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Variations analytiques sur le taux de redondance

des processus de renouvellement

R�esum�e : Csisz�ar et Shields ont montr�e r�ecemment que la redondance de la classe des
processus de renouvellement est �(

p
n), o�u n repr�esente la taille des blocs. Ce r�esultat

int�eressant fournit la premi�ere borne non triviale portant sur la redondance d'une famille non
param�etrique de processus. Notre article fournit une �evaluation pr�ecise de la redondance de
telles sources, ce jusqu'au terme constant. Le d�eveloppement asymptotique est assur�e par des
m�ethodes d'analyse asymptotique complexe incluant repr�esentations par s�eries g�en�eratrices,
transformation de Mellin, analyse de singularit�e et estimations de col. Ce travail se situe
dans le cadre de la th�eorie analytique de l'information.

Mots clefs. Th�eorie analytique de l'information, redondance, transformation de Mellin,
m�ethode de col, analyse de singularit�e.



Analytic Variations on
Redundancy Rates of Renewal Processes

Philippe Flajolet and Wojciech Szpankowski Senior Member, IEEE

Abstract| Csisz�ar and Shields have recently proved that
the minimax redundancy for a class of renewal processes is

�(
p
n) where n is the block length. This interesting result

provides a �rst non-trivial bound on redundancy for a non-
parametric family of processes. The present paper provides
a precise estimate of the redundancy rate for such sources,
namely,
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This asymptotic expansion is derived by complex{analytic

methods that include generating function representations,
Mellin transforms, singularity analysis and saddle point es-
timates. This work places itself within the framework of
analytic information theory.

Keywords| Redundancy, universal coding, renewal
processes, partitions of integers, tree function, Mellin trans-
form, saddle point method, analytic information theory.

I. Introduction

R
ECENT YEARS have seen a resurgence of interest in
redundancy rates of lossless coding; see [3], [13], [15],

[17], [18], [19], [20], [22], [24]. The redundancy-rate prob-
lem of universal �xed{to{variable length coding for a class
of sources consists in determining by how much the actual
code length exceeds the optimal (ideal) code length. In a
minimax scenario one �nds an acceptable code such that
the maximal redundancy over all sources within a certain
class is as small as possible. While Shields [18] proved that
there is no function o(n) which is a rate bound on the re-
dundancy for the class of all ergodic processes, it has been
known for some time (cf. [15], [22]) that, for certain para-
metric families of sources (e.g., memoryless and Markov
sources), the redundancy can be as small as �(logn) where
n is the block length. There was no interesting bound for
a class of sources that lies between �(logn) and general
o(n) until recently, when Csisz�ar and Shields [3] designed
a renewal class of sources that yields a �(

p
n) bound. Still

one would like to know more about this bound. What is
for instance the constant in front of

p
n, if there is one?

(See [13] for an example where 
uctuations are involved
in the redundancy rate.) Is the next term of the redun-
dancy 100

p
n= logn or 2 logn? And so forth. In this pa-

per, we address these questions by providing an asymptotic
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expansion of the redundancy for renewal sources up to the
constant term.

Regarding coding theory, we shall follow the notation
and the presentation from [3]. A code Cn : An ! f0; 1g�
is de�ned as a mapping from the set An of all sequences of
length n over the alphabet A to the set f0; 1g� of binary se-
quences. A message of length n with letters indexed from 1
to n is denoted by xn1 , so that x

n
1 2 An. We writeXn

1 to de-
note the random variable representing a message of length
n. Given a probabilistic source model, we let P (xn1 ) be
the probability of the message xn1 ; given a code Cn, we let
L(Cn) be the code length. Information-theoretic quantities
are expressed in binary logarithms written lg := log2, but
sometimes we also use log := ln.

From Shannon's works we know that the entropy
Hn(P ) = �

P
xn
1

P (xn1 ) lgP (x
n
1 ) is an absolute lower bound

on the expected code length. Hence � lgP (xn1 ) can be
viewed as the \ideal" code length. (Actually, the Shannon-
Fano code of length d� lgP (xn1 )e attains the lower bound
Hn(P ) within one bit.) The next natural question is to ask
by how much the length L(Cn) of a code di�ers from the
ideal code length, either for individual sequences or on av-
erage. Thus, the pointwise redundancy Rn(Cn; P ;xn1) and
the average redundancy Rn(Cn; P ) are de�ned as

Rn(Cn; P ;x
n
1) = L(Cn) + lgP (xn1 )

Rn(Cn) = EXn
1
[Rn(Cn; P ;X

n
1 )]

= E[L(Cn)]�Hn(P )

where the underlying probability measure P represents a
particular source model and E denotes the expectation.
Another natural measure of code performance is the max-

imal redundancy de�ned as

R�(Cn; P ) = max
xn
1

fRn(Cn; P ;x
n
1)g:

Observe that while the pointwise redundancy can be nega-
tive, maximal and average redundancies cannot, by Shan-
non's theory.

