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Abstract. 

This paper provides a characterization of the storage needs of a quadtree when used as an index to 
access large volumes of 2-dimensional data. It is shown that the page occupancy for data in random order 
approaches 33 %. A precise mathematical analysis that involves a modicum of hypergeometric functions 
and dilogarithms, together with some computer algebra is presented. 

A brief survey of the analysis of storage usage in tree structures is included. The 33% ratio for quadtrees 
is to be compared to the figures for binary search trees (50%), tries (69%), and quadtries (46%). 

Computing Reviews Classification: E. 1, E.2, F.2.2, G.2.1. 

1. Introduction. 

The quadtree structure is a fundamental hierarchical representation of point data 
in higher dimensional spaces. It was invented by Finkel and Bentley in 1974 [7], and 
it constitutes a natural generalization of binary search trees to multidimensional 
data. Under one form or other, it has surfaced in many different fields, like data 
bases, geographical data processing, graphics and image processing. A comprehen- 
sive treatment of this area of algorithmic design is to be found in Samet’s book [23]. 

We discuss here the (point) quadtrees, for data in 2-dimensional space. More 
precisely, we concentrate on quadtrees that depend on an integer parameter b >, 0 
representing a page capacity, sometimes also called a bucket capacity; small subfiles 
(i.e., with size I b) are represented sequentially into a page instead of being split 
recursively. 

The paged quadtrees that we consider thus naturally occur if one is to maintain 
large collections of data on external storage using the quadtree principle. They can 
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also be useful even as direct (in core) data structures since they build a hierarchical 
cell decomposition: If b is large enough, nearest neighbours of a point are very likely 
to be found in the same cell (page); in this way nearest neighbour queries can be 
answered by a simple local search which is fairly efficient and adaptive. 

Our major results characterize the expected storage occupancy of quadtres. For 
data in random order, we establish that the filling ratio of pages is approximately 
33%, in the sense that the number of pages necessary to store a file of n points with 
b the page capacity is about 3n/b. 

Our precise results are the following. 

THEOREM 1. Given a page capacity b 2 1, there exists a constant Yb  such that the 
expected number of pages for a paged quadtree with page capacity b built on n random 
points satisfies 

(1) P:bl = Y b  n + O(1og n), 

where Y b  is 
I 

with 

b 1 + b(l - Z )  + b(b + 1)(1 - z ) ~  
Eb(2) = Z 

(1 - 2)2 

Table 1 .  Numerical values of the 
constant Yb  and of byb for various 

values of b E [O, SO]. 

b 

0 
1 
2 
3 
4 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 

3 
1.564747 
1.04 1362 
0.776966 
0.618679 
0.5 13623 
0.277208 
0.18969 1 
0.144151 
0.1 16237 
0.0973780 
0.0837832 
0.0735188 
0.0654947 
0.0590496 

1.56475 
2.08272 
2.33090 
2.47472 
2.56812 
2.77209 
2.84537 
2.88302 
2.90593 
2.92134 
2.93241 
2.94075 
2.94726 
2.95248 
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From this theorem, we can determine the values of the constant Yb, see Table 1. 
It may be of interest to note that Table 1 does not result from straight numerical 

integration, which would be conducive to various numerical difficulties. Its deriva- 
tion was first obtained instead by symbolic integration performed by the Maple 
system [3]. For values 1-10 and 15(5)50, the computation took a little over 600 
seconds of CPU time (on a Sun 3 machine performing 3 lo6 instructions per second 
and equipped with 12. lo6 bytes of memory). For instance, we have for b = 50, the 
verbatim form of Yb, 

- 3901507~~ .  
3 159614683170552814765839048751265660686349 

820545673826076765 176005607309978880 

The first symbolic values are given below. 

0 
1 
2 
3 
4 
5 

10 
L 

3 
120 - 12n2 
534 - 54n2 
1422 - 144n2 
5923 3 0 0 ~ 2  -- 

2 

to  
53301 540~2 
252794897 - 3630n2 
-- 

7056 

All these numerical data suggest definite patterns: Yb is a rational function of n, the 
coefficient of n2 has a simple form, and Yb x 3/b for large b. In effect, we have: 

THEOREM 2 (i). The coeficient Yb is a linear function of n2, 

(3) 
b & , = 6 b 2 + 9 b + 1 - 6 b ( b + l ) ’ [ ~ -  n2 c:]. 

j = 1  J 

(ii) Asymptotically, for large b, we have’ 

1 4 2 2 2 2 14 +--- 2 +- +--- 
b 5b2 +sb3 35b4 7bJ 35b6 5b’ 55b’ 

