se0 + � � �+ Sen�1 + Sen > t

	
;(1.7)

where Sej is the random variable that represents the sojourn time at the state ej determined by
w1 � � �wj. It is elementary that the Laplace transform of a sum of independent random variables
is a product, �X+Y (s) = �X(s)�Y (s), and that the transform of the probability of the event
PrfX � t < X + Y g is �X(s)(1 � �Y (s))=s. Also, the sojourn time at some state i is exponential
with parameter �i + �i, so that its Laplace transform is (�i + �i)=(s + �i + �i). Thus, owing to
the strong Markov property satis�ed by the BDP f�tg, the transform of the probability of (1.7) is

ePQ;w(s) =
0
@n�1Y

j=0

�ej + �ej
s + �ej + �ej

1
A �

1

s + �en + �en
:(1.8)

The next observation (the strong Markov property still) is that the probability of a path w is
the product of the individual transition probabilities, that is,

�w = pe0;e1pe1;e2 � � �pen�1;en ;(1.9)

where pi;j is de�ned by (1.1). Equivalently, �w = �e0 � � � �en�1 , where �j = �j=(�j + �j) or
�j = �j=(�j + �j) depending on whether the letter wj is a or b. There results that the Laplace
transform of the function PQ is a sum over all lattice paths in H[Q],

ePQ(s) = X
w2H[Q]

�wePQ;w(s);
where the quantities ePQ;w(s) and �w are given by (1.8) and (1.9). The statement of the proposition
follows.

It is often the case that paths satisfying Q all end at the same altitude f ; in that event,
equation (1.6) further simpli�es to

ePQ(s) = �s (H[Q])
1

s + �f + �f
; :

The next statement requires a proper de�nition of stopping conditions. Given two words u and
v, we say that v is a strict pre�x of u if u = vw for some nonempty w. A language is pre�x-free i�
it does not contain two words u; v with u a strict pre�x of v. If the set of paths H[Q] associated
to some condition Q is pre�x-free, then it is said to be a stopping set, and accordingly Q is said
to be a stopping condition. The stopping time � � �Q associated with Q is then the random
variable that represents the time at which the process �rst has a trajectory that belongs to H[Q].
(The pre�x-free constraint on H[Q] precisely formalizes the fact the problem is well-posed: no
trajectory satisfying Q can extend another trajectory satisfying Q and having fewer steps.) Note
that a stopping time may be a defective random variable if Q is not hit with probability 1, in which
case we take � = +1.

Proposition 2 (Time connection). Let Q be a stopping condition, with � the stopping time and

H[Q] the corresponding set of paths. The Laplace transform e�(s) of the random variable � is given
by

e�(s) := E
�
e�s�

�
= �s(H[Q])(1.10)

where �s is the probabilistic morphism de�ned by eq. (1.5).
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Proof. The proof only di�ers marginally from that of Proposition 1. Since Q is a stopping condition,
the probability P0Q;w(t) of the process satisfying Q before time t, having followed path w, obeys a
simpli�ed form of (1.7),

Pr
�
Se0 + � � �+ Sen�1 + Sen < t

	
;

The fact that H[Q] is a stopping set grants that the events corresponding to di�erent w's are
disjoint, and the proof concludes by the same computation as before.

If the stopping time � is defective, then, by general principles, the probability of � being �nite
is

Prf� < +1g = �0(H[Q]);(1.11)

where �0 is the morphism �s instantiated at s = 0. Accordingly, the Laplace transform of �
conditioned upon � < +1 is

E
�
e�s�

�� � < +1
�
=
�s(H[Q])

�0(H[Q])
:(1.12)

The procedure can be generalized to derive the Laplace transform of a number of random
variables associated with a birth-and-death process. An instance is the total area Ac swept under
the BDP above a given threshold c until the stopping condition Q is satis�ed (at the random
time �)

Ac =

Z �

0

(�t � c)+dt:(1.13)

This parameter has provided one of the motivations for the present study. Its practical importance
devolves from the fact that it measures the volume of tra�c in queueing systems and related
telecommunication contexts; see [19, 20, 21, 35].

Proposition 3 (Area connection). Let Q be a stopping condition. The joint Laplace transform of
the (time, area){pair (�;Ac) de�ned by G(s; y) := E

�
e�s��yAc

�
; is given by

G(s; y) = ��s(H[Q]);(1.14)

where ��s is the enriched \area morphism" de�ned by

��s(aj) =
�j

s + (j � c)+y + �j + �j
; ��s(bj) =

�j
s+ (j � c)+y + �j + �j

; ��s(cj) = 0:(1.15)

Proof. Without loss of generality, consider the case c = 0. The property that the stopping time
occurs before time t and the area is less than v, following the path w, is the event

f� < t;A0 < v = wg = fSe0 + Se1 + � � �+ Sen < t; e0Se0 + e1Se1 + � � �+ enSen < vg:(1.16)

Let Xj be independent exponential variables with rates �j and consider the two variables U =P
Xj , V =

P
�jXj, for some system of weights �j . It su�ces to observe the relation

E[e�sU�yV ] =
Y
j

�j
s+ �j + �jy

;

and the proof concludes like before, on the basis of (1.16).

Example. Consider the condition E that represents the event \no death has occurred" and the
closely related stopping condition F expressing \the �rst death has already occurred". Then H[E]
and H[F ] are

H[E] = 1 + a0 + a0a1 + a0a1a2 + � � � ; H[F ] = b0 + a0b1 + a0a1b2 + � � � ;

where we must take b0 = 0 and accordingly �0 = 0. Then, Propositions 1 and 2 give (withQ�1
j=0 = 1)

ePE(s) = 1X
n=0

Qn�1
j=0 �jQn

j=0(s + �j + �j)
; e�F (s) = 1X

n=0

�Qn�1
j=0 �j

�
�nQn

j=0(s + �j + �j)
:
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Under ergodicity, we have e�F (0) = 1, meaning that the stopping time �F is nondefective. In
addition, the area A0 is taken into account by the joint Laplace transform,

G(s; y) =
1X
n=0

�Qn�1
j=0 �j

�
�nQn

j=0(s + �j + �j + jy)
:

Our purpose in this paper is to apply this formal procedure to less obvious transient character-
istics of the birth-and-death process. This requires �rst setting up expressions for the multivariate
generating functions expressing corresponding conditions.

2. Combinatorics of lattice paths and continued fraction representations

It is known that the formal theory of continued fraction expansions for power series is to a large
extent equivalent to the combinatorial theory of weighted lattice paths. The goal of this section is
to establish a representation for various sets of paths constrained by height and depth conditions,
as arises in connection with transient characteristics of a BDP. For this purpose, we recast in a
unifying framework and extend basic results established in [10, 11, 12, 13, 17] Proofs are given in
this paper because they lead to results of independent interest. All the computations eventually
depend only on a simple set of combinatorial decompositions (Section 2.1) and on basic properties
of linear fractional transformations represented by 2�2 matrices (Sections 2.2), resulting in a wide
of set of expressions (Section 2.3).

