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the rationality of generating functions of regular languages; (ii) analytic combinatorics that
is used for deriving asymptotic properties from generating functions; (iii) computer algebra
for determining generating functions explicitly, analysing generating functions and extracting
coe�cients e�ciently. We provide constructions for overlapping or non-overlapping matches
of a regular expression. A companion implementation produces multivariate generating
functions for the statistics under study. A fast computation of Taylor coe�cients of the
generating functions then yields exact values of the moments with typical application to
random texts of size 30,000 while precise symptotic formul� allow predictions in texts of
arbitrarily large sizes. Our implementation was tested by comparing predictions of the
number of occurrences of motifs against the 7 megabytes amino acid database Prodom. We
handled more than 88% of the standard collection of Prosite motifs with our programs.
Such comparisons help detect which motifs are observed in real biological data more or less
frequently than theoretically predicted.
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Statistiques de motifs

R�esum�e : Nous pr�esentons une analyse compl�ete des statistiques du nombre d'occurrences
d'une expression r�eguli�ere dans un texte al�eatoire. Cela couvre les \motifs" fr�equemment
utilis�es en informatique biologique. Notre �etude est fond�ee sur : (i) une approche construc-
tive de r�esultats classiques en informatique th�eorique (automates et langages r�eguliers), en
particulier la rationalit�e des fonctions g�en�eratrices de langages r�eguliers ; (ii) la combinatoire
analytique pour d�eduire des propri�et�es asymptotiques �a partir de fonctions g�en�eratrices ;
(iii) le calcul formel pour calculer les fonctions g�en�eratrices explicitement, pour les analyser
et en extraire des coe�cients e�cacement. Nous fournissons des constructions pour les
occurrences d'expressions r�eguli�eres, que l'on compte ou non les recouvrements. Une im-
plantation produit des fonctions g�en�eratrices multivari�ees pour les statistiques �etudi�ees. Un
calcul rapide de coe�cients de Taylor de ces fonctions g�en�eratrices fournit alors les valeurs
exactes des moments avec des applications typiques �a des textes de longueur 30 000, tandis
que des formules asymptotiques pr�ecises permettent des pr�edictions sur des textes de taille
arbitrairement grande. Notre implantation a �et�e test�ee en comparant les pr�edictions du
nombre d'occurrences de motifs par rapport �a la base de taille 7 m�egaoctets d'acides amin�es
Prodom. Nous avons trait�e plus de 88% de la collection standard de motifs Prosite avec
nos programmes. De telles comparaisons aident �a d�etecter les motifs qui sont observ�es dans
des donn�ees biologiques r�eelles plus ou moins fr�equemment que pr�edit par la th�eorie.

Mots-cl�e : langages r�eguliers, fonctions g�en�eratrices, calcul formel, informatique bio-
logique
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Abstract

We present a complete analysis of the statistics of num-
ber of occurrences of a regular expression pattern in
a random text. This covers \motifs" widely used in
computational biology. Our approach is based on: (i)
a constructive approach to classical results in theoreti-
cal computer science (automata and formal language
theory), in particular, the rationality of generating
functions of regular languages; (ii) analytic combina-
torics that is used for deriving asymptotic properties
from generating functions; (iii) computer algebra for
determining generating functions explicitly, analysing
generating functions and extracting coe�cients e�-
ciently. We provide constructions for overlapping or
non-overlapping matches of a regular expression. A
companion implementation produces multivariate gen-
erating functions for the statistics under study. A fast
computation of Taylor coe�cients of the generating
functions then yields exact values of the moments with
typical application to random texts of size 30,000 while
precise symptotic formul� allow predictions in texts of
arbitrarily large sizes. Our implementation was tested
by comparing predictions of the number of occurrences
of motifs against the 7 megabytes amino acid database
Prodom. We handled more than 88% of the standard
collection of Prosite motifs with our programs. Such
comparisons help detect which motifs are observed in
real biological data more or less frequently than theo-
retically predicted.

1 Introduction
The purpose of molecular biology is to establish rela-
tions between chemical form and function in living or-
ganisms. From an abstract mathematical or computa-
tional standpoint, this gives rise to two di�erent types of
problems: processing problems that, broadly speaking,
belong to the realm of pattern-matching algorithmics,
and probabilistic problems aimed at distinguishing be-
tween what is statistically signi�cant and what is not,
at discerning \signal" from \noise". The present work
belongs to the category of probabilistic studies origi-
nally motivated by molecular biology. As we shall see,
however, the results are of a somewhat wider scope.
Fix a �nite alphabet, and take a large random text

(a sequence of letters from the alphabet), where ran-
domness is de�ned by either a Bernoulli model (letters

are drawn independently) or a Markov model. Here,
a pattern is speci�ed by an unrestricted regular expres-
sion R and occurrences anywhere in a text �le are con-
sidered. (Some controlled dependency on the past is
allowed). The problem is to quantify precisely what
to expect as regards the number of occurrences of pat-
tern R in a random text of size n. We are interested
�rst of all in moments of the distributions|what is the
mean and the variance?|, but also in asymptotic prop-
erties of the distribution|does the distribution have a
simple asymptotic form?|, as well as in computational
aspects|are the characteristics of the distribution ef-
fectively accessible for problems of a \reasonable" size?
We provide positive answers to these three ques-

tions. Namely, for all \non-degenerate" pattern speci-
�cations1 R, we establish the following results:

| The number of occurrences has a mean of the form
� � n + O(1), with a standard deviation that is of
order

p
n; in particular, concentration of distribution

holds.

| The number of occurrences, once normalized by the
mean and standard deviation, obeys in the asymp-
totic limit a Gaussian law.

| The characteristics of the distribution are e�ectively
computable, both exactly and asymptotically, given
basic computer algebra routines. The resulting pro-
cedures are capable of treating fairly large \real-life"
patterns in a reasonable amount of time.

Though initially motivated by computational biology
considerations, these results are recognizably of a gen-
eral nature. They should thus prove to be of use in other
areas, most notably, the analysis of complex string
matching algorithms, large �nite state models of com-
puter science and combinatorics, or natural language
studies. (We do not however pursue these threads here
and stay with the original motivation provided by com-
putational biology.)