1 5yb = - - - 

On the practical side, we would like to comment on this 33% page filling ratio. 
Often, for a data structure, a relatively low filling ratio can be obviated by a suitable 
allocation policy. Assume for instance, that we choose to implement a paged 
quadtree structure which we design with a parameter b = 60; the pages created are 
called ‘‘logical’’ pages. If we allocate physical pages of capacity fl  = 20, the quadtree 
structure built with logical pages with parameter b = 60 will have each of its logical 

The absolute errors provided by the approximate formula obtained by dropping the O( .) error terms 
are of order respectively lom3, lo-’, lo-* for b = 2,4, 8. 
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pages spread over 1,2, or 3 physical pages. Our analysis (see Section 4 and Theorem 
5 )  enables us to quantify precisely what happens: In that situation, the number of 
disk accesses increases slightly and it is on an average 1.421 145; in counterpart, the 
(physical) filling ratio improves appreciably and becomes close to 0.67273. In 
summary we more than double the occupancy rate at the expense of an increase of 
about 40% of the access time. 

The analysis techniques developed here are of some level of generality, since they 
apply to a fairly general class of additive cost measures on quadtrees. Theorem 
4 discusses statistics on arbitrary node types in quadtrees; as a particular applica- 
tion, we are able to characterize the expected number of pages containing k elements 
(0 5 k s b), and thus attain a precise evaluation of the page occupancy profile in 
paged quadtrees. 

The evaluation of filling ratios is useful in order to assess and possibly optimize 
various allocation strategies. In this spirit, the paper concludes with a brief survey of 
analytical results available for index trees of various sorts. 

To a large extent our Theorem 2 owes its existence to the integration capabilities 
of the Maple system for computer algebra [3] which revealed the unsuspected 
occurrence of closed form expressions involving dilogarithms and made it possible 
to carry out easily rather intensive computations. 

2. Paged quadtrees. 

Our data model assumes data in random order. Without loss of generality, we 
take them independently and uniformly distributed over the unit square 
9 = [O, 11 x [O, 11. Given a sequence S = (Sl, Sz, . . ., S,) of points, S ~ 9 "  we form 
a tree, called a b-quadtree, by the following rules: 
0 If IS1 5 b, then the tree consists of a single external (page) node that contains 

S itself. 
0 If )SI > b, then the first element Sl of S partitions the other elements (Sz,. . . , S,) 

into four subsequences, based on the four quadrants (North- West, North-East, 
etc.) determined by SI, namely SNW,  S N E ,  Ssw, SSE.  The tree associated to S is 
composed of a root which contains SI and of the four subtrees formed recursively 
from the four subsequences S N W ,  S N E ,  Ssw, S S E .  

The standard quadtree of Finkel and Bentley appears when b = 0, and one singles 
out the external empty nodes. A b-quadtree can be alternatively viewed as a stan- 
dard quadtree in which maximal subtrees of size I b are grouped into individual 
pages. With this view, the number of pages or the number of internal nodes of 
a paged b-quadtree are simple parameters of the underlying standard quadtree. Our 
paper is in fact a paper on cost measures on standard quadtrees applied to paging. 

Notations. Given a sequence of numbers ( fn}"  o,  its generating function (GF) is 
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We also use [zn] f ( z )  in order to represent the coefficient of z" in f ( z ) ,  that is 
Cz"1f (2) = fn. 

ADDITIVE FUNCTIONS OVER QUADTREES. We consider here a general additive 
function over standard quadtrees 

4 

(4) 
f [@I = eo, 

with t l ,  t2,  t3,  t4 the root subtrees oft; there e, is a sequence of numbers, called the 
''toll"'. Thus f [ t ]  represents the total cost associated to a tree, when there is a toll 
(depending on subtree sizes) at each node in the tree. 

For instance, if the toll is e, = 1, then f [ t]  is the total'number of nodes in the tree, 
f [ t]  = Itl; if e, = n, we get the path length of the tree. Given the paging parameter b, 
the number of internal nodes in the associated b-quadtree corresponds clearly to the 
toll function 

(5 )  e,= l i f n > b ;  e , = O i f O < n I b .  

In this case, the number of external nodes (i.e., pages) is 3f [ t]  + 1, because of the 
general conservation law on quaternary trees. 

In the sequel, we keep f [ t]  in order to denote a generic tree cost, reserving I [ t ]  and 
P[t] = 3I[t] + 1 for the number of internal and external nodes, when the parameter 
b has been fixed. 