In practice, the source probabilities are unknown, hence
the desire to design codes for a whole class of source mod-
els S. When the source is known, the redundancy can be
as low as 1 bit, as demonstrated by Shannon-Fano codes.
Therefore, for unknown probabilities, the redundancy rate
can be also viewed as the penalty paid for estimating the
underlying probability measure. More precisely, universal
codes are those for which the redundancy is o(n) for all
P 2 S. The weak redundancy-rate problem for the class



S can be roughly viewed as �nding a bound on the re-
dundancy rate for a sequence of codes Cn over all P 2 S
(cf. [3]). The (asymptotic) strong redundancy-rate problem
consists in determining for a class S of source models the
rate of growth of the minimax quantities

R
�
n(S) = min

Cn

max
P2S

fRn(Cn; P )g;
R�n(S) = min

Cn

max
P2S

fR�n(Cn; P )g

as n!1. In this paper, we deal with the stronger version,
namely with the minimax redundancy R�n for arbitrary re-
newal sources.

The redundancy rate problem is typical of a situation
where second-order asymptotics play a crucial rôle since
the leading term of L(Cn) is known to be nH, where H is
the entropy rate. This problem is an ideal candidate for
\analytic information theory" that applies analytic tools
to information theory. As argued by Andrew Odlyzko [14]:
\Analytic methods are extremely powerful and when they

apply, they often yield estimates of unparalleled precision."
We shall see this principle at work for the redundancy prob-
lem. (Other examples are provided by [10], [11], [13], [20],
[21].) In fact, in his 1997 Shannon Lecture [25], Jacob Ziv
presented compelling arguments for \backing o�" to a cer-
tain degree from the (�rst-order) asymptotic analysis of
information systems in order to predict the behaviour of
real systems where we always face �nite (and often small)
lengths (of sequences, �les, codes, etc.) One way of over-
coming these di�culties is to increase the accuracy of as-
ymptotic analysis and replace �rst-order analyses (e.g., a
leading term of the average code length) by more complete
asymptotic expansions, thereby extending their range of
applicability to smaller values while providing more accu-
rate analyses (like constructive error bounds, large devia-
tions, local or central limit laws).

A substantial literature is available on the redundancy
problem. The following results are known.

� If M is i.i.d. or the class of Markov chains, or more
generally the process belongs to a �nitely parametrizable
class of dimension K, then Rissanen [15] established

Rn(M) � R�n(M) � K

2
lgn:

It was also found in [22] that the next term ofRn(S) and of
R�n(S) is O(1). In fact, Szpankowski [20] has established a
full asymptotic expansion forR�n(S) for memoryless sources
over an m-ary alphabet, namely

R�n(M) =
m� 1

2
lg
�n
2

�
+ lg

� p
�

�(m=2)

�
+ � � � ;

where �(x) is the Euler gamma function. In passing we
observe that when the alphabet size m is large, the second
order terms may contribute signi�cantly to R�n. More im-
portantly, the above formula is true only when m is �xed,
while in some applicationsm may depend on n (e.g., image

size is comparable to image alphabet). Then, one needs a
uniform asymptotic expansion of R�n, and clearly second
order terms will contribute to the �nal outcome.
� Csisz�ar and Shields [3] have studied order r Markov re-
newal sequences in which a 1 is inserted every T0; T1; : : :
of 0's, where fTig is either an i.i.d. or Markov renewal or
r-order Markov renewal process. We denote such sources
as Rr . The authors of [3] proved that Rn(Rr) = R�(Rr) =
�(n(r+1)=(r+2) for r = 1; 2; : : : which specializes to �(

p
n)

when r = 0.
� Shields [18] proved that there is no function �(n) = o(n)
which is a weak-rate bound for the class of all ergodic
processes.
� Louchard and Szpankowski [13], Savari [17], Wyner [24],
and Jacquet and Szpankowski [12] proved that the Lempel-
Ziv codes in the class of i.i.d. and Markov processes have
either rate �(n= logn) (for LZ'78) or �(n log logn= logn)
(for LZ'77 code). Interestingly, in [13] it was shown that
for LZ'78 the bound �(n= logn) cannot be improved to
an asymptotic equivalence since a 
uctuating function is
involved. More precisely, for a binary alphabet with 0's
generated with probability p and 1's with probability q =
1� p, the authors of [13] showed that

Rn(LZ) = (�+ �(n))
n

logn
+ O

�
n log logn

log2 n

�
;

where � is an explicitly determined constant. What is more
surprising is the occurrence of the function �(x) that 
uc-
tuates with mean zero and a tiny amplitude for logp= log q
rational (the amplitude of �(x) is smaller than 10�6 for
the unbiased case, where p = q = 0:5), but satis�es
limx!1 �(x) = 0 otherwise.

In this paper, we revisit Csisz�ar and Shields renewal
process and present a precise analysis of the redundancy
rate for the class of basic renewal source R0 corresponding
to r = 0 (see Section II for details). Our main result is as
follows.

Theorem 1: Consider the class R0 of renewal sources.
Let c = �2

6 � 1 � 0:645. Then the minimax redundancy
R�n(R0) satis�es, for large n,

R�n(R0) = Rn +
1

2
+ �n; (1)

with �n 2 [�1
2
; 1
2
] and

Rn =
2

log 2

p
cn� 5

8
lgn+

1

2
lg logn+

1

8
lg

c

212�2
+ o(1)

where lg := log2.