2.1. Lattice path decompositions. Let H denote the collection of all path encodings. A general
subclass of paths of interest is de�ned by 
ooring (m), ceiling (h), as well as �xing initial (k) and
�nal (l) altitudes

H
[�m;<h]
k;l = fw 2 H : o(w) = k; h(w) = l; inffwg � m; and supfwg < hg:

We also need the specializations,

H
[<h]
k;l

= H
[�0;<h]
k;l

; H
[�m]
k;l

= H
[�m;<1]
k;l

; Hk;l = H
[�0;<1]
k;l

:

Consider now the symbols aj; bj; cj as formal indeterminates, so that words become monomials.
The generating function of a collection C of paths is de�ned as the formal sum

C =
X
w2C

w;

a formal power series in in�nitely many indeterminates. (No technical di�culty arises if one
operates with the gradation on the set of variables de�ned by deg aj = deg bj = deg cj = 1.) In
the same way as words are assimilated to monomials, it proves convenient to use consistently the
same notation for sets and for the associated generating functions.

Basic combinatorial principles [16] state that (disjoint) set union, (unambiguous) concatenation
of sets of words, and the (unambiguous) formation of arbitrary sequences,

C = A [B; C = A �B; C = Seq(A) :=
[
n�0

An;

translate into generating functions as

C = A+ B; C = A� B; C =
1

1�A
:

There, the last identity derives from the fact that (1�f)�1 = 1+f+f2+� � � generates symbolically
all the sequences with components f .

Three obvious combinatorial decompositions of paths then su�ce to derive all the basic formul�.

Arch decomposition: An excursion from and to level 0 consists of a sequence of \arches",

each made of either a c0 or a a0H
[�1]
1;1 b1, so that

H0;0 = (1� c0 � a0H
[�1]
1;1 b1)

�1:
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which relativizes to height < h: in general, one has the recursion8<
: H

[�j;<h]
j;j =

�
1� cj � ajH

[�j+1;<h]
j+1;j+1 bj+1

��1
;

H
[�h�1;<h]
h�1;h�1 = (1� ch�1)�1:

(2.1)

Last passages decompositions: Recording the times at which each level 0; : : : ; k is last tra-
versed gives

H0;k = H
[�0]
0;0 a0H

[�1]
1;1 a1 � � �ak�1H

[�k]
k;k(2.2)

First passage decomposition: The quantities Hk;l with k � l are implicitly determined by
the �rst passage through k in a path connecting level 0 to l; a dual decomposition holds when
k � l, so that 8<

: H0;l = H
[<k]
0;k�1ak�1Hk;l (k � l);

Hk;0 = Hk;lblH
[<l]
l�1;0 (l � k):

(2.3)

2.2. Continued fraction and convergent polynomials. The basic results of earlier studies
express the generating functions of three basic types of paths in terms of a fundamental continued
fraction and its associated convergent polynomials. They involve the \numerator" and \denom-
inator" polynomials, denoted by Ph and Qh that each satisfy the second order (or \tree-term")
recurrence

Yh+1 = (1� ch)Yh � ah�1bhYh�1; h � 1;(2.4)

and the initial conditions (P�1; Q�1) = (1; 0) and (P0; Q0) = (0; 1), with the convention a�1b0 = 1.

Theorem 1 (Path continued fractions [10]). (i) The set H0;0 of all basic excursions is represented
by the fundamental continued fraction:

H0;0 =
1

1� c0 �
a0b1

1� c1 �
a1b2

1� c2 �
a2b3

. . .

:(2.5)

(ii) The set of ceiled excursions H [<k]
0;0 is given by convergents of the fundamental fraction:

H
[<h]
0;0 =

1

1� c0 �
a0b1

1� c1 �
a1b2

1� c2 �
a2b3

. . .

1� ch�1

(2.6)

=
Ph
Qh

:(2.7)

(iii) The set of 
oored excursions is given by the truncation of the fundamental fraction:

H
[�h]
h;h =

1

1� ch �
ahbh+1

1� ch+1 �
ah+1bh+2

1� ch+2 �
ah+2bh+3

. . .

(2.8)

=
1

ah�1bh

QhH0;0� Ph
Qh�1H0;0� Ph�1

;(2.9)
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Proof. Repeated use of the arch decomposition (2.1) provides a form of H
[<h]
0;0 with nested quasi-

inverses (1 � f)�1 that is the �nite fraction representation (2.6). The continued fraction repre-
sentation for basic paths (namely H0;0) is then obtained by letting h ! 1 in (2.6). Finally,
the continued fraction form (2.8) for ceiled excursions is nothing but the fundamental form (2.5),
when the indices are shifted. The three continued fraction expressions (2.5), (2.6), (2.8) are thence
established.

Finding explicit expressions for the fractions H [<h]
0;0 and H

[�h]
h;h next requires determining the

polynomials that appear in the convergents of the basic fraction (2.5). By de�nition, the convergent

polynomials Ph and Qh are the numerator and denominator of the fraction H
[<h]
0;0 .

For the computation of H
[<h]
0;0 and Ph; Qh, one classically introduces the linear fractional trans-

formations

gj(y) =
1

1� cj � ajbj+1y
;

so that

H
[<h]
0;0 = g0 � g1 � g2 � � � � � gh�1(0) and H0;0 = g0 � g1 � g2 � � � � ; :(2.10)

Now, linear fractional transformations are representable by 2� 2-matrices

ay + b

cy + d
7!

0
@ a b

c d

1
A ;(2.11)

in such a way that composition corresponds to matrix product. By induction on the compositions

that build up H
[<h]
0;0 , there follows the equality

g0 � g1 � g2 � � � � � gh�1(y) =
Ph � Ph�1ah�1bhy
Qh �Qh�1ah�1bhy

;(2.12)

where Ph and Qh satisfy the recurrence (2.4). Setting y = 0 in(2.12) proves (2.7).

Finally, H
[�h]
h;h is determined implicitly as the root y of the equation g0 � � � � � gh�1(y) = H0;0,

an equation that, when solved using (2.12), yields (2.9).

The proof of Theorem 1 relies on the decomposition of trajectories into arches that are themselves
built of a matching ascent-descent pair and another trajectory one level up, with the pattern
repeating itself forever. The continued fraction expressions directly re
ect this decomposition.
Then, the (2�2) matrix representations that are classically associated to continued fraction algebra
open the way to a systematic calculus. In the sequel, much use is made of this line of reasoning.

An immediate corollary is a representation for the set H
[�m;<h]
m;m of upward excursions that is

simply obtained by replacing H0;0 with Ph=Qh in relation (2.9).