Iff [ . I  is a cost, we let fn be its expectation, when taken over all randomly built 
quadtrees over n data items. The generating functions of the sequences {e,} and {fn] 
are thus 

e(z) = e,z"; f ( z )  = C hz". 
n ; r O  n ; r O  

LEMMA 1. Let {e,} 
corresponding cost as 
related by 

be a toll sequence with eo = 0; le t f ,  be the expectation of the 
deJined by Eq. (4). Then the associated GF's e(z) and f (z)  are 

(1 - t )3  
f ( z )  = 

where E(z) is the modified cost generating function, 

d d 
dz 

E(z) = -z(l - z ) z e ( z ) .  
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PROOF. Let n n , k  denote the probability that a quadtree of size n has its first (e.g., 
NW) subtree of size k. We have [S, 9, 10, 181 

An informal interpretation is that each of the n possibilities, (0, 1, . . . , n - l}, for the 
number of elements going to West is equally likely and has probability l/n; if 
/elements are located West of the root, then each value K E: 10.. .1] of the number of 
elements residing North-West is equally likely and has probability 1/(Z + 1). (We 
refer the sceptical reader to the cited publications for more convincing arguments!) 

With this form of the n n , k ,  the standard recurrence for costs is 
n - 1  

(7) 

where we have taken advantage of obvious symmetries. 

that corresponds to (7), 
Thus, if we go to the realm of generating functions, we find the integral equation 

By differentiations, we get the equivalent differential equation, 

(9) 

where 

d d 
dz 

E(z) = -z(1 - z ) z e ( z ) .  

First, one looks at the homogeneous equation defined by setting E(z) = 0 inside 
(9). 

One method2 consists in solving this equation by reducing it to a degenerate 
hypergeometric equation, as was done for similar problems in [9, lo]: We look for 
an approximate solution of the form (1 - z)", obtain the indicia1 equation 
a2 - 4 = 0 so that a = +2, try a solution of the form f(z)(l - z ) - ~ ,  and find that 
f satisfies the derived equation, 

It is interesting to note that the equation is now in principle solvable by general purpose algorithms 
that determine rational solutions to linear ODES, see e.g. [23. Some amount of human interaction is 
however still needed since we impose additional analyticity requirements around 0. Also, the general' 
reduction of a quadtree analysis to hypergeometric equations is an especially effective and general tool 
[9, lo], so that we have decided to reduce ourselves to this form instead of directly involking a deus ex 
machina formula, &) = (1 + 22)/(1 - z ) ~ .  
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This equation can be matched against the standard hypergeometric equation [27], 

d2 d 
dz dz 

z(1 - 2): Y(z)  + (c - (a + b + 1)~)- Y(z) . -  abY(z) = 0, 

by taking c = 1, a = - 1, and b = - 2. Thus, we get for .f the special hypergeometric 
form 

f ( 2 )  = 2F1[- 1, -2; l;z] = 1 + 22. 

The whole process thus provides us with the particular solution to the homogene- 
ous associate of (9), 

1 + 22 
when E(z) = 0, P<Z> - - 

(1 - 2)2 
&d = (1 - 2)2 , 

another independent solution being discarded as it has a logarithmic singularity at 
0. 

Returning then to the inhomogeneous equation, we proceed by the ‘‘variation- 
of-constant” method. We seek a solution of the form A . ( z ) . ~ ( z )  = ;l(z)(l + 22)/ 
(1 - z ) ~ .  By construction, Z(z) satisfies an ODE of order 1, hence, we recover the 
solution to the original equation by two quadratures, the result being as stated 
above. 

PAGING. If we specialize to the case of the number of pages in a b-quadtree, we get: 

Lemma 2. The generating function for the expected number of pages in a b- 
quadtree is 

E(u)dv dt, 1 3(1 + 22) 1’ (1 - t)3 [ 1: + 20) 
- u)2 

+ 1 
P(2) = 

1 - 2 (1 - 2)2 0 t(l + 2t)2 (10) 

with 

1 + b(l - 2) + b(b + 1)(1 - z ) ~  
E(z) E E&) = zb (1 - 2)2 

PROOF. This is a simple application of the previous lemma. The tolls for the 
number of internal nodes in a b-quadtree are the e, given above (5), with GF equal to 

d d zb+’ 2b+ 1 

and E(z) = -z(l - 2)--. dz dz 1 - 2  e@) = 
1 - 2  

We derive in this way I(z) by Lemma 1. By the conservation law of quaternary 
trees, we finally have P(z) = 31(z) + 1/(1 - 2). 
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This expression would in principle enable us to express in “closed form” the 
average number of pages (see [ S ,  181 for related computations done independently 
via a recurrence approach). We prefer however a direct route to asymptotics based 
on the usual method of singularity analysis [ll]. 