This paper is organized as follows. In Section II, the
problem is reduced to estimating a certain combinatorial
sum that is of independent interest (Lemma 1). Next, we
present the main ingredients of the proof in Section III.
The heart of the analysis is Lemma 2 that is established
in Section IV. The proof is analytic and uses such diverse
tools as the Mellin transform, singularity analysis, and the



saddle point method. We believe that the analytic ap-
proach discussed in this section is of general interest and
hope it may �nd further applications in information theory.
For this reason as well as for convenience of exposition, we
adopt a tabular presentation of the two main tools used
here: the Mellin transform (Fig. 1) and the saddle point
method (Fig. 2).

II. Reduction to a Combinatorial Sum

We start with a precise de�nition of the class R0 of re-
newal process and its associated sources. Let T1; T2 : : : be
a sequence of i.i.d. positive-valued random variables with
distribution Q(j) = PrfT1 = jg. An independent random
variable T0 is introduced with distribution

PrfT0 = ig = E[T1]
�1
X
j�i

Q(j)

provided E[T1] < 1. The quantities fTig1i=1 are the in-
terarrival times, while T0 is the initial waiting time. The
process T0; T0 + T1; T0 + T1 + T2; : : : is then called a re-
newal process and it is stationary whenever T0 has the
distribution above. With such a renewal process there
is associated a binary renewal sequence that is a 0; 1-
sequence in which the 1's occur exactly at the renewal
epochs T0; T0 + T1; T0 + T1 + T2, etc. Since P and Q
determine one another, we often identify the underlying
stationary probability measure P de�ned on f0; 1g1 with
the distribution Q of the interarrival times that it induces.

We now brie
y discuss the mathematical aspect of the
redundancy problem. Let xn1 be a renewal sequence and
L(Cn; xn1 ) a code assigned to it. Our goal is to derive as-
ymptotics of

R�n(S) = min
Cn

sup
Q2S

max
xn
1

fL(Cn; xn1 ) + lgP (xn1)g

where the supremum is taken over all distributions Q.
Shtarkov's maximum-likelihood technique [19] implies

lg

0@X
xn
1

sup
Q

P (xn1 )

1A � R�n(S) � lg

0@X
xn
1

sup
Q

P (xn1 )

1A+ 1:

(2)
Indeed, for the lower bound Shtarkov [19] observed that

q(xn1 ) :=
supQ P (x

n
1 )P

xn
1

supQ P (x
n
1 )

is a probability distribution. Hence, by Kraft's inequality
there exists exn1 such that (for uniquely decodable codes Cn)

�L(Cn) � lg q(exn1 );
which implies the lower bound. For the upper bound,
Shtarkov proposed a code Cn of length

L( eCn) =
2666lg

�X
xn
1

sup
Q

P (xn1 )

�
� lgP (xn1 )

3777 ;

which gives the desired upper bound.

Let now Rn be de�ned by

Rn := lg

0@X
xn
1

sup
Q

P (xn1 )

1A : (3)

The inequalities (2) mean that Rn � R�n(S) � Rn + 1, so
that R�n(S) is at distance at most 1

2 from the middle of
the interval Rn+

1
2 . This is precisely what is expressed by

Equation (1) and the condition �n 2 [�1
2 ;

1
2 ].

We shall study instead of Rn a closely related quantity,
namely

rn = 2Rn :

It turns out that the problem of estimating rn, hence Rn

and R�n(R0), reduces to the evaluation of a purely combi-
natorial sum. (By convention here 00 = 1.)

Lemma 1: The quantity rn = 2Rn admits the combina-
torial form8>>>><>>>>:

rn =
nX

k=0

rn;k

rn;k =
X
P(n;k)

�
k

k0 � � �kn�1

��
k0
k

�k0
� � �
�
kn�1
k

�kn�1
(4)

where P(n; k) denotes the set of partitions of n into k sum-
mands, that is, the collection of tuples of nonnegative in-
tegers (k0; k1; : : : ; kn�1) satisfying

n = k0 + 2k1 + � � �+ nkn�1; (5)

k = k0 + k1 + � � �+ kn�1: (6)

Proof: As a �rst step in investigating (3), we address
the problem of �nding the supremum of P (xn1 ) over all
distributions Q 2 R0, that is, we solve the optimization
problem supQ P (x

n
1 ).