Corollary 1 (Upward excursions). The set H
[�m;<h]
m;m is represented as

H [�m;<h]
m;m =

1

am�1bm

QmPh � PmQh

Qm�1Ph � Pm�1Qh

:(2.13)

2.3. Sets of paths satisfying height and depth conditions. The main result of this section
is Theorem 2 that is contained in [17] and is closely related to earlier combinatorial studies like
[10, 12]. It provides a formula for \transitions", that is, paths of general type Hk;l, in the presence
of general 
ooring and ceiling constraints. We build up the proof in stages as it allows us to derive
intermediate results of independent interest. These intermediate results are themselves corollaries
of Theorem 1. To alleviate the notation, we use the abbreviation:

Am = a0a1 � � �am�1 and Bm = b1b2 � � �bm:(2.14)

Corollary 2 (Crossings [10]). The set H
[<h]
0;h�1, h � 1, of upcrossings from state 0 to h � 1 that

stay below level h is represented as

H
[<h]
0;h�1 =

Ah�1
Qh

:(2.15)
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Type Spec. Formula Ref.

1. Excursion H0;0
1

1� c0 �

a0b1
1� c1 �

� � � (2.5)

2. Ceiled excursions H
[<h]
0;0

Ph
Qh

(2.7)

3. Floored excursions H
[�h]
h;h

1

ah�1bh

QhH0;0 � Ph
Qh�1H0;0 � Ph�1

(2.9)

4. Transitions from 0 H0;l
1

Bl

(QlH0;0 � Pl) (2.17)

5. Transitions to 0 Hk;0
1

Ak

(QkH0;0 � Pk) (2.19)

6. Upcrossings from 0 H
[<h]
0;h�1

Ah�1

Qh

(2.15)

7. Downcrossings to 0 H
[<h]
h�1;0

Bh�1

Qh

(2.16)

8. Transitions (k � l) Hk;l
1

AkBl

Qk (QlH0;0 � Pl) (2.20)

9. Transitions (k � l) Hk;l
1

AkBl

Ql (QkH0;0 � Pk) (2.20)

10. Upward excursions H
[�m;<h]
m;m

1

am�1bm

Dm;h

Dm�1;h
(2.13)

11. Downward excursions H
[<l+1]
l;l

Ql

Ql+1
(2.27)

12. Transitions in strip (k � l) H
[�m;<h]
k;l

1

AkBl

Dm�1;kDl;h

Dm�1;h
(2.22)

13. Transitions in strip (l � k) H
[�m;<h]
k;l

1

AkBl

Dm�1;lDk;h

Dm�1;h
(2.22)

Table 1. Generating functions associated to some major path conditions. The
basic continued fraction is H0;0 in Entry 1, with convergent polynomials Ph; Qh.
Abbreviations used are: Am = a0 � � �am�1, Bm = b1 � � �bm, and Di;j = QiPj �
PiQj.

The set of downcrossings from state h� 1 to 0 that stay below level h is given by

H
[<h]
h�1;0 =

Bh�1
Qh

:(2.16)

Proof. Consider �rst the case of upcrossings from state 0 to state l in (2.15). The expression for
ceiled excursions, when plugged inside (2.2), yields a product that telescopes, so that

H0;l =
1

Bl

(QlH0;0 � Pl) ;(2.17)

On the other hand, equations (2.10) and (2.12) together with multiplicativity of the determinant
imply the classical \determinant identity",

PhQh�1 � QhPh�1 = (a0a1 � � �ah�2) (b1b2 � � �bh�1):(2.18)

The representation of H
[<h]
0;h�1 is obtained next by replacing H0;0 with H

[<h]
0;0 = Ph=Qh in (2.17),

then setting l = h� 1; the expression simpli�es because of the determinant identity (2.18), yield-
ing (2.15).

For downcrossings, the time-reversal transformation gives directly

Hk;0 =
Bk

Ak

H0;k =
1

Ak

(QkH0;0 � Pk):(2.19)

and the proof concludes like in the case of upcrossings.
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Corollary 3 (Transitions [12]). The set Hk;l is representable by means of the fundamental set
H0;0 and the polynomials Ph and Qh as:

Hk;l =

8><
>:

1

AkBl

Qk (QlH0;0 � Pl) (k � l);

1

AkBl

Ql (QkH0;0 � Pk) (k � l):
(2.20)

Proof. The �rst-passage decomposition (2.3) combined with (2.15) and (2.17) yields the assertion.

We can now state:

Theorem 2 (Path transitions [17]). Assume that 0 � m � k; l � h and de�ne the determinant-
like quantities

Di;j = QiPj � PiQj :(2.21)

Then, the transition sets H [�m;<h]
k;l are given by

H
[�m;<h]
k;l =

8>><
>>:

1

AkBl

Dm�1;kDl;h

Dm�1;h
(k � l);

1

AkBl

Dm�1;lDk;h

Dm�1;h
(k � l):

(2.22)

Proof. It su�ces to treat the representative case when k � l. The starting point is relation (2.20)
that relativizes to bounded height (< h) upon replacing H0;0 with Ph=Qh:

H
[<h]
k;l =

1

AkBl

Qk

Qh

(QlPh � PlQh) :(2.23)

Let � be the operation that shifts the indices of variables: �(xj) = xj+1, for x 2 fa; b; cg.
Shifting indices of variables by m is equivalent to moving the re
ecting barrier from altitude 0 to
altitude m. Then, the transitions in a strip are

H
[�m;<h]
k;l = �m

�
H

[<h�m]
k�m;l�m

�
;(2.24)

where the right hand side is determined by (2.23) and shifting. The problem is thus reduced to
expressing the shifts of the basic family of polynomials Ph; Qh.

The polynomials P
(m)
h := �m(Ph) and Q

(m)
h := �m(Qh) are usually called the associated

polynomials[7]. The connection,

Q
(m)
h =

1

Am�1Bm�1
(Qm�1Pm+h � Pm�1Qm+h) ;(2.25)

P
(m)
h =

1

AmBm

(QmPm+h � PmQm+h) ;(2.26)

is readily established. Indeed, the associated polynomials satisfy a recurrence of second order that
is, up to a shift of indices, equivalent to the recurrence (2.4) of the basic polynomials Ph; Qh which
form a basis of the linear space of all solutions. (Naturally, one has �(Qh) = Ph+1.) The connection
formul� (2.25) applied to (2.23) and (2.24) then yield the statement in the case when k � l. The

other case k � l relies on the dual decomposition, Hk;0 = Hk;lblH
[<l]
l�1;0.

Theorem 2 is a turnkey formula for a number of results. It gives back the earlier results provided
one sets wherever appropriate: P1 = H0;0, Q1 = 1. An instance of a new result is the special
case k = l, h = l + 1, m = 0, which gives a re
ex of Corollary 1.