SINGULARITY ANALYSIS. The general principle is that the asymptotic behaviour of 
coefficients [z”]P(z) can be determined from the asymptotic form of the function P(z) 
around its dominant singularities. The conditions are based on analytic continu- 
ation. They make it possible to transfer on a term-by-term basis from asymptotic 
elements of P(z) to matching asymptotic elements of [z”]P(z). 

Here, from either the differential equation and general theorems [26],  or more 
explicitly from the integral representations, we see that P(z) has a unique isolated 
logarithmic singularity at z = 1. Thus P(z) is analytically continuable outside its 
circle of convergence, say in lzl < 2, lArg(z - 1)1 > n/4., Also, from the integral 
representation, there results that, in this region, 

P(z) = yb / ( l  - z)2 + O((1 - z)-l log(1 - z)-l) (z + 1). 

By the techniques of singularity analysis, this local expansion together with the 
analytic continuation of P(z) outside its circle of convergence are enough to make 
legal the term-by-term transfer to coefficients, namely 

P, = yb’n + O(l0gn). 

This therefore completes the proof of Theorem 1. 

LEAVES IN QUADTREES. In order to shed some light on the internals of the 
computation, we examine the determination of the expected number of leaves in 
a randomly grown quadtree. In that case, we have b = 1, and look at internal nodes. 
With our earlier notations, the corresponding GF is I(z); the expected number of 
leaves is then n - [z”]I(z). 

The interest of the computations that follow is to introduce a special function, 
namely the dilogarithm. 

For b = 1, the function E(z) is equal to - 1 + 22 + ( 1  - z ) - ~ .  The inner integral 
yo.. . dv in (10) is then found to be 

t(t - 2)(4t2 - 7t  + 4)  
- + 810g(l - t). 

(1 - t)3 

Multiplying by (1 - t)3t-1(1 + 2t)-2,  and integrating, we find a sum of two terms, 
one corresponding to the rational part, the other to the logarithm. The part 
corresponding to the rational term is a standard elementary function. 

Recall the definition of the dilogarithm as 
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Li2(z) = j:log(l- t)-1- dt = c F .  zk 

(We refer the reader to Lewin's classic treatise for a full exposition of the theory of the 
dilogarithm [20] or to Berndt's review of its main properties in [l, Chap. 91.) 
A dilogarithm arises from integration of the logarithmic term, 8 log(1 - t), multi- 
plied by the element l / t  that comes from the partial fraction decomposition 

k = l  
( 1  1 )  

1 1  27 ----- - ( 1  - t)3 
t(l + 2t)2 t 4 4(1 + 2t)2 * 

All computations done, we get 

COROLLARY 3. The generating function for the number of non-leave nodes in 
a randomly grown quadtree (b = 1) is 

~ ( 2 8  + 132 - z2) 
( 1  - 2)2 

20 + 42 1 + 22 
iog(i - zj  - 8 

1 - 2  (1 - 2)2 
Li2(z), (12) I(z) = + 

with Liz(#) the dilogarithm function. Thus, 

4 4 4 4 4 
3n3 5n4 15n5 7n 2ln' [zn]I(z) = (40 - 4n2)n + 13 - 3n 4 2  + - - - - - +,+- 

In particular, the proportion of leaves in a random quadtree of size n is asymptoti- 
cally 4n2 - 39 = 0.47841762. 

PROOF. (Sketch) Here we obtain directly the asymptotic form I,, - yrn, with 
yr = limz+l(l - z ) ~ I ( z )  = 40 - 4n2. (We also have y r  = y,/3 in terms of our stan- 
dard notations.) The result for leaves follows by complementation to n of the 
number of non-leaves. w 

An entirely similar process applies to the problem of estimating the number of 
pages for an arbitrary b. The occurrence of the dilogarithm which satisfies 

"explains" the presence of n2 in the explicit forms of y b  given in the introduction. We 
shall see that such a treatment can be extended to arbitrary node types. 

From the exact form of l(z), we also observe that the coefficient [z"]I(z) is 
expressible in terms of the harmonic number ("(1) and the generalized harmonic 
number ("(2), where 
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Such expressions were obtained by Laforest et al. [17, 181 using a direct theory of 
quadtree recurrences from [5] which constitutes an alternative to our Lemma 1. 
A fine result of [17] is.that the proportion of nodes with one non-empty subtree is 

We are going to elicit the finer structure of Y b  as a function of b in the next section. 
(24((3) - 156((2) + 228) = 0.239651. 