Observe that the renewal sequence xn1 can be represented
as

xn1 = 0�110�21 � � �10�n1 0 � � �0| {z }
k�

where 0 � �i � n for i = 1; : : : ; n. Let km be the number
of i such that �i = m, where m = 0; 1; : : : ; n� 1. Then

P (xn1 ) = Qk0(0)Qk1(1) � � �Qkn�1 (n� 1)Q�(k�) (7)

subject to Q(0) + Q(1) + � � �+Q(n � 1) � 1, where

k0 + 2k1 + � � �+ nkn�1 + k� = n; (8)

and Q�(k�) = PrfT1 � k�g.
What is now needed is the supremum of P (xn1 ) repre-

sented by (7) over all distributions Q(�). But this is a sim-
ple optimization problem with inequality constraints. By
the Kuhn{Tucker condition or otherwise, it is seen that the
values Q�(k�) = 1 and

Q(i)

Q(j)
=

ki
kj

for 1 � i; j � n



optimize P (xn1 ). In view of the above, we conclude that

sup
Q

P (xn1 ) =

�
k0

k0 + � � �+ kn�1

�k0
� � �
�

kn�1
k0 + � � �+ kn�1

�kn�1
(9)

where n and k are constrained by (5) and (6). These last
two conditions represent an arbitrary partition of the inte-
ger n into k summands.

It can also be observed that the quantity rn has an in-
trinsic meaning. Let Wn denote the set of all nn sequences
of length n over the alphabet f0; : : : ; n � 1g. For a se-
quence w, take kj to be the number of letters j in w. Then
each sequence w carries a \maximum likelihood probabil-
ity", �ML(w), given by the right hand-side of (9): this is
the probability that w gets assigned in the Bernoulli model
that makes it most likely. The quantity rn is also

rn =
X

w2Wn

�ML(w):

III. A Streamlined Analysis

Our goal is to estimate asymptotically rn through as-
ymptotics of rn;k. A di�culty of �nding such asymptotics
stems from the factor k!=kk present in the de�nition (4) of
rn;k. We circumvent this problem by analyzing a related
pair of sequences, namely sn and sn;k that are de�ned as8>>>><>>>>:

sn =
nX

k=0

sn;k

sn;k = e�k
X
P(n;k)

kk0

k0!
� � � k

kn�1

kn�1!
:

(10)

The translation from sn to rn is most conveniently ex-
pressed in probabilistic terms. Introduce the random vari-
able Kn whose probability distribution is sn;k=sn, that is,

$n : PrfKn = kg = sn;k
sn

; (11)

where $n denotes the distribution. Then Stirling's formula
yields

rn
sn

=
nX

k=0

rn;k
sn;k

sn;k
sn

= E[(Kn)!K
�Kn

n e�Kn ]

= E[
p
2�Kn] + O(E[K

� 1

2

n ]): (12)

Thus, the problem of �nding rn reduces to asymptotic eval-

uations of sn, E[
p
Kn] and E[K

� 1

2

n ]. The heart of the mat-
ter is the following lemma which provides the necessary
estimates.

Lemma 2: Let �n = E[Kn] and �2n = Var(Kn), where
Kn has the distribution $n de�ned above in (11). The
following holds

sn � exp

�
2
p
cn� 7

8
logn+ d+ o(1)

�
(13)

�n =
1

4

r
n

c
log

n

c
+ o(

p
n) (14)

�2n = O(n logn) = o(�2n); (15)

where c = �2=6� 1, d = � log 2� 3
8 log c� 3

4 log�.

The somewhat delicate proof of Lemma 2 constitutes the
core of the paper and it is deferred till the next section.
Once the estimates of Lemma 2 are granted, the moments
of order �1

2 of Kn follow by a standard argument based on
concentration of the distribution $n.

Lemma 3: For large n

E[
p
Kn] = �1=2n (1 + o(1)) (16)

E[K
� 1

2

n ] = o(1): (17)

where �n = E[Kn].

Proof: We only prove (16) since (17) is obtained in a
similar manner. The upper bound E[

p
Kn] �

p
E[Kn] fol-

lows from concavity of the function
p
x. The lower bound

follows from concentration of the distribution. Chebyshev's
inequality and (15) of Lemma 2 entail, for any arbitrarily
small " > 0,

PrfjKn � �nj > "�ng � Var[Kn]

"2�2n
=

�(n)

"2

where �(n)! 0 as n!1. Then

E[
p
Kn] �

X
k�(1�")�n

p
kPrfKn � kg

� (1� ")
1

2 �1=2n PrfKn � (1� ")�ng
� (1� ")

1

2

�
1� �(n)

"2

�
�1=2n :

Hence for any � > 0 one has E[
p
Kn] > �

1=2
n (1��) provided

n is large enough. This completes the proof.

In summary, rn and sn are related by

rn = snE[
p
2�Kn](1 + o(1))

= sn
p
2��n(1 + o(1));

by virtue of (12) and Lemma 3. This leads to

Rn = lg rn = lg sn +
1

2
lg�n + lg

p
2� + o(1): (18)

At this point it su�ces to apply the estimates provided by
Lemma 2 in order to get Rn up to o(1) term. The proof of
Theorem 1 is in turn complete since jR�n(R0)�Rn� 1

2 j � 1
2 ,

by (2) and (3).