Corollary 4 (Downward excursions). The set H
[<l+1]
l;l can be represented by

H
[<l+1]
l;l =

Ql

Ql+1
:(2.27)

The di�erent results of this section are summarized in Table 1.
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Objects Weights (�j; �j
j) Moments Orth. pol.

Simple paths 1; 1; 0 Catalan # Chebyshev

Permutations j + 1; j; 2j + 1 Factorial # Laguerre

Alternating perm. j + 1; j; 0 Secant # Meixner

Set partition j + 1; 1; j + 1 Bell # Poisson-Charlier

Nonoverlap. set part. j + 1; 1; 1 Bessel # Lommel

Table 2. Some special families of combinatorial objects together with corre-
sponding weights, moments, and orthogonal polynomials.

2.4. Relations to enumerative combinatorics. We digress momentarily from our primary
motivation and brie
y comment on consequences of Theorems 1, 2 as regards the enumeration of
classical combinatorial structures. The theory of lattice path enumerations and continued frac-
tions was intially motivated by the need to count \path diagrams" (equivalently, weighted lattice
paths) [10], notably in the context of the analysis of dynamic data structures in computer sci-
ence [12, 13]. In this framework, a system of multiplicative weights �j; �j; 
j is associated with
the steps aj ; bj; cj. In the simplest version, each weight is an integer that represents a number of
\possibilities" for the corresponding step type. A system of weighted lattice paths has counting
generating functions given by an easy specialization of the corresponding multivariate expressions
we have just developed. The \combinatorial morphism" is then

aj 7! �jz; bj 7! �jz; cj 7! 
jz;(2.28)

where z marks the length of paths. Under the substitution (2.28), the coe�cient [zn]H0;0 is thus the
number of weighted paths, and the continued fractions of Table 1 all admit a direct interpretation.

Upon application of the combinatorial morphism (2.28), multivariate generating functions be-
come functions of a single variable z. Under these circumstances, a further relation with orthogonal
polynomials develops and we brie
y summarize some basic aspects for completeness. De�ne the
linear functional M on the space of polynomials C [x] by

M[xn] = H0;0;n where H0;0;n = [zn]H0;0:

A simple rewriting of the coe�cient convolution shows that for a polynomial f(z), there holds

[zn] (H0;0f(z)) =M[xnf (x)] where f(x) = xdeg(f)f(x�1);

is the reciprocal of f . As an application, one �nds immediately rephrasings of Entries 8 and 9 of
Table 1 in the form

[zn]Hk;l =
1

(�0 � � ��k�1)(�1 � � ��l)
M
�
xnQk(x)Ql(x)

�
:(2.29)

This implies in particular that M
�
znQk(z)

�
= 0 for n < k (consider [zn]H0;k that must be 0

if n < k), which means that the reciprocal polynomials Qk(z) constitute an orthogonal system
with respect to M. (See for instance [36, Ch. XI] for aspects of orthogonality, [15] for general
algebraic combinatorics aspects, and [10, 12] for implications in lattice path enumerations.) The
relation (2.29) constitutes a combinatorial analogues of Karlin and McGregor's formula in Theo-
rem 5 below, and the analogy between formul� originally developed independently in quite di�erent
contexts is striking.

Bijective combinatorics, continued fractions, and orthogonality relations have been exploited
in [10, 12]. As a result, it was found that many classical combinatorial structures are related
to classical families of continued fractions and orthogonal polynomials, a fact that has numerous
enumerative consequences; see also [16] for an account. A concise summary is o�ered in Table 2.
This table should be compared with Table 4 relative to special birth-and-death processes, and the
analogies are striking. (However in the discrete case of paths, the area parameter leads to so-called
q-analogues [11] that are of a form di�erent from the basic polynomials.)
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3. birth-and-death processes and continued fraction representations

In this and the next section, we exploit the combinatorial relations just obtained. The com-
putation of Laplace transforms reduces to a purely mechanically application of the probabilistic
morphism � or its variants according to the principles set forth in Propositions 1, 2, 3.

3.1. Basic probabilities. Consider �rst the basic probability

P0;0(t) := Prf�t = 0 = �0 = 0g

that the process issued from0 is in state 0 at time t. By Proposition 1, the Laplace transform eP0;0(s)
of the function P0;0(t) equals the quantity �s(H0;0)=(s+ �0). Introduce the shorthand notation,

�j := �j + �j;

with, as before, �0 = 0. Then, one has

eP0;0(s) = �s(H0;0)
1

s + �0
=

1

1�

�0�1
(s+�0)(s+�1)

1�

�1�2
(s+�1)(s+�2)

. . .

�
1

(s + �0)

=
1

s + �0 �
�0�1

s + �1 �
�1�2

. . .

;(3.1)

as results from a simple equivalence-preserving transformation. The fraction (3.1) is of a type
known as Jacobi type, a J-fraction for short.

We consider next the collection of probabilities,

P
[�m;<h]
k;l

(t) := Prf�t = l = �0 = k; sup
u�t

f�ug < h; inf
u�t

f�ug � mg;

and the specializations

P
[<h]
k;l = P

[�0;<h]
k;l ; P

[�m]
k;l = P

[�m;<1]
k;l ; Pk;l = P

[�0;<1]
k;l :

Once more, the convergents of the continued fraction (3.1) play an important role in expressing
various sorts of boundary conditions. It is customary to scale the convergent polynomials [28, 29]
and express formul� in terms of polynomials Ph(s);Qh(s), called \birth-and-death" polynomials,
that are de�ned by the recurrence,

�hYh+1(s) + (s � �h � �h)Yh(s) + �hYh�1(s) = 0;(3.2)

together with the initial conditions P0(s) = 0; P1(s) = 1=�0 and Q�1(s) = 0; Q0(s) =

1. (The convergent polynomials of the continued fraction eP0;0(s) are �0 � � ��h�1Ph(�s) and
�0 � � ��h�1Qh(�s).) We can now state:

Theorem 3 (Birth-and-death continued fractions). (i) The Laplace transform eP0;0(s) is formally
represented as

eP0;0(s) = 1

s+ �0 �
�0�1

s + �1 + �1 �
�1�2

s + �2 + �2 �
�2�3

. . .

:(3.3)
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(ii) The Laplace transform eP[<h]0;0 (s) of ceiled excursions is given by

eP[<h]0;0 (s) =
1

s + �0 �
�0�1

s + �1 + �1 �
�1�2

. . .

s + �h�1 + �h�1

=
Ph(�s)

Qh(�s)
:(3.4)

(iii) The Laplace transform eP[�h]h;h (s) of 
oored excursions is given by

eP[�h]h;h (s) =
1

s + �h �
�h�h+1

s + �h+1 + �h+1 �
�h+1�h+2

. . .