3. The occupancy constants Yb. 

Our approach now consists in computing the generating function of the numbers 
Yb.  The following lemma provides a more direct access to the numbers Yb that avoids 
integration, and also proves that Yb has a rational expression in terms of n2. 
Analysing the singularity of the GF of the Y b  further provides detailed asymptotic 
informations on these coefficients. 

I 

LEMMA 3. The generating function y(u) of the numbers Yb defined by 
y(u) = Cbm,o ybUb is given by 

3 
* [ ( - 4 ~  - 2~ 2 2  )X + (1 + 3 0 ~  - 27u2 - 4u3) Y ( 4  = (1 - u)4 

+ (-6 - 24u + 30u2)log(l - u) + (24u + 12u2)Li2(u)]. 

PROOF. Define the basic integrals 

dt. (1 + 2v)  
= Jol [Io (1 

These serve as the basis in which to express the generating function y(u). From the 
summations 

d2 1 , Cm(m - l)*umvm = u2- 
d 1  , C m * u m v m = u -  

1 C u m v m  = 
m 1-uv du 1 - uv du2 1 - uv’ 

and the integral representation of Yb,  we find that 

d d2 d 
du du du +y(u) = Jo(u) + U - - J l ( U )  + u2-+2(u) + 2U--J,(U). 

Our problem is thus reduced to computing the quantities Jo, J1, J2.  
In principle, the problem resembles the computation in our earlier section; see for 

instance the particular case of counting leaves. It is however complicated by the 
extra factor (1 - that introduces an additional singularity in the computa- 
tions. 

Preliminary investigations performed with the Maple system first revealed the 
possibility of an explicit solution that involves dilogarithms. Once this has been 
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recognized, it is possible to carry out the double integration. Minor computer 
algebra difficulties arise from several sources: certain normal forms provided by 
integration routines sometimes introduce transformations of the form 
bg(1 - t) H log(t - 1) + log( - 1); the solutions, though representing generating 
functions, may have apparent singularities at 0 that need to be eliminated; finally, 
some of the expressions obtained involve the dilogarithm under a form that is 
singular at 0. 

We dispense ourselves from giving here all the explicit forms of the J,  and the 
partial integrals involved. Once found by whatever means, they are all that is needed 
in order to reconstruct a complete proof of the expression given for y(u), since the 
correctness of integrals can always be established by differentiation. We briefly 
discuss in the Appendix the sequence of steps neded to obtain y(u) using the Maple 
system. 

In passing, the solution there is expressed in terms of Maple's version of the 
dilogarithm function 

* (1 - 
k2 

dilog(u) = Liz(l - u) = 
k = l  

The reduction to a standard dilogarithm, evaluated near 0, is achieved via the well 
known transformation formula (whose proof is a single integration by parts): 

rG2 
6 

Li2(l - z) + Li&) = - - log 2 log( 1 - z). (13) 

From this, the proof of the lemma follows. 

From Lemma 3, explicit forms of the y b  are derived. The principle is to express the 
GF y(u) in the basis of functions 

d 
du 

where orepresents the differential operator B(f(u)} = - {uf(u)}, the coefficients of 

these functions involving generalized harmonic numbers, since 
1 00 

We find 

1 + 1 3 ~  - 2u2 u(2 + u) 
(1 - u)" * 

- 2n2 
(14) :y(u) = 6[p - 821 { 1 - u  Li2(u)} + (1 - u)3 

It is an easy matter to expand y(u) from this form. This completes the proof of Part (i) 
of Theorem 2. 



PAGE USAGE IN A QUADTREE INDEX 395 

The asymptotic form of Y b  next results from singularity analysis. There is a full 
asymptotic expansion of ~ ( u )  around u = 1. The term Li2(u) is expanded using the 
basic functional equation (1 3). In this way, we find 

(15) +y(u) = CLidu) + &I + (1 - u)[$Lil(u) + .f3] + (1 - u)2[QLi1(u) + &] + ... 
where Lil(u) = bg(1 - u)? Using the identity 

(- l)&k! [u"](1 - u)& Lil(u) = 
m(m - l)(m - 2). . . (m - k) ' 

we map the singular expansion (1 5) into a matching expansion for y m  = [um]r(u), the 
conditions of analytic continuation being clearly satisfied here. In this way, we get 

*. ., - 1 1 l !  2! 5 y m  = - - $ *  + 3. 
m m(m - 1) m(m - l)(m - 2) 

which can be normalized into a standard expansion in descending powers of l/m. 
This completes the proof of Part (ii) of Theorem 2. 