The basic mathematical objects around which the pa-
per is built are counting generating functions. In its

1Technically, non-degeneracy is expressed by the \prim-
itivity" condition of Theorem 2. All cases of interest can in
fact be reduced to this case; see the discussion at the end of
Section 4.
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bivariate version, such a generating function encodes
exactly all the information relative to the frequency of
occurrence of a pattern in random texts of all sizes. We
appeal to a combination of classical results from the
theory of regular expressions and languages and from
basic combinatorial analysis (an ingenious marking by
auxiliary variables) in order to determine such generat-
ing functions systematically. Speci�cally, we use a chain
from regular expression patterns to bivariate generat-
ing functions that goes through nondeterministic and
deterministic �nite automata. Not too unexpectedly,
the generating functions turn out to be rational (The-
orem 1), but also computable at a reasonable cost for
most patterns of interest (Section 6). Since coe�cients
of univariate rational GF's are computable in O(logn)
arithmetic operations, this provides the exact statistics
of matches in texts of several thousands positions in
a few seconds, typically. Also, asymptotic analysis of
the coe�cients of rational functions can be performed
e�ciently (Gourdon & Salvy 1996). Regarding multi-
variate asymptotics, a perturbation method from ana-
lytic combinatorics then yields the Gaussian law (The-
orem 2).
In the combinatorial world, the literature on pat-

tern statistics is vast. It originates largely with the
introduction of correlation polynomials by (Guibas &
Odlyzko 1981) in the case of patterns de�ned by one
word. The case of several words was studied by many
authors, including (Guibas & Odlyzko 1981), (Fla-
jolet, Kirschenhofer & Tichy 1988), and (Bender &
Kochman 1993). Finite sets of words in Bernoulli or
Markov texts are further considered by (R�egnier 1998;
R�egnier & Szpankowski 1998). As a result of these
works, the number of occurrences of any �nite set
of patterns in a random Bernoulli or Markov text is
known to be asymptotically normal; see also the re-
view in (Waterman 1995, Chap. 12). Several other
works are motivated by computational biology consider-
ations. For instance, the paper (Pevzner, Borodovski &
Mironov 1989) handles a pattern allowing �xed length
gaps of don't care symbols and determines the sta-
tistics of number of occurrences of these words in a
random text; (Schbath, Prum & de Turckheim 1995;
Prum, Rodolphe & de Turckheim 1995; Reinert &
Schbath 1998) study by probabilistic methods words
with unexpected frequencies and multiplewords in texts
generated by a Markov chain. (Sewell & Durbin 1995)
compute algorithmically bounds on the probability of
a match in random strings of length 1000. (Atteson
1998) evaluates numerically the probability of a match
when the text is generated by a Markov chain for texts
of size 2000. Our distributional results that deal with
arbitrary regular expression patterns, including in�nite
word sets, thus extend the works of these authors.
The e�ective character of our results is con�rmed by

a complete implementation based on symbolic compu-
tation, the Maple system in our case. Our implementa-
tion has been tested against real-life data provided by a
collection of patterns, the frequently used Prosite col-

lection2 (Bairoch, Bucher & Hofman 1997), and a data-
base of sequences, the Prodom database3 that consti-
tutes the text. We apply our results for computing the
statistics of matches and compare with what is observed
in the Prodom database. In its most basic version,
string-matching considers one or a few strings that are
searched for in the text. Motifs appear in molecular bi-
ology as signatures for families of similar sequences and
they characterize structural functionalities of sequences
derived from a common ancestor. For instance, a typi-
cal motif of Prosite is

[LIVM](2)-x-D-D-x(2,4)-D-x(4)-R-R-[GH],
where the capital letters represent amino acids, `x'
stands for any letter, brackets denote a choice and
parentheses a repetition. Thus x(2,4) means two to
four consecutive arbitrary amino acids, while [LIVM](2)
means two consecutive elements of the set fL,I,V,Mg.
Put otherwise, a motif is a regular expression of a re-
stricted form that may be expanded, in principle at
least, into a �nite set of words. Our analysis that ad-
dresses general regular expression patterns, including
a wide class of in�nite sets of words, encompasses the
class of all motives.
On the practical side, it is worthwhile to remark that

the automaton description for a motif tends to be much
more compact than what would result from the expan-
sion of the language described by the motif, allowing for
an exponential reduction of size in many cases. For in-
stance, for motif PS00844 from Prosite our program
builds an automaton which has 946 states while the
number of words of the �nite language generated by
the motif is about 2�1026. In addition, regular expres-
sions are able to capture long range dependencies, so
that their domain of application goes far beyond that
of standard motifs.

Contributions of the paper. This work started when
we realized that computational biology was commonly
restricting attention to what seemed to be an unneces-
sarily constrained class of patterns. Furthermore, even
on this restricted class, the existing literature often had
to rely on approximate probabilistic models. This led to
the present work that demonstrates, both theoretically
and practically, that a more general framework is fully
workable. On the theory side, we view Theorem 2 as
our main result, since it appears to generalize virtually
everything that is known regarding probabilities of pat-
tern occurrences. On the practical side, the feasability
of a complete chain based on algorithms, some old and
some new, and on the principles of Section 3 is demon-
strated in Section 6. The fact that we can handle in an
exact way close to 90% of the motifs of a standard col-

2At the moment, Prosite comprises some 1,200 di�erent
patterns, called \motifs", that are regular expressions of a
restricted form and varying structural complexity.

3Prodom is a compilation of \homologous" domains of
proteins in Swiss-Prot, and we use it as a sequence of
length 6,700,000 over the alphabet of amino acids that has
cardinality 20.
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lection that is of common use in biological applications
probably constitutes the most striking contribution of
the paper.

2 Main statements
We consider the number of occurrences of a pattern
(represented by a regular expression) in a text under
two di�erent situations: in the overlapping case, all the
positions in the text where a match with the regular
expression can occur are counted (once); in the non-
overlapping case, the text is scanned from left to right,
and every time a match is found, the count is incre-
mented and the search starts afresh at this position.
These cases give rise to two di�erent statistics for the
number Xn of matches in a random text of size n, and
we handle both of them. Without loss of generality, we
assume throughout that R does not contain the empty
word ".
In each context, the method we describe gives an al-

gorithm for computing the bivariate probability gener-
ating function

P (z; u) =
X
n;k�0

pn;ku
kzn; (1)

where pn;k = PrfXn = kg. This generating function
specializes in various ways:

| P (z; 0) is the probability generating function of texts
that don't match against the motif, while

R(z) = 1=(1� z)� P (z; 0)

is the probability generating function of texts with at
least one occurrence. More generally, the coe�cient
[uk]P (z; u) is the generating function of texts with
k occurrences.

| Partial derivatives

M1(z) =
@F

@u
(z; 1) and M2(z) =

@

@u
u
@F

@u
(z; u)

����
u=1

;

are generating functions of the �rst and second mo-
ments of the number of occurrences in a random text
of length n.

Our �rst result characterizes these generating functions
as e�ectively computable rational functions.

Theorem 1. Let R be a regular expression, Xn the
number of occurrences of R in a random text of size n,
and pn;k = PrfXn = kg the corresponding probability
distribution.
Then, in the overlapping or in the non-overlapping

case, and under either the Bernoulli model or the
Markov model, the generating functions

P (z; u); R(z); M1(z); M2(z);

corresponding to probabilities of number of occurrences,
existence of a match, and �rst and second moment of
number of occurrences, are rational and can be com-
puted explicitly.