(3.5)

=
1

�h

Qh(�s)eP0;0(s) � Ph(�s)

Qh�1(�s)eP0;0(s) � Ph�1(�s)
:(3.6)

The representation (3.3) for eP0;0(s) has been used for instance in [6] for studying the behaviour
of asymptotically proportional birth-and-death processes.

Proof. Given Theorem 1 and the computation of (3.1), the proof of these assertions only necessi-
tates the determination of the morphic images

�s(Ph) =
�0 : : : �h�1Qh�1

l=1 (s + �l + �l)
Ph(�s);(3.7)

�s(Qh) =
�0 : : : �h�1Qh�1

l=0 (s + �l + �l)
Qh(�s);(3.8)

obtained by comparing the recurrences (2.4) and (3.2).

The same mechanism immediately gives the counterpart of Theorem 2.

Theorem 4 (Birth-and-death transitions). Assume that 1 � m � k; l � h, and let �n be given
by (1.2). De�ne the determinant-like quantities

Di;j(s) = Qi(s)Pj(s) � Pi(s)Qj(s):(3.9)

Then, the transition probabilities eP[�m;<h]
k;l have Laplace transform given by

eP[�m;<h]
k;l (s) =

8>><
>>:

�l
Dm�1;k(�s)Dl;h(�s)

Dm�1;h(�s)
(k � l)

�l
Dm�1;l(�s)Dk;h(�s)

Dm�1;h(�s)
(l � k):

(3.10)

The dictionary provided by equations (3.1), (3.7), (3.8) yields automatically the other results
summarized in Table 3.

We observe, but we don't make use of the fact, that the continued fraction representing eP0;0(s)
can be alternatively obtained as a translation of the combinatorial fraction expression H0;0, making
use of level steps:

seP0;0(s) = �̂s(H0;0) where �̂s(aj) = �
�j
s
; �̂s(bj) = �

�j
s
; �̂s(aj) = �

�j
s
:(3.11)



14 P. FLAJOLET AND F. GUILLEMIN

Type Spec. Laplace transform

1. Excursion P0;0
eP0;0(s) =

1

s+ �0 �

�0�1
s+ �1 + �1 �

� � �

2. Ceiled excursion P
[<h]
0;0

Ph(�s)

Qh(�s)

3. Floored excursion P
[�h]
h;h

1

�h

Qh(�s)eP0;0(s)� Ph(�s)

Qh�1(�s)eP0;0(s)� Ph�1(�s)

4. Transitions from 0 P0;l �l
�
Ql(�s)eP0;0(s)�Pl(�s)�

5. Transitions to 0 Pk;0 (Qk(�s)eP0;0(s)� Pk(�s))
6. Upcrossings from 0 P

[<h]
0;h�1

1

�h�1

1

Qh(�s)

7. Downcrossings to 0 P
[<h]
h�1;0

1

�h�h

1

Qh(�s)

8. Transitions (k � l) Pk;l �lQk(�s)
�
Ql(�s)eP0;0(s)�Pl(�s)�

9. Transitions (k � l) Pk;l �lQl(�s)
�
Qk(�s)eP0;0(s)�Pk(�s)

�

10. Upward excursions P
[�m;<h]
m;m

1

�m

Dm;h(�s)

Dm�1;h(�s)

11. Downward excursions P
[<l+1]
l;l

1

�l

Ql(�s)

Ql+1(�s)

12. Transitions in strip (k � l) P
[�m;<h]
k;l �l

Dm�1;k(�s)Dl;h(�s)

Dm�1;h(�s)

13. Transitions in strip (l � k) P
[�m;<h]
k;l �l

Dm�1;l(�s)Dk;h(�s)

Dm�1;h(�s)

Table 3. Laplace transforms of probabilities associated to some major geometric

conditions of a birth-and-death process. The basic continued fraction is eP0;0(s)
in Entry 1, with scaled convergent polynomials P(�s);Q(�s). The abbreviations
used are: �j = �j + �j , �n = �0 � � ��n�1=�1 � � ��n, and Di;j(s) = Qi(s)Pj(s) �
Qj(s)Pi(s):

3.2. Stopping times. Given the closeness between results provided by Propositions 1 and 2, the
very same procedure can be used to derive Laplace transforms of a number of transient character-
istics, including a variety of stopping times de�ned by natural geometric conditions.

As expressed by Proposition 2, �s(H[Q]) is the Laplace transform of the stopping time � as-
sociated with condition Q and set of paths H[Q]. Under the ergodicity condition (C1) of the
Introduction, certain stopping times are de�cient, meaning that their total probability mass is
strictly less than 1, while others, like the probability of returning to the same state, are not. The
de�ciency of a stopping time � associated to a condition Q is measured by �0(H[Q]) (the result of
substituting s = 0 in �s), which represents the probability that � < 1, or equivalently, that Q is
eventually satis�ed. A number of Laplace transforms and of corresponding de�ciency probabilities
then result from a mechanical translation of Table 3.

We �rst establish a few values of characteristic quantities at s = 0. Ergodicity implies that the
process spends a nonzero fraction of its time at state 0; therefore, eP0;0(0) = +1. De�ne next the
scaling function,

�(0) = 0; �(m) :=
n�1X
n=0

1

�n�n
;(3.12)

where the �n have been de�ned in (1.2) and are related to the stationary probabilities in (1.3). It
is easily checked by the de�ning recurrence that, for h � 0,

Ph(0) = �(h); Qh(0) = 1;
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All conditions expressible in terms of the elementary conditions listed in Tables 1 and 3 must
therefore have probabilities expressible in terms of the quantities �; �, usually by way of � and �.

We develop below a representative sample of applications.

Excursion periods: Consider, for a given altitude h � 1, the excursions of the birth and death
process f�tg above the level h� 1. Let �h denotes the time of such an excursion period,

�h = infft > 0 : �t = h� 1 j �0 = hg:

(The particular case �1 is known as the duration of the busy period in the context of queueing

theory.) The corresponding condition is speci�ed by (H
[�h]
h;h bh), which by (3.6) and Entry 3

of Table 3 leads to

e�h(s) = �s(H
[�h]
h;h bh) =

Qh(�s)eP0;0(s) � Ph(�s)

Qh�1(�s)eP0;0�Ph�1(�s)
:(3.13)

In this case, one has �0(H
[�h]
h;h bh) = 1, which is consistent with ergodicity. The result (3.13)

was established by di�erent methods in [21] and is of special interest for dealing with Laplace
transform inversion issues [18, 19].