IV. Complex Asymptotic Analysis

This section provides precise asymptotic estimates for
the quantity sn and for moments of the distribution $n as
expressed in (14) and (15) of Lemma 2. It turns out that
the quantities sn;k and sn have generating functions S(z; u)
and S(z; 1), respectively, that are in�nite products involv-
ing the tree function of combinatorial analysis. The corre-
sponding coe�cient asymptotics are dictated by the behav-
iour at the singularity of greatest weight [5] |in the case at
hand, the positive real singularity z = 1| so that we start



by investigating asymptotics of S(z; 1) as z ! 1. This itself
requires a dedicated analysis by mean of the Mellin trans-
form. Once the dominant singular behaviour of S(z; 1) near
z = 1 has been found, it remains to extract information
on the coe�cients sn. This task involves an appeal to the
saddle point method (summarized by Lemma 4) and neces-
sitates some technical concentration condition (Lemma 5).
(The whole analysis draws its inspiration from a method of
Meinardus in the asymptotic theory of integer partitions;
see especially Chapter 6 of [1].) Proceeding in this way the
estimate (13) of sn in Lemma 2 is established. Finally, the
method adapts gracefully to moment estimates, yielding
the other two estimates (14), (15) of Lemma 2.

Generating Functions. The expression of sn;k in (10)
involves quantities of the form kk=k!. We start by intro-
ducing the well-known \tree function" T (z) de�ned as the
solution of

T (z) = zeT (z)

that is analytic at 0. The function T (z) satis�es, by the
Lagrange inversion theorem,

T (z) =
1X
k=1

kk�1

k!
zk :

The tree function owes its name to its rôle in tree enumer-
ations and we refer to the survey paper [2] for algebraic
and analytic properties of this important special function
of combinatorics.

Next de�ne the function �(z) as

�(z) =
1X
k=0

kk

k!
e�kzk:

One has (e.g., by Lagrange inversion again or otherwise)

�(z) =
1

1� T (ze�1)
:

The quantities sn and sn;k of (10) have generating func-
tions,

Sn(u) =
1X
k=0

sn;ku
k; S(z; u) =

1X
n=0

Sn(u)z
n:

Then, since equation (19) involves convolutions of se-
quences of the form kk=k!, we have

S(z; u) =
X
Pn;k

z1k0+2k1+���
�u
e

�k0+���+kn�1 kk0
k0!

� � � k
kn�1

kn�1!

=
1Y
i=1

�(ziu); (19)

We also need access to the �rst moment �n = E[Kn]
and the second factorial moment E[Kn(Kn�1)]. They are

obtained as

sn = [zn]S(z; 1);

�n =
[zn]S0u(z; 1)

[zn]S(z; 1)
;

E[Kn(Kn � 1)] =
[zn]S00uu(z; 1)

[zn]S(z; 1)

where [zn]F (z) denotes the coe�cient at zn of F (z),
S0u(z; 1) and S00uu(z; 1) represent the �rst and the second
derivative of S(z; u) at u = 1.

Mellin Asymptotics. We deal here with sn that is ac-
cessible through its generating function,

S(z; 1) =
1Y
i=1

�(zi): (23)

The behaviour of the generating function S(z; 1) as z ! 1
is an essential ingredient of the analysis.

First, the singularity of the tree function T (z) at z = e�1

is of the square-root type; see [2]. (This results from the
failure of the implicit function theorem at (z; T ) = (e�1; 1)
where the relation becomes locally quadratic in T .) Hence,
near z = 1, �(z) admits the singular expansion (cf. [2]):

�(z) =
1p

2(1� z)
+

1

3
�
p
2

24

p
(1� z) + +O(1� z):

We now turn to the in�nite product asymptotics as z !
1�, with z real. Let L(z) = logS(z; 1) and z = e�t, so that

L(e�t) =
1X
k=1

log�(e�kt): (24)

Mellin transform techniques provide an expansion of L(e�t)
around t = 0 (or equivalently z = 1) since the sum (24)
falls under the harmonic sum paradigm of [6]. The Mellin
approach is by now a standard technique in the analysis
of algorithms. For the reader's convenience, we recall its
main properties in Fig. 1, following [6], to which we refer
globally for detailed validity conditions.

First the Mellin transform L�(s) = M(L(e�t); s) of
L(e�t) is computed by the harmonic sum property (M3).
For <(s) 2 (1;1), the transform evaluates to

L�(s) = �(s)�(s)

where �(s) =
P

n�1 n
�s is the Riemann zeta function, and

�(s) =

Z 1

0

log �(e�t)ts�1dt:

The subsequent treatment is typical of the Mellin analy-
sis of harmonic sums: the singularity structure of �(s) is
deduced from the asymptotic properties of �(z). This gives
in turn the singularity structure of L�(s) that is then con-
verted back into an asymptotic exp[ansion of L(e�t). In



(M1) Direct and Inverse Mellin Transforms. Let c belong to the fundamental strip de�ned below.

f�(s) :=M(f(x); s) =

Z 1

0

f(x)xs�1dx () f(x) =
1

2�i

Z c+i1

c�i1

f�(s)x�sds: (20)

(M2) Fundamental Strip. The Mellin transform of f(x) exists in the fundamental strip <(s) 2 (��;��), where

f(x) = O(x�) (x! 0); f(x) = O(x�) (x!1):

(M3) Harmonic Sum Property. By linearity and the scale rule M(f(ax); s) = a�sM(f(x); s),

f(x) =
X
k�0

�kg(�kx) () f�(s) = g�(s)
X
k�0

�k�
�s
k : (21)