Our second result provides the corresponding asymp-
totics. Its statement relies on the fundamental matrix
T (u) de�ned in Section 4, as well as the notion of prim-
itivity, a technical but nonrestrictive condition, that is
de�ned there.

Theorem 2. Under the conditions of Theorem 1, as-
sume that the \fundamental matrix" T (1) de�ned by (8)
is primitive. Then, the mean and variance of Xn grow
linearly,

�
E(Xn) = �n+ c1 + O(An);

Var(Xn) = �2n+ c2 + O(An);

where � 6= 0, � 6= 0, c1, c2 are computable constants.
The normalized variable, (Xn � �n)=(�

p
n), con-

verges with speed O(1=
p
n) to a Gaussian law:

Pr

�
Xn � �n

�
p
n

� x

�
! 1p

2�

Z x

�1

e�t
2=2 dt:

A local limit and large deviation bounds also hold.

The constants that appear in the statement are re-
lated to spectral properties of a transition matrix T (u),
in particular to its dominant eigenvalue �(u). Their
form is given in Eqs. (5) and (11).

3 Algorithmic Chain

In order to compute the probability generating func-
tion of the number of occurrences of a regular expres-
sion, we use classical constructions on non-deterministic
and deterministic �nite automata. For completeness,
we state all the algorithms, old and new, leading to the
probability generating functions of Theorem 1. Ref-
erences for this section are (Kozen 1997; Kelley 1995;
Hopcroft & Ullman 1979; Rayward-Smith 1983) among
numerous textbooks describing regular languages and
automata.

3.1 Regular Languages

We consider a �nite alphabet � = f`1; : : : ; `rg. A word
over � is a �nite sequence of letters, that is, elements of
�. A language over � is a set of words. The productA =
A1 �A2 of two languages A1 and A2 is A = fw1w2; w1 2
A1; w2 2 A2g, where w1w2 is the concatenation of words
w1 and w2. Let An be the set of products of n words
belonging to A, then the star closure A? of a language
A is the in�nite union A? = [n�0An. The language �?

is thus the collection of all possible words over �.
Regular languages over � are de�ned inductively.

Such a language is either the empty word, or it reduces
to a single letter, or it is obtained by union, product or
star closure of simpler regular languages. The formula
expressing a regular language in terms of these opera-
tions and letters is called a regular expression. As no-
tational convenience, ` denotes the singleton language
f`g, + represents a union, and � is freely omitted. The
order of precedence for the operators is ?; �;+.

3



3.2 Nondeterministic Finite Automata

A Nondeterministic Finite Automaton (or NFA) is for-
mally speci�ed by �ve elements. (1) An input alphabet
�; (2) A �nite collection of states Q; (3) A start state
s 2 �; (4) A collection of �nal states F � Q; (5) A (pos-
sibly partial) transition function � from Q � � to SQ
the set of subsets of Q. There exists a transition from
state qi to state qj if there is a letter ` 2 � such that
qj 2 �(qi; `). A word w = w1w2 � � �wn 2 �? is accepted
or recognized by an NFA A = (�; Q; s; F; �) if there ex-
ists a sequence of states qi0 ; qi1; qi2; : : : ; qin such that
qi0 = s, qij 2 �(qij�1 ; wj) and qin 2 F .
Kleene's theorem states that a language is regular

if and only if it is recognized by an NFA. Several algo-
rithms are known to construct such an NFA. We present
below an algorithm due to (Berry & Sethi 1986) as im-
proved by (Br�uggemann-Klein 1993) that constructs an
NFA called the Glushkov automaton.

Algorithm 1 (Berry & Sethi).
Input: a regular expression R over an alphabet �.
Output: an NFA recognizing the corresponding lan-
guage.

1. Give increasing indices to the occurrences of each
letter of � occurring in R. Let �0 be the alphabet
consisting of these indexed letters.

2. For each letter ` 2 �0, construct the subset follow(`)
of �0 of letters that can follow ` in a word recognized
by R.

3. Compute the sets �rst(R) and last(R) of letters of �0

that can occur at the beginning and at the end of a
word recognized by R.

4. The automaton has for states the elements of �0

plus a start state. The transitions are obtained using
follow and erasing the indices. The �nal states are
the elements of last(R).

Steps 2 and 3 are performed by computing induc-
tively four functions \�rst", \last", \follow" and \nul-
lable". Given a regular expression r over �0, �rst re-
turns the set of letters that can occur at the beginning
of a match; last returns those that can occur at the
end of a match; nullable returns true if r recognizes the
empty word and false otherwise; for each ` 2 �0 that
occurs in r, follow returns the set of letters that can
follow ` in a word recognized by r. The computation is
a simple induction as follows:

nullable(r) If r = " or r = a?, return true; if r is a
letter, return false; if r = a + b, return (nullable(a)
or nullable(b)); if r = ab return (nullable(a) and
nullable(b)).

�rst(r) If r is a letter, the result is the single-
ton consisting of this letter; if r = a + b, return
�rst(a) + �rst(b); if r = ab return �rst(a) if a is not
nullable and �rst(a) + �rst(b) otherwise; if r = a?,
return �rst(a).

last(r) is similar.

follow(r,x) If r = ` return ;; if r = a + b then
because of the indexing, ` occurs in only one of a
and b and the result is that of follow on this reg-
ular expression; if r = ab and ` occurs in b then
return follow(b; x), otherwise return follow(a; x) if x
does not belong to last(a) and follow(a; x) + �rst(b)
otherwise; if r = a?, then if ` 2 last(a), return
�rst(a) + follow(a; x), otherwise return follow(a; x).

As observed by (Br�uggemann-Klein 1993), an ap-
propriate data-structure for unions yields a quadratic
complexity for the algorithm, provided the union in the
computation of follow(a?; x) is disjoint. (This is guar-
anteed if the regular expression is in star-normal form, a
property we do not de�ne but which is directly satis�ed
in our biological applications. There is anyway a linear
complexity algorithm for converting a regular expres-
sion into a star-normal form, see (Br�uggemann-Klein
1993).)

3.3 Deterministic Finite Automata

Deterministic �nite automata (or DFAs) are special
cases of NFAs where the images of the transition func-
tion are singletons. By a classical theorem of Rabin
& Scott, NFAs are equivalent to DFAs in the sense
that they recognize the same class of languages. This
is made e�ective by the powerset construction.

Algorithm 2 (Rabin & Scott).
Input: an NFA A = (�; Q; s; F; �).
Output: a DFA recognizing the same language.

1. De�ne a transition function � : SQ � �! SQ by:

8V 2 SQ; 8` 2 �; �(V; `) =
[
q2V

�(q; `):

2. De�ne QF as the set of subsets of Q that contain at
least one element of F .

3. Return the automaton (�;SQ; fsg;QF ;�).

One needs only consider in the DFA the states reach-
able from the start state fsg. The number of states
of the DFA constructed in this way is not necessarily
minimal. In the worst case, the construction is of expo-
nential complexity in the number of states of the NFA.
For applications to motifs however, this construction is
done in reasonable time in most cases (see Section 6).