Hitting times: Consider the Laplace transforms of �rst hitting times of a state l starting from
state k and knowing that the process remains bounded from below or from above. We thus
introduce

�
[�m]
k;l = infft > 0 : �t = l j �0 = k; inf

s2[0;t]
�s � mg

�
[<h]
k;l = infft > 0 : �t = l j �0 = k; sup

s2[0;t]
�s < h; g:

The de�ning conditions are respectively

�
[�m]
k;l :

�
H

[�m;<l]
k;l�1 al�1

�
; �

[<h]
k;l :

�
H

[�l+1;<h]
k;l+1 bl+1

�
:

There result the Laplace transforms,

e� [�m]
k;l (s) =

Dm�1;k(�s)
Dm�1;l(�s)

; e� [<h]k;l (s) =
Dk;h(�s)

Dl;h(�s)
;(3.14)

and the corresponding probabilities of the events f� [�m]
k;l <1g, f� [<h]k;l <1g

e� [�m]
k;l (0) =

[�(k) � �(m � 1)]

[�(l) � �(m � 1)]
; e� [<h]k;l (0) =

[�(h) � �(k)]

[�(h)� �(l)]
:(3.15)

In the particular case when m = 0 and when k � l, the formula (3.14) simpli�es to

e� [�0]k;l (s) =
Qk(�s)

Ql(�s)
;(3.16)

and the random variable is no longer defective as the condition �t � 0 becomes a vacuous
one.

Exit times: Let 1 � m < k < h and denote by "
[�m;<h]
k the exit time from the strip [m +

1; h� 1], starting from state k. We �nd similarly

e"[�m;<h]
k (s) =

Dm;k(�s) �Dh;k(�s)

Dm;h(�s)
:(3.17)

These examples furnish, amongst other things, various probabilistic interpretations of �. For
instance, de�ne Tx = infft > 0 : �t = xg; from previous equations, � is seen to satisfy the relation

PrfTh < Tm j �0 = kg =
�(k) � �(m)

�(h)� �(m)
:
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3.3. Area and level crossings. Proposition 3 opens the possibility of recording the area Ac

above some level c. In queueing theory terms, the case c = 0 measures the cost in total waiting
time of all customers till a condition is met; the case of general c > 0 measures the cost incurred
during heavy tra�c periods. The morphism ��s of (1.15) then applies. For instance, the joint

distribution of (�;Ah) above level h� 1 is obtained as ��s(H
[�h]
h;h bh) and one gets:

Corollary 5. The joint Laplace transform of (�h;Ah) is

(3.18) Gh(s; y) := E
�
e�s�h�yAh

�
=

�h

s+ y + �h + �h �
�h�h+1

s + 2y + �h+1 + �h+1 �
�h+1�h+2

. . .

;

This result generalizes the formula obtained by Preater [35] in the speci�c case when the BDP
under consideration is the occupation process of anM=M=1 queue. Such continued fraction repre-

sentations are variants of the continued fraction expressing eP[�h]h;h and they derive by a substitution
in the denominator of the original continued fractions,

�h + �h 7! �h + �h + (h+ 1� c)+y:

This gives rise to a new collection of modi�ed polynomials P�h(s; y);Q
�
h(s; y) of the \area type"

that are obtained by

�hY
�
h+1(s) + (s � �h � �h � (h+ 1� c)+y)Y�h(s) + �hY

�
h�1(s) = 0;(3.19)

and that can be identi�ed in some important cases; see [19, 20] and Section 5. Formul� entirely
parallel to those derived for the standard probabilistic morphism (Theorems 3, 4 and Table 3) can
then be easily developed.

The morphism �s is susceptible to enrichment in various other ways. For instance, it is possible
to keep track simultaneously of random variables recording the total number of births (Naj ) or
deaths (Nbj ) at level j. Let uj and vj mark respectively Naj and Nb;j. The version of the
probabilistic morphism to be applied is then

E

h
e�s�QuNa0

0 u
Na1

1 v
Nb1

1 � � �
i
= �0s(H[Q]);

where

�0s(aj) =
�juj

s + �j + �j
; �0s(bj) =

�jvj
s+ �j + �j

:

(This rule can be otherwise freely combined with an area enrichment.) Various specializations
are then of interest: for instance, the number of times a transition bk occurs in the course of an
excursion is obtained by setting uj = vj = 1 if j 6= k together with uk = 1, vk = v; ascents are
marked by uj = u and vj = 1, etc. Simple algebra in the style of (2.12) then yields the distribution
of the corresponding number of transitions.

3.4. Discrete-time analogues. Until now, we have refrained from discussing the case of inho-
mogeneous random walks on the integer half-line|the discrete time analogue of birth-and-death
processes. A continued fraction theory exists but it is in a way more \shallow". The expressions
obtained are generating functions (\z-transforms") in a single variable z that records the discrete
time parameter.

Let pj; qj; rj be the probabilities of transitions hj; j � 1i, hj; j + 1i, and hj; ji respectively. The
\walk generating function" W0;0 is de�ned by the fact that its coe�cient [zn]W0;0(z) equals the
probability of returning to 0 from state 0 in n steps. (See Godsil's book [15] for a nice introduction
to walk generating functions.) The connection with the lattice path theory of Section 2 is expressed
by the \random walk morphism",

�z(aj) = pjz; �z(bj) = qjz; �z(cj) = rjz;(3.20)
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which is of the same form as the combinatorial morphism (2.28), safe that the weights are now
arbitrary positive real numbers satisfying pj + qj + rj = 1. Consequently, one has

W0;0(z) =
1

1� r0z �
p0q1z

2

1� r1z �
p1q2z

2

. . .

:(3.21)

The developments of Section 2 apply verbatim once the trivial change of notations (3.20) has been
performed. Basic aspects of this connection between continued fractions and inhomogeneous walks
on the integer half-line seem to have been �rst recognized by I. J. Good in 1958; see [22]. They
have been rediscovered and published many times since then.

4. Analytic properties and orthogonality

We again digress a bit from our main thread in this section: we illustrate brie
y the way the
continued fraction approach may be used as entry point for deriving many orthogonal represen-
tations of the type �rst discovered by Karlin and McGregor. Chapter 12 of Henrici's [23] book
contains a lucid exposition of the convergence theory of algebraic continued fractions while the
paper by Bordes and Roehner [6] presents an insightful discussion of the role of continued fraction
theory in the analysis of birth-and-death processes.

The continued fraction expressing eP0;0(s) in (3.3) is, up to notational details a continued frac-
tion of the Jacobi type, known as a J-fraction. As it has been recognized for a long time, this
continued fraction also admits an \expanded" form obtained via simple equivalence preserving
transformations, namely

eP0;0(s) = 1

s+
�0

1 +
�1

s +
�2

. . .

:(4.1)

The coe�cients in (4.1) being positive, this continued fraction is a Stieltjes fraction (S fraction).
The classical theory developed by Stieltjes then implies, because of the ergodicity condition (C1),
that the odd and even approximants of the fraction in (4.1) each converge to analytic functions in

the complex plane split along (�1; 0). As a consequence, the J-fraction expressing eP0;0(s) in (3.3),
being the even part of the S-fraction of (4.1), itself de�nes an analytic function of s in the split
plane.