4. Node types. 

The same methods make it possible to analyze the number of occurrences of nodes 
of arbitrary composition in quadtrees. Assume we look for the expected number of 
nodes v in a random tree of size n such that the subtree rooted at v has a fixed shape 
u). This corresponds'to a toll sequence Zn such that Zn = 0 for all values of n # 101. 
For p = 101, Zp is a rational number E, equal to the probability that the tree shape 
co occurs as a randomly built quadtree on p elements. That probability is comput- 
able inductively over subtrees using the form of splitting probabilities [9] 

1 
n - n !  

(nl + n2)!(n3 + n4)!(nl + n3)!(n2 + n4)! 
n,  ! n2! n, ! n4! 

=--- % ,n2,n3, n4 9 

which represents the probability that the ( N W  NE, SK SE) root subtrees have sizes 
nl ,  n2, n,, n4, respectively. If o = (r; tl, t 2 ,  t 3 ,  t4) is a tree with root r and t j  as root 
subtrees, we have 

E, = nltll. lt2li It3lv It41 E,1E,2E,3E,49 

together with the initial condition E, = 1 if 101 
Thus, we find the toll generating function Z(z) = E,z~, with p = 101, where E, is an 

easily computable rational number. If we compare this to the toll GF considered 
earlier in connection with paging, eb(z) = zb+l/(1 - z), we see that 

1. 

&) = &oCel,I-l(z) - elal(z)l* 
By linearity of the cost transform (Lemma l), we get: 
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THEOREM 4. Consider an arbitrary node type dejined by a tree shape co. The expected 
number of nodes of type co admits the asymptotic form 

(nE,P)CYI,I - 1 - Yl,ll, 
where E, E Q is the probability of tree shape co amongst all quadtrees of size 101. 

The coecfficients are therefore Q-linear combinations of 1 and n2. 

This generalizes results of Laforest et al. [17,18] who studied nodes having 
a single child. (Full asymptotic expansions for the number of nodes of a given type 
could also be obtained in the style of Corollary 3.) As a check, we can also retrieve the 
expected number of leaves, corresponding to Icol = 1, which leads to the asymptotic 

The Y b  thus appear as fundamental constants in the analysis of quadtrees. From 

THEOREM 5. In a paged b-quadtree, the expected nvmber of pages containing 

form (n /3 ) (~0  - YI). 

them, one can determine the proflle of page occupancy. 

k elements, 0 I k I b, is of the asymptotic form 7 b . k '  n, with 

1 
n 

where H,, [,,(l) = 1 + f + . . . + - is the standard harmonic number. 

PROOF. As an application of Theorem 4, we first count the expected number of 
pages that satisfy the conditions: (i) they are' a leftmost child; (ii) they contain 
k elements; (iii) their father is the root of a subtree with m elements for some fixed 
m > b. Using the form of the splitting probabilities n m , k  = (Hm - Hk)/m, we find that 
the asymptotic proportion of such pages is 

The constant Y b , k  is obtained by multiplying by 4 (to take care of all four child 
nodes) and summing over all values of m from b + 1 to co. In this way, we see that 

The constants A, B could probably be found by direct summation. However, it is 
simpler, once their existence has been recognized, to identify them by means of 
conservation laws for nodes. We have 

Yb 
b b 

C Y b , k  = Y b  and k ' 7 b . k  = 1 - 3- 
k = O  k = O  

(17) 

The first relation expresses that a page contains a certain number k of elements for 
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Some k E [ O  . . b]; the second relation consists in estimating the proportion of el- 
ements contained in pages either as non-internal elements (whose proportions is 
1 - Yb/3) or based on the size of the page that contains them. 

We use the easy relations 

Hk = (b  l)(Hb+ 1 - I), kHk = ib(b + I)&+ 1 - $b(b + l), 
k s b  k S b  

and then solve for A and B the system (17). In this way, we obtain the values of A, 
B and the statement of the theorem follows. 

?lo, 8 = 0;01305, ~ 1 0 ,  g = 0.01 112, ylo,10 = 0.00938. 

All these constants have again exact forms that are expressible as functions of z2. It is 
from them that we can analyze arbitrary page allocation strategies; see the example 
given in the introduction with b = 60, @ = 20 and the corresponding Figure 1. 

1.0025 

Fig. 1. The sequence of constants Y b , k ,  when b = 60. For instance, the total number of pages is about 
0.049n x 420 since y60 = 0.04933. The number of empty pages is about 0.0028n B n/355 and the 
number of full pages is about 0.00027n x n/3636, so that roughly n/60 records in a tree are to be found in 

a full page. 
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5. Conclusions. 