(M4) Mapping Properties (Asymptotic expansion of f(x) and singularities of f�(s)).

f(x) =
X

(�;k)2A

c�;kx
�(logx)k +O(xM ) () f�(s) �

X
(�;k)2A

c�;k
(�1)kk!
(s + �)k+1

: (22)

| (i) Direct Mapping. Assume that f(x) admits as x! 0+ the asymptotic expansion (22) for some �M < �� and
k > 0. Then for <(s) 2 (�M;��), the transform f�(s) satis�es the singular expansion (22)

| (ii) Converse Mapping. Assume that f�(s) = O(jsj�r) with r > 1, as jsj ! 1 and that f�(s) admits the singular
expansion (22) for <(s) 2 (�M;��). Then f(x) satis�es the asymptotic expansion (22) at x = 0+.

Fig. 1. Main properties of the Mellin transform.

e�ect, by the direct mapping property (M4), the expan-
sion of �(z) at z = 1 implies

log �(e�t) = �1

2
log t� 1

2
log 2 + O(

p
t);

so that, collecting local expansions,

�(s) �
�
�(1)

�
s=1

+

�
1

2

1

s2
� 1

2

log 2

s

�
s=0

:

On the other hand, classical expansions give

�(s) �
�

1

s � 1
+ 


�
s=1

+

�
�1

2
� s log

p
2�

�
s=0

:

Term-wise multiplication then provides the singular expan-
sion of L�(s):

L�(s) �
�
�(1)

s � 1

�
s=1

+

�
� 1

4s2
� log�

4s

�
s=0

:

An application of the converse mapping property (M4) al-
lows us to come back to the original function,

L(e�t) =
�(1)

t
+
1

4
log t� 1

4
log� +O(

p
t); (25)

which translates in

L(z) =
�(1)

1� z
+
1

4
log(1�z)� 1

4
log�� 1

2
�(1)+O(

p
1� z):

(26)

This computation is �nally completed by the evaluation of
c := �(1):

c = �(1) = �
Z 1

0

log(1� T (x=e))
dx

x

= �
Z 1

0

log(1� t)
(1� t)

t
dt (x = te1�t)

=
�2

6
� 1:

In summary, we just proved that, as z ! 1�,

S(z; 1) = eL(z) = a(1� z)
1

4 exp

�
c

1� z

�
(1 + o(1)) ; (27)

where a = exp(�1
4 log� � 1

2c).

So far, the main estimate (27) has been established as
z tends to 1 from the left, by real values. In fact, the
formula (25) on which (27) rests holds for complex t only
constrained in such a way that ��

2 + � � arg(t) � �
2 � �,

for any � > 0. The reason is that the converse mapping
property (M4:ii) and in particular (25) rely on residues of
the inverse Mellin integral that still converges when t is re-
stricted to such a wedge (cf. [6]). Thus, the expansion (27)
actually holds true as z ! 1 in a sector, say,

j arg(1 � z)j < �

4
:

Saddle Point Analysis. It remains to collect the infor-
mation gathered on S(z; 1) and recover sn = [zn]S(z; 1)



asymptotically. The inversion is provided by the Cauchy
coe�cient formula, that is,

sn =
1

2�i

I
S(z; 1)

zn+1
dz

where the integration path is any simple loop around 0
inside the unit disk. The saddle point method [4], [9] sum-
marized in Fig. 2 is now employed.

First, we provide a formula� for a standard set of func-
tions that exhibit the same growth pattern as S(z; 1)
near z = 1.

Lemma 4: For positive A > 0, and reals B and C, de�ne
f(z) = fA;B;C(z) as

f(z) = exp

�
A

1� z
+B log

1

1� z
+ C log

�
1

z
log

1

1� z

��
:

(28)
Then, the nth Taylor coe�cient of fA;B;C(z) satis�es as-
ymptotically, for large n,

[zn]fA;B;C(z) = 2
p
An+

1

2

�
B � 3

2

�
logn

+ C log log

r
n

A

� 1

2
log
�
4�e�A=

p
A
�
+ o(1): (29)

Proof: Problems of this kind have been considered by
Wright [23] and others who, in particular, justify in detail
that the saddle point method works in similar contexts.
Therefore, we only outline the proof here. The starting
point (see Fig. 2) is Cauchy's formula

[zn]f(z) =
1

2�i

I
eh(z)dz

where
h(z) = log fA;B;C(z) � (n + 1) log z:

In accordance with (S1) of Fig. 2, one chooses a saddle
point contour that is a circle of radius r de�ned by h0(r) =
0. Asymptotically, one �nds

r = 1�
r
A

n
+
B � A

2n
+ o(n�1);

and

h(r) = 2A

r
n

A
+ B log

�r
n

A

�
+C log log

�r
n

A

�
+
1

2
A+ o(1):

The \range" � = �(n) of the saddle point, where most
of the contribution of the contour integral is concentrated

�The computationshere and in the rest of the section have been con-
ducted with the help of the symbolic system Maple. Note that they
require multiscale asymptotic manipulations for which the package
based on the works of Salvy and Shackell [16] proved to be of special
importance.