We next turn to analytic properties of the P;Q polynomials that are the central �gures in
Karlin and McGregor's thorough treatment [28, 30]. Our presentation here is only meant to point
to alternative integral representations for some of the quantities of interest. The (linear) moment
functional M is known to play an especially important role. It is �rst de�ned formally over the
linear space of polynomials C [x] by

M[xn] =Mn;(4.2)

where the coe�cients Mn, called the moments, are given by the asymptotic expansion at in�nity

eP0;0(s) � 1X
n�0

(�1)n
Mn

sn+1
(s! +1):(4.3)

Furthermore, Stieltjes' theory grants that the moment functional always admits a representation
as a Laplace-Stieltjes integral

M[f ] =

Z 1

0
f(x) d (x);(4.4)
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for some measure  (x) over the positive real line that may a priori have discrete, continuous, or

mixed spectrum. Then, the continued fraction eP0;0(s) is a Stieltjes transform, that is,

eP0;0(s) = Z 1

0

d (x)

x+ s
; s 2 C n (�1; 0);(4.5)

and the moments deserve their name:

Mn =

Z 1

0

xnd (x):

(Under the ergodicity condition (C1), the spectral measure  (x) is the unique solution of the
Stieltjes moment problem and also the unique measure satisfying (4.5).)

A fundamental property is that the polynomials fQh(s)g form an orthogonal polynomial system
(OPS) [23] with respect to the spectral measure  ,Z 1

0

Qi(x)Qj(x)d (x) =
1

�i
�i;j;(4.6)

where �i;j is the Kronecker symbol.
As we now explain, the formul� derived directly from lattice path combinatorics can be used

to recover alternative integral representations including some of Karlin and McGregor's results
in [28, 29]. (Our derivation has perhaps the merit of not being dependent upon general theorems
from spectral analysis.) We consider the transition probability Pk;l(t) = Prf�t = l = �0 = kg
for which the classical result of Karlin and McGegor provides an expression by means of the OPS
fQh(s)g and its associated spectral (Stieltjes) measure  .

Theorem 5 (Karlin and McGegor [28]). The transition probability Pk;l(t), for k; l � 0, is given
by

Pk;l(t) = �l

Z 1

0

e�txQk(x)Ql(x)d (x):(4.7)

Proof (sketch). We brie
y indicate the principles on which the proof is built. Details can be
supplied by mimicking closely the derivations of [23, x12.9] (see especially Theorem 12.9h).

It su�ces to treat the case when k � l. Let [s�m]f(s) denote the coe�cient of s�m in the
expansion of some function f(s) at in�nity. Theorem 4 and Entry 8 of Table 3 provide an expression

for ePk;l(s) that implies

(�1)n[s�n�1]
1

�l
ePk;l(s) = (�1)n[s�n�1]Qk(�s)Ql(�s)eP0;0(s)(4.8)

=

Z 1

0

Qk(x)Ql(x)x
nd (x);(4.9)

where (4.8) takes care of the disappearance of terms with positive powers of s, and (4.9) is a
rephrasing of convolution formul� in terms of orthogonality. Now (4.9) means that

ePk;l(s) = �l

Z 1

0

Ql(x)Qk(x)

s + x
d (x):

A Stieltjes transform is a double Laplace transform, so that Laplace inversion then gives the
statement.

We can �nally obtain a counterpart of Theorem 4 phrased in terms analogous to Karlin and
McGregor's theorem. De�ne the spectral measure  hm(x) that is discrete, �nite, and such that a
Stieltjes transform representation holds,

eP[�m;<h�m]
m;m (s) =

Z 1

0

d hm(x)

s+ x
:(4.10)

The representation can be easily obtained from a partial fraction decomposition of eP[�m;<h�m]
m;m (s)

itself expressible in terms of the P;Q polynomials. Then, by the same arguments as before, one
�nds:
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Process Continued fr. Polynomials  (x) Moments

M=M=1 Quadratic Chebyshev Quadratic (cont.) Catalan #

| Area 0F1 quotient Lommel Bessel (discr.) Bessel #

M=M=1 1F1-hypergeom. Poisson-Charlier Poisson (discr.) Bell-Stirling #

| Area 1F1 quotient mod. Poisson-Ch. | |

Population

| prop. 1F1 quotient Laguerre Exp. (cont.) Factorial #

| non-prop. 2F1 quotient Meixner (discr.) |

| Area | mod. Meixner | |

Table 4. Some classical processes and a broad indication of the types of associ-
ated special functions.

Theorem 6. The transition probability function P
[�m;<h]
k;l (t) is given by

P
[�m;<h]
k;l (t) = �2m�m�l

Z 1

0

e�txDm�1;k(x)Dm�1;l(x)d hm(x):(4.11)

Orthogonality relations prove useful for special processes where the measure  can be made
explicit.

5. Special Processes

With each system of birth-and-death rates f�j ; �jg there are associated a basic continued frac-

tion eP0;0(s), a family of orthogonal polynomials Qk(s), an orthogonality measure  (x), and a
moment sequence Mn. General identities relate these objects; see [4, 23]. \Special" processes are
de�ned by systems of birth-and-death rates f�j; �jg that obey a regular pattern meant to model a
physical phenomenon that has itself some strong form of regularity. Identi�cation of the relevant
class of objects may then often be achieved by table look up: see especially Chihara's book [7] for
classical orthogonal polynomials or Wall's book [36] for continued fractions. A rich set of special
function identities then usually supplements the general identities valid for an arbitrary birth-and-
death process. In this section, we simply make explicit the classes of functions involved for three
major special processes arising from queueing theory and population growth models. See Table 4
for a summary and refer to Table 2 or [10, 11, 12, 13, 14] for the corresponding combinatorial
analogues. The point made here is that continued fractions may adequately serve as an entry to
the analysis of special processes.

5.1. The M=M=1 queue. Consider the single server queue M=M=1 with arrival rate � < 1 and
unit service rate [8, 32] whose parameters are

�k = �; �k = 1:

The fundamental continued fraction is then

eP0;0(s) = 1

�+ s�
�

1 + � + s�
�

1 + � + s�
�

. . .

:

The continued fraction has constant coe�cients re
ecting the uniform structure of the M=M=1

process. From the continued fraction representation, we see that eP0;0(s) = (s+ ��X)�1 where X
is a solution to the equation X = 1=(1+�+ s��X). (The quantity X is in fact e�1(s), the Laplace
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transform of the duration of a busy period of the M=M=1 queue.) Introducing the two conjugate
quantities,

V (s) =
1 + �+ s �

p
(1 + � + s)2 � 4�

2�
(5.1)

V (s) =
1 + �+ s +

p
(1 + � + s)2 � 4�

2�
;(5.2)

we �nd

eP0;0(s) = 1� � � s +
p
(1 + �+ s)2 � 4�

2s
=

V (s)

1� V (s)
:(5.3)

The Qk polynomials satisfy a linear recurrence with constant coe�cients, so that

Qk(�s) =
V (s)k+1 � V (s)k+1

V (s) � V (s)
;

and one has Pk = Qk�1. Up to an a�ne transformation on the argument, these are Chebyshev
polynomials with orthogonality measure

d (x) =
1

2��

p
4� � (x� 1� �)21I[(1�p�)2;(1+p�)2]dx:

Moments Mn are related to the Catalan numbers arising in combinatorial theory.
The area polynomials appear to be modi�ed Lommel polynomials1, an observation that led to

the distributional analysis of area during a busy period [20].