3.4 Generating Functions

Let A be a language over �. The generating function of
the language is obtained by summing formally all the
words of A and collecting the resulting monomials with
the letters being allowed to commute. The generating
function of the language A is then de�ned as the formal
sum

A(`1; : : : ; `r) =
X
w2A

com(w);

with com(w) = w1w2 � � �wn the monomial associated
to w = w1w2 � � �wn 2 A. We use the classical nota-
tion [` i11 � � �` irr ]A to denote the coe�cient of ` i11 � � �` irr
in the generating function A.
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The generating function of a regular language is ra-
tional (Chomsky & Sch�utzenberger 1963). This results
from the following construction.

Algorithm 3 (Chomsky & Sch�utzenberger).
Input: A regular expression.
Output: Its generating function.

1. Construct the DFA recognizing the language. For
each state q, let Lq be the language of words recog-
nized by the automaton with q as start state. These
languages are connected by linear relations,

Lq = ("+)
[
`2�

`L�(q;`);

where " is present when q is a �nal state. The au-
tomaton being deterministic, the unions in this sys-
tem are disjoint.

2. Translate this system into a system of equations for
the associated generating functions:

Lq = (1+)
X
`2�

`L�(q;`):

3. Solve the system and get the generating func-
tion F = Ls, where s is the start state.

The resulting generating is rational, as it is pro-
duced as a solution of a linear system. Naturally, the
algorithm specializes in various ways when numerical
weights (probabilities) are assigned to letters of the al-
phabet.

3.5 Regular Expression Matches

We �rst consider the Bernoulli model. The letters of
the text are drawn independently at random, each let-
ter `i of the alphabet having a �xed probability pi,
and

P
pi = 1. The uniform case is the special case

when pi = 1=j�j, for i = 1; : : : ; j�j. The basis of the
proof of theorem 1 is the following construction.

Algorithm 4 (Marked automaton).
Input: A regular expression R over the alphabet �.
Output: A DFA recognizing the (regular) language of
words over � [ fmg where each match of the regular
expression R is followed by the letter m 62 �, which
occurs only there.

1. Construct a DFA A = (Q; s; F;�; �) recognizing
�?R.

2. Initialize the resulting automaton: set

A0 = (Q0; s;Q;�+m; �0)

with initial values �0 = � and Q0 = Q.

3. Mark the matches of R: for all q 2 Q and all ` 2 �
such that �(q; `) = f 2 F , create a new state q` in Q

0,
set �0(q; `) := q` and �0(q`;m) := f .

4. Restart after match (non-overlap case only): for
all f 2 F , and all ` 2 � set �0(f; `) := �(s; `).

5. Return A0.

We note that the automaton constructed in this way
is deterministic since all the transitions that have been
added are either copies of transitions in A, or start from
a new state, or were missing.
This automaton recognizes the desired language. In-

deed, the words of �?R are all the words of �? end-
ing with a match of R. Thus the �nal states of A are
reached only at the end of a match of R. Conversely,
since no letter is read in advance, every time a match
of R has just been read by A, the state which has been
reached is a �nal state. Thus inserting a non-�nal state
and a marked transition \before" each �nal state corre-
sponds to reading words with the mark m at each posi-
tion where a match of R ends. Then by making all the
states �nal except those intermediate ones, we allow the
words to end without it being the end of a match of R.
In the non-overlapping case, the automaton is modi-
�ed in step 4 to start afresh after each match. (This
construction can produce states that are not reachable.
While this does not a�ect the correctness of the rest of
the computation, suppressing these states saves time.)
The proof of Theorem 1 is concluded by the following

algorithm in the Bernoulli model.

Algorithm 5 (Number of matches|Bernoulli).
Input: A regular expression R over an alphabet � and
the probabilities pi of occurrence of each letter `i 2 �.
Output: The bivariate generating function for the num-
ber of occurrences of R in a random text according to
the Bernoulli model.

1. Construct the marked automaton for R.

2. Return the generating function F (p1z; : : : ; prz; u)
of the corresponding language, as given by the
Chomsky-Sch�utzenberger Algorithm.

The proof of Theorem 1 in the Markov model follows
along similar lines. It is based on an automaton that
keeps track of the letter most recently read.

Algorithm 6 (Markov automaton).
Input: A DFA A over an alphabet �.
Output: A DFA over the alphabet (`0+�)2, where `0 62
�. For each word w1 � � �wn recognized by A, this DFA
recognizes the word (`0; w1)(w1; w2) � � � (wn�1; wn).

1. Duplicate the states of A until there are only input
transitions with the same letter for each state. Let
(Q; s; F;�; �) be the resulting automaton.

2. De�ne a transition function � : Q� (`0 + �)2 ! Q
by �(�(q; `); (`; `0)) = �(�(q; `); `0) for all q 2 Q nfsg,
and `; `0 2 �; and �(�(s; `); (`0; `)) = �(s; `) for all
` 2 �.

3. Return (Q; s; F; (`0 +�)2;�).

This construction then gives access to the bivariate
generating function.

Algorithm 7 (Number of matches|Markov).
Input: A regular expression R over an alphabet �, the
probabilities qij of transition from letter `i to `j and
the probabilities q0j of starting with letter `j for all
`i; `j 2 �.
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Output: The bivariate generating function for the num-
ber of occurrences of R in a random text according to
the Markov model.

1. Apply the algorithm \Marked automaton" with
\Markov automaton" as an extra step between steps
1 and 2.

2. Return the generating function

F (q01z; : : : ; qrrz; u)

of the corresponding language.

This concludes the description of the algorithmic
chain, hence the proof of Theorem 1, as regards the bi-
variate generating function P (z; u) at least. The other
generating functions then derive from P in a simple
manner. 2

4 Limiting Distribution
In this section, we establish the limiting behaviour of
the probability distribution of the number of occur-
rences of a regular expression R in a random text of
length n and prove that it is asymptotically Gaussian,
thereby establishing Theorem 2. Although this fact
could be alternatively deduced from limit theorems for
Markov chains, the approach we adopt has the advan-
tage of �tting nicely with the computational approach
of the present paper. In this extended abstract, only a
sketch of the proof is provided.