asymptotically, is dictated by the order of growth of deriv-
atives; see (S2). Here, h00(r) � n3=2, while h000(r) � n2, so
that

�(n) = n�3=4:

In accordance with requirement (S3), tails are negligible
since the function exp((1 � z)�1) decays very fast when
going away from the real axis. In the central region, the
local approximation (S4) applies, as seen by expansions
near z = 1. Thus requirements (S1), (S2), (S3), and (S4)
are satis�ed, implying, by (S5),

[zn�1]f(z) =
1p

2�jh00(r)je
h(r) (1 + o(1)) :

Some simple algebra, using

h00(r) = 2n
p
n=A (1 + o(1)) ;

yields the stated estimate (29).

Now, the function S(z; 1) is only known to behave like
f(z) of Lemma 4 in the vicinity of 1. In order to adapt the
proof of Lemma 4 and legitimate the use of the resulting
formula, we need to prove that S(z; 1) decays fast away
from the real axis.

Lemma 5 (Concentration property) Consider the ratio

q(z) =
1Y
j=1

���� �(zj )�(jzjj)

���� :
Then, there exists a constant c0 > 0 such that

q(rei�) = O
�
e�c0(1�r)

�1
�
;

uniformly, for 1
2 � r < 1 and j arg(rei� � 1)j > �

4 .

Proof: In this proof the cj denote positive constants
whose precise value is immaterial.

First, by the triangular inequality, a function like �(z)
that has nonnegative Taylor coe�cients attains its maxi-
mum modulus on the positive real axis. More precisely,
one has

sup
�
j�(rei�)j = �(r):

Furthermore, by the converse triangular inequality, the
maximum is uniquely attained on jzj = r as soon as the
function is aperiodic, which means the following: There is
no b�(z) analytic at 0 such that �(z) = za b�(zb) for integers
a; b and b � 2. This condition is obviously satis�ed here
since �(z) = 1 + e�1z + 2(e�1z)2 + � � �.
Fix some small angle parameter �0, for instance, �0 =

1
10
, and de�ne

�(r) = sup
j�j��0

�����(rei�)�(r)

���� : (36)

Then �(r) is continuous on the open interval (0; 1) where
it satis�es �(r) < 1 while it tends to in�nity when r tends



Input: A function g(z) analytic in jzj < R (0 < R < +1) with nonnegative Taylor coe�cients and \fast growth" as
z ! R�. Let h(z) := logg(z) � (n+ 1) log z.
Output: The asymptotic formula (35) for gn := [zn]g(z) derived from the Cauchy coe�cient integral

gn =
1

2i�

Z



g(z)
dz

zn+1
=

1

2i�

Z



eh(z) dz (30)

where 
 is a loop around z = 0.

(S1). Saddle point contour. Require that g0(z)=g(z)! +1 as z ! R�. Let r = r(n) be the unique positive root
of the saddle point equation

h0(r) = 0 or
rg0(r)

g(r)
= n + 1; (31)

so that r! R as n!1. The integral (30) is evaluated on 
 = fz j jzj = rg.
(S2). Basic split. Require that h000(r)1=3h00(r)�1=2 ! 0. De�ne � = �(n) called the \range" of the saddle point by

� =
���h000(r)�1=6h00(r)�1=4��� ; (32)

so that � ! 0, h00(r)�2 ! 1, and h000(r)�3 ! 0. Split 
 = 
0 [ 
1, where 
0 = fz 2 
 j j arg(z)j � �g; 
1 =
fz 2 
 j j arg(z)j � �g:
(S3) Elimination of tails. Require that jg(rei�)j � jg(rei�)j on 
1. Then, the tail integral satis�es the trivial
bound, ����Z


1

eh(z) dz

���� = O
�
je�h(rei�)j

�
: (33)

(S4) Local approximation. Require that h(rei�) � h(r) � 1
2r

2�2h00(r) = O(jh000(r)�3j) on 
0. Then, the central
integral is asymptotic to a complete Gaussian integral, and

1

2i�

Z

0

eh(z) dz =
g(r)r�np
2�h00(r)

�
1 + O(jh000(r)�3j)� : (34)

(S5) Collection. Requirements (S1); (S2); (S3); (S4), imply the estimate:

[zn]g(z) =
g(r)r�np
2�h00(r)

�
1 + O(jh000(r)�3j)� � g(r)r�np

2�h00(r)
: (35)

Fig. 2. The Saddle Point Algorithm.

to 1. As a consequence, for each � > 0, there exists an
A� < 1 such that

�(r) < A� for all r satisfying � � r < 1: (37)

Consider the case where z = rei� with r ! 1. Set r =
e�� . The powers zj form a discrete set of points on a
logarithmic spiral that winds about 0. The number of such
powers that have modulus larger than � is

log ��1

�
+ O(1):

If z = rei� and j�j � �, then a fraction of these points,
namely,

c1
logA�1�

�
+O(1)

will lie outside of the region j arg(zj)j < �. Thus, by the

bound (37), we �nd

q(rei�) = O(e�c2=� ) = O(e�c3=(1�r)): (38)