5.2. M=M=1 queue. An in�nite server queueM=M=1 with mean arrival rate u and unit service
rate is de�ned by

�k = u; �k = k:

The fundamental continued fraction is

eP0;0(s) = 1

u+ s�
1u

1 + u+ s�
2u

2 + u+ s �
3u

. . .

:

This is recognizable as a con
uent case of Gauss's continued fraction expansion for the quotient of
two contiguous hypergeometric functions [36]. Thus,

eP0;0(s) = 1

s
�(1; 1 + s;�u);(5.4)

where �(�; 
; z) is the Kummer function (equivalently, a con
uent hypergeometric function 1F1)
de�ned by

�(�; 
; z) =
�(
)

�(�)

+1X
k=0

�(�+ k)

�(
 + k)

zk

k!
;

where � is the Euler function. (A comprehensive treatment of this special function is given in [33,
Chap.9].) The polynomials fQng are identi�ed by their three-term recurrence [7, 9] or by their
generating function that satis�es a solvable di�erential equation. They are the well-known Charlier
polynomials,

Qn(x) =
nX

k=0

�
x

k

�
(�u)n�k

(n� k)!
:(5.5)

1The authors cannot resist inserting a personal note at this point. Our surprise at discovering the concomitant
occurrence of Lommel polynomials in the seemingly unrelated contexts of area under the M=M=1 process [20] and
of the enumeration of non-overlapping set partitions [14] led us to the present work, originally meant to elucidate
the phenomenon.
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The corresponding spectral measure  is the Poisson measure of intensity u on N,

 =
1X
k=0

e�u
uk

k!
�k:

The moments are closely related to Stirling polynomials of the second kind and to Bell numbers
that enumerate set partitions [10].

Due to the very special nature of the process, the area polynomials turn out to reduce to the
Poisson-Charlier polynomials, up to a shift of the argument; see [19] where the corresponding
formul� are worked out in full detail.

5.3. Population growth. Population growth under constant birth-and-death rates but with pos-
sible migration may be modelled by the process

�n = a(n+ c+ �+ 1); �n = n+ c; n � 0; �0 = 0:

The quantity a measures the tendency of the population to grow or decay and the process is said to
be (asymptotically) proportional when a = 1; the quantities c; � measure rates of immigration and
emigration, and the process will be called \chauvinistic" when c = 0. The fundamental continued
fraction is

eP0;0(s) = 1

a(c+ �+ 1) + s�
a(c + �+ 1)(c+ 1)

a(c+ �+ 2) + (c+ 1) + s �
a(c+ �+ 2)(c + 2)

.. .

:

This continued fraction is a quotient of two contiguous 2F1 hypergeometric functions, by virtue of
Gauss's classical expansion [36].

In the simplest case of a chauvinistic and proportional process (c = 0; a = 1), the orthogonal
polynomials Qn(x) are the Laguerre polynomials. For a nonproportional but chauvinistic process
(c = 0, a 6= 1), they are the Meixner polynomials. In the case of a process with c > 0, the
polynomials become associated Laguerre (a = 1) or associated Meixner (a 6= 1) polynomials.
See [25] for a thorough discussion.

In the proportional case a = 1, the continued fraction eP0;0(s) is, for � > �1,

eP0;0(s) = 	(c + 1; 1� �; s)

	(c;��; s)
;(5.6)

where 	(�; 
; z) denotes the Tricomi function [33], again a function of the 1F1 hypergeometric
category. The spectral measure  is given by

d (x) =
x�e�x

�(c+ 1)�(c+ 1 + �)

��	(c;��;xe�i�)���2 dx:(5.7)

In the nonproportional case a 6= 1, one has

eP0;0(s) =
1

s
2F1(c + 1;��� s; 1 + c � s; a)

2F1(c;��� s; 1 + c� s; a)
:(5.8)

where 2F1(�; �; 
; z) denote the usual hypergeometric function. The spectrum of the measure  
becomes discrete and it consists of the zeros of the equation:

�(1� x)

�(�x)�(c+ 1� x)
2F1(c;��� x; 1 + c� x; a) = 0:(5.9)

Loosely speaking, the moments are related to the enumeration of permutations as well as to factorial
and Eulerian numbers.

Due to the leeway allowed by the two parameters of the model, the area polynomials remain in
a class similar to the one of the basic polynomials.
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5.4. Other models. The three classes of processes previously introduced each have birth-and-
death rates �k; �k that are at most linear functions in the level k. The corresponding fractions
are then closely related to Gauss's continued fraction expansion of the quotient of two contiguous
hypergeometric functions [36], with suitable con
uences. Accordingly, the orthogonal polynomials
relate to the Meixner classi�cation of special orthogonal polynomials [7], an interesting parallel
with the combinatorial cases of Section 2.4.

The approach we have exposed clearly applies to �nite populations, that is, processes with only
a �nite number of states, as this is equivalent to imposing a ceiling constraint on an in�nite process.
It also applies to \bimodal" systems, a typical instance of which is the M=M=m queue: the rates
are those of the M=M=1 queue below a certain threshold level m, after which they become of the
M=M=1 type. In such cases, two regimes are visible in the continued fraction representation. Given
the linear fractional transformation and matrix expressions available (see Eq. (2.12) typically),
mixed representations are obtained that involve the two families of polynomials corresponding to
the two regimes.

6. Conclusions

We have developed a formal calculus of basic events described by trajectories of birth-and-
death processes on which geometric conditions are imposed. The corresponding algebra is that
of chains of linear fractional transformations (\Kettenbr�uchen"), itself expressible by �nite and
in�nite products of 2 � 2 matrices. Consequently, all basic events have Laplace transforms that
are expressible rationally in terms of the fundamental continued fraction of the process and of
its associated polynomials. This calculus is of a mechanical nature and it may be used to treat
easily fairly complex transient characteristics of processes. A byproduct is formul� based on
integral representations and orthogonality, in the style of Karlin and McGregor's studies. As an
additional bene�t, the formal approach induces a simple calculus of stopping probabilities and of
inhomogeneous random walks on the line, while being susceptible to a number of extensions to
parameters like area or level crossings easily taken into account by suitable morphisms.
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