Streamlined proof. The strategy of proof is based
on a general technique of singularity perturbation, as
explained in (Flajolet & Sedgewick 1997) to which we
refer for details. This technique relies on an analysis of
the bivariate generating function

P (z; u) =
X
n;k�0

pn;ku
kzn;

where pn;k is the probability that R has k matches in
a random text of length n. The analysis reduces to
establishing that in a �xed neighbourhood of u = 1,
P (z; u) behaves as

c(u)

1� z�(u)
+ g(z; u); (2)

with c(1) 6= 0, c(u) and �(u) analytic in the neigh-
bourhood of u = 1 and g(z; u) analytic in jzj > � for
some � > 1=�(1) independent of u. Indeed, if this is
granted, there follows

[zn]P (z; u) = c(u)�(u)n(1 + O(An)); (3)

for some A < 1. The last equation says that Xn has
a generating function that closely resembles a large
power of a �xed function, that is, the probability gen-
erating function of a sum of independent random vari-
ables. Thus, we are close to a case of application
of the central limit theorem and of Levy's continuity
theorem for characteristic functions (Billingsley 1986).
This part of our treatment is in line with the pio-
neering works of (Bender 1973; Bender, Richmond &

Williamson 1983) concerning limit distributions in com-
binatorics. Technically, under the \variability condi-
tion", namely

�00(1) + �0(1)� �0(1)2 6= 0; (4)

we may conveniently appeal to the quasi-powers theo-
rem of (Hwang 1994) that condenses the consequences
drawn from analyticity and the Berry-Esseen inequali-
ties. This implies convergence to the Gaussian law with
speed O(1=

p
n), the expectation and the variance being

E(Xn) = n�0(1) + c1 + O(An); (5)

Var(Xn) = n(�00(1) + �0(1) � �0(1)2) + c2 + O(An);

c1 = c0(1); c2 = c00(1) + c0(1) � c0(1)2:

Linear structure. We now turn to the analysis lead-
ing to (2). Let A be the automaton recognizing �?R
and let m be its number of states. In accordance with
the developments of Section 3, the matrix equation for
the generating functions can be written

L = zT0L+ �; (6)

where � is a vector whose ith entry is 1 if state i is �nal
and zero otherwise. The matrix T0 is a stochastic ma-
trix (i.e., the entries in each of its lines add up to 1).
The entry ti;j in T0 for i; j 2 f1; : : : ;mg, is the proba-
bility of reaching state j from state i of the automaton
in one step. In the overlapping case, the construction
of Section 3 produces a system equivalent to

L = zT0 diag(�i)L+ 1; �i 2 f1; ug; (7)

where 1 is a vector of ones since all the states of the
new automaton are �nal, and �i = u when state i of A
is �nal, and 1 otherwise. In the non-overlapping case,
the system has the same shape; the transitions from
the �nal states are the same as the transitions from
the start state, which is obtained by replacing the rows
corresponding to the �nal state by that corresponding
to the start state.
Thus, up to a renumbering of states, the generating

function P (z; u) is obtained as the �rst component of
the vector L in the vector equation

L = zT (u)L+ 1; (8)

with T (u) = T0 diag(1; : : : ; 1; u; : : : ; u), the number
of u's being the number of �nal states of A. Equa-
tion (8) implies

P (z; u) = (1; 0; : : :; 0)L =
B(z; u)

det(I � zT (u))
; (9)

for some polynomialB(z; u), where I denotes the m�m
identity matrix. The matrix T (u) is called the funda-
mental matrix of the pattern R.

Perron-Frobenius properties. One can resort to re-
sults on matrices with nonnegative entries (Gantmacher
1959; Prasolov 1994) to obtain precise information on
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the location of the eigenvalue of T (u) of largest modu-
lus. Such eigenvalues determine dominant asymptotic
behaviours and in particular they condition (2).
The Perron-Frobenius theorem states that if the ma-

trix T (u) (u > 0) is irreducible and additionally prim-
itive, then it has a unique eigenvalue �(u) of largest
modulus, which is real positive. (For an m�m{matrix
A, irreducibility mean that (I + A)m � 0 and primi-
tivity means Ae � 0, for some e, where X � 0 i� all
the entries of X are positive.) In the context of au-
tomata, irreducibility means that from any state, any
other state can be reached (possibly in several steps);
primitivity means that there is a large enough e such
that for any pair (i; j) of states, the probability of reach-
ing j from i in exactly e steps is positive. (Clearly, prim-
itivity implies irreducibility.) In the irreducible case, if
the matrix is not primitive, then there is a periodicity
phenomenon and an integer k � m such that T (u)k

is \primitive by blocks". Irreducibility and primitivity
are easily tested algorithmically.

Gaussian distribution. Consider the characteristic
polynomial of the fundamental matrix,

Q(�) � Q(�; u) = det(�I � T (u));

where T (u) is assumed to be primitive. By the Perron-
Frobenius theorem, for each u > 0, there exists a unique
root �(u) of Q(�) of maximal modulus that is a posi-
tive real number. The polynomialQ has roots that are
algebraic in u and therefore continuous. Uniqueness of
the largest eigenvalue of T (u) then implies that �(u)
is continuous and is actually an algebraic function of u
for u > 0. Thus there exists a � > 0 and �1 > �2 two real
numbers such that for u in a neighbourhood (1��; 1+�)
of 1, �(u) > �1 > �2 > j�(u)j, for any other eigen-
value �(u).
The preceding discussion shows that in the neigh-

bourhood u 2 (1� �; 1 + �), (9) implies

P (z; u) =
B(��1(u); u)

�1�m(u)Q0(�(u))(1 � z�(u))
+ g(z; u);

where g is analytic in z with radius of convergence at
least 1=�2. This proves (2). Then, the residue theorem
applied to the integral

In(u) =
1

2i�

I



P (z; u)
dz

zn+1
;

where 
 is a circle around the origin of radius � =
2=(�1 + �2), yields (3).
Condition (4) is now derived by adapting an ar-

gument of (Vall�ee 1998) relative to analytic dynamic
sources in information theory, which reduces in our case
to using the Cauchy-Schwartz inequality. For the L1
matrix norm, kT (u)nk is a polynomial in u with non-
negative coe�cients. It follows that

kTn(uv)k � kTn(u2)k1=2kTn(v2)k1=2:
Since for any matrixT , the modulus of the largest eigen-
value of T is limn!1 kTnk1=n, we get

�(uv) � �(u2)1=2�(v2)1=2; 8u; v > 0:

This inequality reads as a concavity property for �(t) :=
log�(et):

�

�
x+ y

2

�
� �(x) + �(y)

2
; (10)

for any real x and y. If the inequality in (10) is strict
in a neighbourhood of 0, then �00 < 0. (The case
where �00(0) = 0 is discarded since �(u) is nondecreas-
ing.) Otherwise, if there exist x < 0 and y > 0 such
that the equality holds in relation (10), then neces-
sarily equality also holds in the interval (x; y) and �
is actually a�ne in this interval. This in turn im-
plies �(u) = aub for some real a and b and u in an
interval containing 1, and therefore equality holds for
all u > 0 from the Perron-Frobenius theorem as already
discussed. Since �(1) = 1, necessarily a = 1. From the
asymptotic behaviour (3) follows that b � 1. Now �
being a root of Q(�), if �(u) = ub with b < 1, then b

is a rational number p=q and the conjugates e2ik�=q�,
k = 1; : : : ; q � 1 are also solutions of Q(�), which con-
tradicts the Perron-Frobenius theorem. Thus the only
possibility for b is 1. Now, u is an eigenvalue of uT (1)
and another property of nonnegative matrices (Prasolov
1994, Th. 37.2.2) shows that the only way u can be an
eigenvalue of T (u) is when T (u) = uT (1), which can
happen only when all the states of the automaton are
�nal, i.e., �?R = �?, or, equivalently " 2 R. This
concludes the proof of Theorem 2 in the Bernoulli case.