We conclude this paper with a brief overview of some major algorithms for 
maintaining dynamic tree structures in a paging environment. There are two major 
categories since structures are built either based on order properties of the data - the 
comparison based data structures - or on digital properties. Some of the trees are of 
fixed degree (2 or 4 depending on the dimension of the data space: binary search 
trees, tries, quadtrees, etc.); others have a branching degree that varies with b (e.g., 
for B-trees it varies between b/2 and b; for m-ary search trees, it is equal to rn with 
m = b + 1, etc.). We refer to either Sedgewick’s book [24] or to Gonnet’s encyclo- 
pedia [14] as general sources on the algorithmic aspects. Average case analysis 
techniques are reviewed in [25], and tree models in [29]. 

Each analysis of storage occupancy normally poses an interesting mathematical 
problem. In this quick review, we also mention the major mathematical techniques 
at stake. , 

COMPARISON-BASED STRUCTURES. Binary search trees [ 16, Sec. 6.2.2) are the 
simplest structures to analyse. We consider the strategy already discussed for 
quadtrees whereby a maximal subtree of size s b is stored into a single page. It is 
then found that the expected number of pages is asymptotic to 2n/(b + 2). In other 
words, storage occupancy is near 50%. The generating function equations are 
simpler in this case. The main equation is of the form 

This reduces to a diflerential equation of order 1 that can be solved by quadratures. 
Many parameters can be analyzed in this way by varying the “toll” GF. The model is 
the same as the one underlying Quicksort, see Knuth’s book [16, p. 121) and 
Hennequin’s thesis [lS]. In particular, we find that the number of pages containing 
r elements is - 2n/((b + l)(b + 2)) for r E [0 . . . b]: In other words, pages with filling 
type O/b, l/b, . . ., b/b are all equally frequent. 

The storage occupancy of search trees whose degree is rn = b + 1 (a node contains 
b keys and b + 1 pointers) is investigated extensively by Mahmoud and PittelC211. 
The cost generating function satisfies a linear differential equation of order b, 
namely 

The analysis is made possible because there is a regular singularity at z = 1. It is 
found (see also [ 16, Ex. 6.2.4. lo]) that the number of nodes in the tree is on average 

n 
N with H,,, a harmonic number. 

2(Hb+ 1 - 1) 
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Storage utilization tends to 0 as b gets large! In fact, Mahmoud and Pittel obtain 
asymptotic distribution results, a rather remarkable fact, since this requires ana- 
lyzing a non-linear difference differential equation of high order. 

The efficiency ofm-ary search trees (rn = b + 1) gets quite low as b becomes large, 
However, balancing is a good solution with guaranteed worst case performance (at 
worst 50%). Yao [28] has shown that for B-trees of large order that are balanced the 
storage occupancy rate approaches log 2, the number of nodes being approximately 
=n/blog2. A number of variations to multiway trees have been proposed, for 
instance Poblete and Cunto's [4], and we redirect the reader to [ 14) for an extensive 
bibliography. 

Yao's paper [28] is well known as the source of so-called fringe analyses that are 
based on Markovian approximations and matrix analysis. Mathematically, our 
results regarding quadtrees have been based on an integral transform (Lemma 1) 
that permits to resolve algebraically a wide class of cost functions on quadtrees; they 
further rely on singularity analysis and on special functions (the hypergeometric 
equation, the dilogarithm). Quite clearly, the approach taken here is general and 
applies to almost any conceivable additive parameters on quadtrees. 

DIGITAL METHODS. Digital methods use a separation principle based on bits of 
records (or their hashed values). The paging of small subfiles is analyzed by Knuth 
using methods partly suggested by de Bruijn, see Section 6.3 of [16] and the methods 
of pages 131ff. there. The equations are diflerence equations of the form 

f(z) = e(z) + 2ez12f(z/2). 

The treatment relies on iteration and Mellin transforms. The number of pages in 
a trie involves some small oscillating terms, and neglecting them, it can be approxi- 
mated by n/(b log 2), refer to Exercice 6.3.20 of 1161, and read between the lines. The 
analysis is also relevant to dynamic hashing schemes [6, 191. The same analytic 
principles apply to quadtries whose evaluation is isomorphic to that of rn-ary tries 
for rn = 4. 