This argument adapts when z is close to the real axis
as follows. It is assumed that j arg(z � 1)j > �=4. Thus,
arg(z) > c4�, for some c4 > 0. Then, the winding number
around 0 of the polygonal line with vertices the zj and
jzjj > � is approximately

1

c4
log ��1:

In other words, �xing � small enough ensures that at least
one full winding takes place. In this case a number at
least c5=� of the zj satisfying jzjj > A� are such that
j�(zj)=�(rj)j < A�. Then, an estimate of type (38) holds,

jq(rei�)j = O(e�c6=� ) = O(e�c7=(1�r)); (39)



albeit with di�erent constants. The statement follows upon
taking c0 = min(c3; c7).

We are now eventually ready to return to the estimate of
sn in Lemma 2. In the region j arg(z � 1)j < �

4 , the Mellin
asymptotic estimates (25) and (27) apply. This shows that
in this region,

S(z; 1) = eo(1)fA;B;C (z) (z ! 1);

where the function f is that of Lemma 4 and the constants
A;B;C have the values assigned by (27):

A = c =
�2

6
� 1; B = �1

4
; C = 0:

In the complementary region, j arg(z � 1)j > �
4 , the

function S(z; 1) is exponentially smaller than (S(jzj; 1)
by Lemma 5. From these two facts, the saddle point esti-
mates of Lemma 4 are seen to apply, by a trivial modi�ca-
tion of the proof of that lemma. This concludes the proof
of Equation (13) in Lemma 2.

Moments. It remains to complete the evaluation of �n
and �2n, following the same principles as before. Start with
�n = E[Kn], with the goal of establishing the evaluation
(14) of Lemma 2. It is necessary to estimate [zn]S0u(z; 1),
with

S0u(z; 1) = S(z; 1)
1X
k=0

zk
�0(zk)

�(zk)
:

Let

D1(z) =
1X
k=0

�(zk); where �(z) = z
�0(z)

�(z)
:

Via the substitution z = e�t, the function D1(e�t) falls
under the harmonic sum property (M3) of Fig 1, so that
its Mellin transform is

M(D1(e
�t); s) = �(s)M(�(e�t); s):

The asymptotic expansion

�(e�t) =
1

2t
�
p
2

6

1p
t
� 1

18
+O(

p
t);

gives the singular expansion of the corresponding Mellin
transform, by (M4:i). This in turn yields yields the singular
expansion of M(D1(e�t); s). Then, the converse mapping
property (M4:ii) gives back D(e�t) at t � 0, hence,

D1(z) =
1

2

1

1� z
log

1

1� z
+

1

2




1� z

� 1

6

p
2�(12)p
1� z

� 1

4
log

1

1� z
+ O(1);

where 
 = 0:577 : : : is the Euler constant. The combina-
tion of this last estimate and the main asymptotic form of
S(z; 1) in (27) yields

S0u(z; 1) �
z!1

1

2
a exp

�
c

1� z
+
3

4
log

1

1� z
+ log log

1

1� z

�
;

where a is the same constant as in (27). Like for S(z; 1), the
derivative S0u(z; 1) is amenable to Lemma4, and this proves
the asymptotic form of �n, as stated in (14) of Lemma 2.

Finally, we need to justify (15) that represents a bound
on the variance of Kn. The computations follow the same
steps as above, so we only sketch them brie
y. One needs
to estimate a second derivative,

S00uu(z; 1)

S(z; 1)
= D2(z) +D2

1(z)

where

D2(z) =
1X
k=0

z2k
�00(zk)

�(zk)
�
�
zk�0(zk)

�(zk)

�2

:

The sum above is again a harmonic sum that is amenable
to Mellin analysis, with the result that

D2(z) =
�(2)

2

1

(1� z)2
+ O((1� z)�3=2):

Then we appeal again to Lemma 4 to achieve the transfer
to coe�cients. Somewhat tedious calculations (that were
assisted by the computer algebra systemMaple) show that
the leading term in n log2 n of the second moment cancels
with the square of the mean �n. Hence, the variance cannot
be larger than than O(n logn). This establishes the second
moment estimate (15) of Lemma 2 and hence it completes
the proof of Theorem 1.

V. Numerical Estimates

Numerical veri�cations support extremely well the
claims made in the introduction about the accuracy of as-
ymptotic expansions based on analytic methods, even when
the values of n are far from the asymptotic regime. Our
main result states that the function

'(n) =
2

log2

s�
�2

6
� 1

�
n� 5

8
log2 n+

1

2
log2 logn+K;

where

K =
1

8
lg

�
�2=6� 1

212�2

�
� �1:99197;

is such that Rn = '(n) + o(1). In fact observation of the
values of the di�erence �(n) = Rn � '(n), for which a
sample is given by the following table,

n: 3 5 10 20 50 100
�(n): 0.223 0.026 0.128 0.055 0.002 -0.010

shows that the quantity '(n) + 1=2 estimates the redun-

dancy R�n(R0) of Theorem 1 within at most 1, for all values

of n � 3.
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