Markov model. The Markov case requires the tensor
product construction of Section 3. This gives rise again
to a linear system that is amenable to singularity per-
turbation. The condition of primitivity is again essen-
tial but it is for instance satis�ed as soon as both the
Markov model and the pattern automaton are primi-
tive. (Details omitted in this abstract.) This discussion
concludes the proof of Theorem 2. 2

We observe that the quantities given in the statement
are easily computable. In e�ect, from the characteristic
polynomial Q of T (u), the quantities involved in the
expectation and variance of the statement of Theorem 2
are

�0(1) = �
@Q
@u
@Q
@�

�����
z=�=1

(11)

�00(1) = �
@2Q
@u2 + 2�0(1) @

2Q
@u@� + �0(1)2 @

2Q
@�2

@Q
@�

�����
z=�=1

:

We end this section with a brief discussion showing
how the \degenerate" cases in which T (1) is not prim-
itive are still reducible to the case when Theorem 2
applies.

Irreducibility. The �rst property we have used is the
irreducibility of T (1). It means that from any state of
the automaton, any other state can be reached. In the
non-overlapping case, this property is true except pos-
sibly for the start state, since after a �nal state each of
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the states following the start state can be reached. In
the overlapping case, the property is not true in gen-
eral, but since the generating function P (z; u) does not
depend on the choice of automaton recognizing �?R,
we can assume that the automaton is minimal (has the
minimumnumber of states), and then the property be-
comes true after a �nite number of steps by an argument
we omit in this abstract. Thus in both cases, T (u) is ei-

ther irreducible or decomposes as
�
P L
0 A(u)

�
where A(u)

is irreducible and it can be checked that the largest
eigenvalue arises from the A-block for u near 1. It is
thus su�cient to consider the irreducible case.

Primitivity. When T (u) is not primitive, there is an
integer k � m such that T k(u) is primitive. Thus our

theorem applies to each of the variables X
(i)
n counting

the number of matches of the regular expression R in a
text of length kn+ i for i = 0; : : : ; k�1. Then, the the-
orem still holds once n is restricted to any congruence
class modulo k.

5 Processing Generating Functions
Once a bivariate generating function of probabilities has
been obtained explicitly, several operations can be per-
formed e�ciently to retrieve information.
First, di�erentiating with respect to u and set-

ting u = 1 yields univariate generating functions for
the moments of the distribution as explained in Sec-
tion 2. By construction, these generating functions are
also rational.

5.1 Fast coe�cient extraction

The following is classical and can be found in (Knuth
1981).

Algorithm 8 (Coe�cient extraction).
Input: a rational function f(z) = P (z)=Q(z) and an
integer n.
Output: un = [zn]f(z) computed in O(logn) arith-
metic operations.

1. Extract the coe�cient of zn in Q(z)f(z) = P (z),
which yields a linear recurrence with constant coef-
�cients for the sequence un. The order m of this
recurrence is the degree of Q.

2. Rewrite this recurrence as a linear recurrence of or-
der 1 relating the vector Un = (un; : : : ; un�m+1) to
Un�1 by Un = AUn�1 where A is a constant m �m
matrix.

3. Use binary powering to compute the power of A in
Un = An�mUm.

This operation is implemented in the Maple package
gfun (Salvy & Zimmermann 1994).
As an example, Fig. 1 displays the probability that

the pattern ACAGAC occurs exactly twice in a text
over the alphabet fA,C,G,Tg against the length n of the
text. The probabilities assigned to each of the letters
are taken from a viral DNA (�X174). The shape of the
curve is typical of that expected in the non-asymptotic
regime.

0

0.05

0.1

0.15

0.2

0.25

2000 6000 10000 14000 18000

Figure 1: Probability of two occurrences of ACAGAC
in a text of length up to 20,000

5.2 Asymptotics

Asymptotics of the coe�cients of a rational function
can be obtained directly. Since the recurrence satis�ed
by the coe�cients is linear with constant coe�cients,
a solution can be found in the form of an exponential
polynomial:

un = p1(n)�
n
1 + � � �+ pk(n)�

n
k ; (12)

where the �i's are roots of the polynomial zmQ(1=z)
and the pi's are polynomials. An asymptotic expression
follows from sorting the �i's by decreasing modulus.
When the degree ofQ is large, it is possible to avoid part
of the computation, this is described in (Gourdon &
Salvy 1996). The idea is to isolate only those elements
of the partial fraction decomposition which involve the
largest �i's.
Equation (12) explains the important numerical in-

stability of the computation when the largest eigen-
value of the matrix (corresponding to the largest �)
is 1, which Theorem 2 shows to be the case in applica-
tions: if the probabilities of the transitions do not add
up exactly to 1, this error is magni�ed exponentially
when computing moments for large values of n. This is
another motivation for using computer algebra in such
applications, and, indeed, numerical stability problems
problems are encountered by colleagues working with
conventional programming languages.
The solution of linear systems is the bottleneck of our

algorithmic chain. In the special case when one is inter-
ested only in expectation and variance of the number of
occurrences of a pattern, it is possible to save time by
computing only the local behaviour of the generating
function. The bivariate system (I � zT (u))L + 1 = 0
from (8) is satis�ed when u = 1 by S(1; z) = 1=(1� z).
Letting A = 1 � zT (u) and di�erentiating the system
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yields a new system for the generating functions of the
expectations:

A(1; z)
@S

@u
(1; z) +

@A

@u
(1; z)S(1; z) = 0: (13)

The matrix A being of degree 1 in z, one has A(1; z) =
A0 + A1(1 � z) and @A

@u (1; z)1 = C0 � C0(1 � z). The

unknown vector @S
@u (1; z) can be expanded locally as

X0(1� z)�2+X1(1� z)�1+X2+O(1� z). Extracting
coe�cients of powers of (1� z) in (13) yields

A0X0 = 0; A0X1 + A1X0 + C0 = 0;

A0X2 + A1X1 �C0 = 0:

The �rst equation is solved by X0 = �1 for some con-
stant �. Solving the second one for � and the vector X1

yields � and X1 up to a constant multiple of X0. The
constant is obtained by solving the third equation. The
same process applies to the generating function of sec-
ond moments after di�erentiating (8) twice with respect
to u, using for unknown the truncated expansion

@2S

@u2
(1; z) =

Y0
(1� z)3

+
Y1

(1� z)2
+

Y2
1� z

+O(1):

We give only the algorithm for the expectation, the
variance is similar.