The digital tree structure can be extended by letting nodes contain up to b el- 
ements, but still retaining the binary branching principle. The corresponding equa- 
tion becomes a difference-differential equation 

db T f ( z )  = e(z) + 2e212f(z/2). 
dz 

Mellin transforms and singularity analysis are the main ingredients of that analysis. 
Apart from fluctuations, the number of pages is found [13] to be of the form 
n/(b log 2). Thus, the ratio of 69% strikes again here. 

For completeness, we have also tabulated some of the formulae for extendible 
hashing and grid files access methods. They concern the size of the directory which 
exhibits a non-linear growth of the form nB, f l >  1. However, the non-linearity factor 
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1-dim 

L 

2-dim 

Comparison based 

Binary search tree, C0.5) 
2n/(b + 2) 

m-ary search tree, C0.01 
(m = b + 1): n/(2(Hm - 1)) 

Balanced B-tree, c0.691 
n/(b log 2) 

Quadtree, CO.331 
= 3n/b 

I 

Digital 

Binary digital trie, C0.691 
n/(b log 2) 

Paged b-digital tree, C0.69) 
R n/(b log 2) 

Extendible Hash directory, c0.01 
~ 4 b -  1n1 + 1lb 

Quadtrie, c0.461 
3n/(2b log 2) 

Grid file directory, C0.0) 
1 + l /(Zb+ 1) 

f a n  

Fig. 2. A summary of some major paging strategies for trees and their expected performance in 
asymptotic form. There n is the file size, and b represents the page capacity in terms of records that a page 
can contain. The number in brackets, Cp], represents a numerical approximation of the filling ratio p such 

that the expected storage occupancy varies like n/(bp). 

is of the rough form nilb, so that the observed behaviour is practically linear 
provided small values of b are avoided. The estimates are due to Flajolet [8] and 
Regnier [22]. They are based on occupancy statistics, saddle point estimates and 
Mellin transforms. 

Results in this paper indicate that, under paging conditions, trees of low degree 
(binary search trees and tries, quadtrees and quadtries, generalized digital trees) 
compare very favorably to trees with high branching degree, except when balancing 
can be maintained. A variety of methods from discrete mathematics have surfaced in 
the analysis of storage occupancy for tree data structures. The methods employed 
here constitute yet another illustration of the power of differential equations in 
conjunction with singularity analysis techniques in the area of the average case 
analysis of algorithms which were introduced in [12]. 
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APPENDIX 

Computation of y(u). 

We indicate here the sequence of steps needed to obtain the generating function 
y(u) of the paging constants Y b .  The final form involving a dilogarithm is the subject 
of Lemma 3, and it is from there that the explicit form of Y b  stated in Theorem 
2 follows. 

The computation by hand would be rather horrendous. The computation was 
performed with the help of the Maple system, and it involves on the part of the 
system fairly non trivial integration and simplification capablities. 

We concentrate here on the determination of the function Jo(u) defined in the text. 
What is needed is a double integral. Set 

' (1 + 2u) du z (1 - t)3 
o ' t ( 1  + 2t) 

and Il(z;u) = 2 0  I (t; u) dt. 
- 0)" 1 - ut, 

First the integral Io(t;  u) is computed as the primitive function of a rational function. 
The result involves a Q(z, u) rational form in various logarithms, and its length as 
provided by the Maple system is 738. Another level of integration yields Il(z; u): the 
resulting expression involves logarithms and dilogarithms, 

log(z), log(u), log(1 - z), log(1 - uz), log(1 + 24, Li2(z), Li2(uz). , 

The resulting expression is quite large, having size 1995. 
The next step consists in determining Jo(u) as limz.+l Il(z; u). This is achieved via 

the use of the limit function which "knows" properties of the dilogarithm, like 
Li2(l) = n2/6, and the corresponding expansions. The process needs to be 
monitored for a number of reasons. One has to make sure that no singularities occur 
during the integration process defining Jo(u): the Maple system elects not to make 
this assumption by itself, thus we compute Jo(u) = limz+l Il(z; u). Also, the normal 
forms used by the system for indefinite integration introduce the transformation 
log(1 - U)H log(u - 1) + in; in order to recover the suitable branch of logarithms 
we perform a substitution that involves log(u - l )wlog(l  - u) and iwO,  and 
whose validity can be checked via series expansions. Eventually, one arrives at the 
final form of Jo(u), 

2 2  [(-2u3 - 4u )n + (-24u2 - 6u + 30u3)log(l - u) 

+ (12u3 + 24u2)Li2(u) + 4 - 15u + 54u2 - 43u3]/12(1 - u)" 

The other two functions Jl(u) and J~(u) surrender themselves similarly, and we 
derive a suitable form of y(u) after a couple of minutes of computing time and 
a couple of hours of human interaction. 