Algorithm 9 (Asymptotic Expectation).
Input: the bivariate system (I � zT (u))L + 1 = 0
from (8).
Output: �rst two terms of the asymptotic behaviour
of the expectation of the number of occurrences of the
corresponding regular expression.

1. Let A1 = T (1), A0 = I � T (1), C0 = �@T
@u (1).

2. Solve the system A0X1 + �1 = �C0. This yields a
value for � and a line ~X1 + �1 for X1.

3. Solve the system A0X2 + �1 = C0 � A1
~X1 for �.

The expectation is asymptotically

E = �n+ �� x+ O(An)

for some A < 1 and x the coordinate of X1 corre-
sponding to the start state of the automaton.

Algorithm 9 reduces the computation of asymptotic
expectation to the solution of a few linear systems with
constant entries instead of one linear system with poly-
nomial entries. This leads to a signi�cant speed-up of
the computation. Moreover, with due care, the systems
could be solved using 
oating-point arithmetic. (This
last improvement will be tested in the future; the cur-
rent implementation relies on safe rational arithmetics.)
As can be seen from (12) a nice feature of the expan-

sion of the expectation to two terms is that the remain-
der is exponentially small.

6 Implementation
The theory underlying the present paper has been

implemented principally as a collection of routines
in the Maple computer algebra system. Currently,

only the Bernoulli model and the non-overlapping case
have been implemented. The implementation is based
mainly on the package combstruct (developed at Inria
and a component of the Maple V.5 standard distrib-
ution) devoted to general manipulations of combina-
torial speci�cations and generating functions. Use is
also made of the companion Maple library gfun which
provides various procedures for dealing with generating
functions and recurrences. About 1100 lines of dedi-
cated Maple routines have been developed by one of
us (P. N.) on top of combstruct and gfun, including
a new Maple function named regexp which e�ects the
conversion of regular expressions describing motifs into
deterministic �nite automata4.
This raw analysis chain does not include optimiza-

tions and it has been assembled with the sole purpose
of testing the methodology we propose. It has been
tested on a collection of 1118 patterns described be-
low and whose processing took about 10 hours when
distributed over 10 workstations. The computation ne-
cessitates an average of 6 minutes per pattern, but this
average is driven up by a few very complex patterns.
In fact, the median of the execution times is only 8 sec-
onds.
There are two main steps in the computation: con-

struction of the automaton and asymptotic computa-
tion of expectation and variance. Let R be the pattern,
D the �nite automaton, and T the arithmetic complex-
ity of the underlying linear algebra algorithms. Then,
the general bounds available are:

jRj � jDj � 2jRj; T = O(jDj3); (14)

as results from the previous sections. (Sizes of R and
D are de�ned as number of states of the corresponding
NFA or DFA.) Thus, the driving parameter is jDj and,
eventually, the computationally intensive phase is due
to linear algebra.
In practice, the upper bounds (14) that are expo-

nential appear to be extremely pessimistic. Statistical
analysis of the 1118 experiments indicates that the au-
tomaton is constructed in time slightly worse than lin-
ear in jDj and that jDj is almost always between jRj
and jRj2. The time taken by the second step behaves
roughly quadratically (in O(jDj2)), which demonstrates
that the sparseness of the system is properly handled
by our program. For most of the patterns, the over-
all \pragmatic" complexity Tobs thus lies somewhere
around jRj3 or jRj4 (see Figure 2).

7 Experimentation
We now discuss a small campaign of experiments con-
ducted on Prosite motifs intended to test the sound-
ness of the methodological approach of this paper. No
immediate biological relevance is implied. Rather, our

4Recent updates of combstruct and gfun are available
at the URL http://algo.inria.fr/libraries. The motif-
speci�c procedures are to be found under Pierre Nicod�eme's
home page, at http://www.dkfz.de/tbi/people/nicodeme.
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Figure 2: The correlations between jRj; jDj (left) and jDj; Tobs (right) in logarithmic scales.

aim is to check whether the various quantities computed
do appear to have statistical relevance.
The biological target database, the \text", is built

from the consensus sequences of the multi-alignments
of Prodom34.2. This database has 6.75 million posi-
tions, each occupied by one of 20 amino acids, so that
it is long enough to provide matches for rare motifs.
Discarding a few motifs constrained to occur at the be-
ginning or at the end of a sequence (a question that
we do not address here) leaves 1260 unconstrained mo-
tifs. For 1118 of these motifs (about 88% of the total)
our implementation produces complete results. With
the current time-out parameter, the largest automaton
treated has 946 states. It is on this set of 1118 motifs
that our experiments have been conducted.
For each motif, we have computed exactly the (theo-

retical) expectation E and standard deviation � of the
statistics of number of matches. The letter frequencies
that we use in the mathematical and the computational
model are the empirical frequencies in the database, and
the quantities E; � are determined by the computer al-
gebra tools of the previous section: we use all the in-
formation coming from the pole at 1, which yields the
�rst two terms of the asymptotic behaviour as given
by Theorem 2. Each quantity E; � is then compared
to the corresponding number of observed matches (also
called observables), denoted by O, that is obtained by a
straight scan of the 6.75 million position Prodom data
base5.

7.1 Expectations

First, we discuss expectations E versus observables O.
For our reference list of 1118 motifs, the theoretical ex-
pectations E range from 10�23 to 105. The observed
occurrences O range from 0 to 100,934, with a median
at 1, while 0 is observed in about 12% of cases. Globally,
we thus have a collection of motifs with fairly low ex-
pected occurrence numbers, though a few do have high

5The observed quantities were determined by the
Prosite tools contained in the IRSEC motif toolbox
http://www.isrec.isb-sib.ch/ftp-server/.
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Figure 3: Motifs with theoretical expectation E � 2.
Each point corresponds to a motif with coordinates
(E;O) plotted on a log-log scale. The two curves rep-
resent an approximation of �3 standard deviations.

expected occurrences. Consider a motif to be \freq-
uent" if E � 2. Figure 3 is our main �gure: it dis-
plays in log-log scale points that represent the 71 pairs
(E;O) for the frequent motifs,E � 2. The �gure shows
a good agreement between the orders of growths of pre-
dicted E and observed O values: (i) the average value
of log10O= log10E is 1.23 for these 71 motifs; (ii) the
two curves representing 3 standard deviations enclose
most of the data.
Figure 4 focusses on the classes of motifs observed

O = 1; 2; 3 times in Prodom. For each such class, a
histogram of the frequency of observation versus log10E
is displayed. These histograms illustrate the fact that
some motifs with very small expectation are still ob-
served in the database. However, there is a clear ten-
dency for motifs with smaller (computed) expectations
E to occur less often: for instance, no motif whose ex-
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Figure 4: Histograms of motifs with 1 (dark gray), 2
(medium gray) and 3 (white) observed matches. Coor-
dinates: x = log10E; y = number of motifs.

pectation is less than 10�6 occurs 3 times.

7.2 Z-scores

Another way to quantify the discrepancy between the
expected and the observed is by means of the Z-score
that is de�ned as

Z =
O � E

�
:

Consider again motifs that are frequent, namely those
whose expectation satis�es E � 2. Histograms of the
Z-scores for this class of motifs should converge to
a Gaussian curve if the Bernoulli model would apply
strictly and if there would be a su�cient number of data
corresponding to large values of E. None of these con-
ditions is satis�ed here, but nonetheless, the histogram
displays a sharply peaked pro�le tempered by a small
number of exceptional points.

7.3 Standard deviations

We now turn to a curious property of the Bernoulli
model regarding standard deviations. At this stage this
appears to be a property of the model alone. It would
be of interest to know whether it says something mean-
ingful about the way occurrences tend to 
uctuate in a
large number of observations.
Theoretical calculations show that when the expec-

tation of the length between two matches for a pattern
is large, then

� �
p
E

is an excellent approximation of the standard deviation.
Strikingly enough, computation shows that for the 71
\frequent" patterns, we have 0:4944� log(�)= log(E) �
0:4999. (Use has been made of this approximationwhen
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Figure 5: Motifs with theoretical expectation E � 2:
Histogram of the Z-scores Z = O�E

� .

plotting (rough) con�dence intervals of 3 standard de-
viations in Fig. 3.)

7.4 Discussion

The �rst blatant conclusion is that predictions (the
expectation E) tend to underestimate systematically
what is observed (O). This was to be expected since
the Prosite patterns do have an a priori biological
signi�cance. A clearer discussion of this point can be
illustrated by an analogy with words in a large corpus
of natural language, such as observed with Altavista on
the Web. The number of occurrences of a word such as
`deoxyribonucleic' is very large (about 7000) compared
to the probability (perhaps 10�15) assigned to it in the
Bernoulli model. Thus, predictions on the category of
patterns that contain long (hence unlikely) words that
can occur in the corpus are expected to be gross under-
estimations. However, statistics for a pattern like \A
h any word i IS IN" (590,000 matches) are more likely
to be realistic, not for reasons of laws of large numbers
alone.
This naive observation is consistent with the fact that

Fig. 3 is more accurate for frequent patterns than for
others, and it explains why we have restricted most of
our discussion to patterns such that E � 2. In addi-
tion, we see that the scores computed are meaningful
as regards orders of growth, at least. This is supported
by the fact that logO= logE is about 1:23 (for the data
of Fig. 3), and by the strongly peaked shape of Fig. 5.
Finally we discuss the patterns that are \exceptional"

according to some measure.

| The largest automaton computed has 946 states
and represents the expression ��R for the motif
PS00844 (\[LIV]-x(3)-[GA]-x-[GSAIV]-R-[LIVCA]-
D-[LIVMF](2)-x(7,9)-[LI]-x-E-[LIVA]-N-[STP]-x-P-
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Index Pattern E O Z O�E
E

2 S-G-x-G 2149 3302 25 0.54
4 [RK](2)-x-[ST] 11209 13575 22 0.21
13 DERK(6)-[LIVMFWSTAG](2)-[LIVMFYSTAGCQ]-[AGS]-C 788 2073 46 1.63
36 [KR]-x(1,3)-[RKSAQ]-N-x(2)-[SAQ](2)-x-[RKTAENQ]-x-R-x-[RK] 2.75 37 20 12.45
190 C-CPWHF-CPWR-C-H-CFYW 25 173 29 5.86
5 [ST]-x-[RK] 99171 90192 -30 -0.09

Table 1: Motifs with large Z-scores
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Figure 6: Scanning Prodom with motif PS00013. Ob-
served matches versus expectation.

[GA]", DALA DALA LIGASE 2). Expectation for
this motif is 1:87�10�6, standard-deviation 0:00136,
while O = 0. This automaton corresponds to a �nite
set of patterns whose cardinality is about 1:9� 1026.

| The pattern with largest expectation is PS0006
(\[ST]-x(2)-[DE]", CK2 PHOSPHO SITE) for which
E = 104633 (and O = 100934) and the renewal time
between two occurrences is as low as 64 positions.

| The motifs with very exceptional behaviours jZj > 19
are listed in Table 1. The motif PS00005 (\[ST]-x-
[RK]", PKC PHOSPHO SITE) is the only motif that
is clearly observed signi�cantly less than expected.

We plot in Fig. 6 the number of observed and ex-
pected matches of PS00013 against the number of char-
acters of Prodom that have been scanned. The sys-
tematic deviation from what is expected is the type of
indication on the possible biological signi�cance of this
motif that our approach can give.

8 Directions for Future Research
There are several directions for further study: advanc-
ing the study of the Markov model; enlarging the class
of problems in this range that are guaranteed to lead

to Gaussian laws; conducting sensitivity analysis of
Bernoulli or Markov models. We brie
y address each
question in turn.

The Markov model. Although the Markov model
on letters is in principle analytically and computation-
ally tractable, the brute-force method given by algo-
rithm \Markov automaton" probably leaves room for
improvements. We wish to avoid having to deal with
�nite-state models of size the product j�j�jQj, with j�j
the alphabet cardinality and jQj the number of states
of the automaton. This issue appears to be closely re-
lated to the areas of Markov chain decomposability and
of Markov modulated models.

Gaussian Laws. Our main theoretical result, Theo-
rem 2, is of wide applicability in all situations where
the regular expression under consideration is \nonde-
generate". Roughly, as explained in Section 4, the
overwhelming majority of regular expression patterns
of interest in biological applications are expected to be
nondegenerate. (Such is for instance the case for all
the motifs that we have processed.) Additional work is
called for regarding su�cient structural conditions for
nondegeneracy in the case of Markov models. It is at
any rate the case that the conditions of Theorem 2 can
be tested easily in any speci�c instance.

Model sensitivity and robustness. An inspection
of Table 1 suggests that the exceptional motifs in the
classi�cation of Z-scores cover very di�erent situations.
While a ratio O=E of about 3 and an observable O that
is > 2000 is certainly signi�cant, some doubt may arise
for other situations. For instance, is a discrepancy of
5% only on a motif that is observed about 105 times
equally meaningful? To answer this question it would
be useful to investigate the way in which small changes
in probabilities may a�ect predictions regarding pat-
tern occurrences. Our algebraic approach supported by
symbolic computation algorithms constitutes an ideal
framework for investigating model sensitivity, that is,
the way predictions are a�ected by small changes in
letter or transition probabilities.
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