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Abs t rac t .  We present three classes of random tree models tbat occur in the average case 
analysis of a variety of computer algorithms including symbolic manipulation algorithms, 
rompilling, comparison based searching and sorting, digital retrieval techniques, ble systems 
and communication protocols. Each model carries a coherent set of algebraic and analytic 
techniques, whicb we illustrate by reviewing a few characteristic examples. 
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Introduction 
In purely graph-theoretic terms, a tree is a connected acyclic (undirected) graph. The 
number of nodes in the tree is called the (total) size of the tree. As is familiar from data 
structures and basic algorithms [Knuth 19733, Isedgewick 19631, a tree is a convenient way 
of representing a hierarchical object of some sort. As opposed to sequential structures (eg. 
list organizations), trees have the benefit of allowing dichotomic access to the information 
items of the structures they represent. L i e  many l i e d  structures but unlike arrays, they 
are also easy to update. 

Trees usually considered in computer science are trees in the general sense, but with 
some additional structure: (i) A node is individuated bs the root of the tree. (ii) Subtrees 
attached to a node are ordered between themselves. This is equivalent to specifying a tree 
together with its plane embedding, and distinguishing subtrees dangling from a node with 
a left-bright order. In this way, the general class of (rooted plane) trees 5 has a simple 
recursive specification: A single node is a tree; a new tree is obtained by appending a root 
to a sequence of trees already in 5. A particularly important subclass is the class B of 
binary trees in which every node has (out) degree 0 or 2. 

T r w  are also normally a structure superimposed on existing information items: 
records or Ykeys", operation symbols, program constructs, functional symbols etc. h 
other words, they are labelled trees. An algorithm may either use a tree as a direct repre- 
sentation of its input (this is the case for expression trees, terms), as an intermediate data 
structure whose design is meant to  obtain fast processing of the data by allowing dynamic 
dichotomic search (a binary eearch tree or a digital 'trie" are of this type). A data model 
or input model specifies a probability distribution over trees of size n, The simpleat model 
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conceptually is the uniform model in which all trees in 5 or 8 of size n are taken with 
equal probabilities. 

There is an alternative, sometimes more convenient, way of viewing random tree 
models as splitting process@ determined by splitting probabilities, which we explain in 
the binary case. A group C (with JGI = n) is split recursively into two subgroups L (for 
left) and R (for right), where ILI + IRI + A = IC/. There A is 1 or 0 depending on whether 
internal nodes contain informations (retain elements of G) or not. The process is fully 
characterized by its splitting probabilities 

Xn,k = Pr{ ILI = k / IC1 = n} 

and a ”termination rule”, which is usually IC1 5 1. The three basic models we consider in 
this paper are: 

1. The uniform (binary) model, where all binary trees of size n rue taken equally 
likely. It has A = 1, and will be seen to correspond to the splitting probabilities: 

2. The binary search tree model has A = 1 and 

1 
n 

Zn,k = -. 
3. The digital trie model has A = 0 and splitting probabilities given by 

l n  
“n,k = -( 2” k ) (3) 

The next three sections will explain the relevance of these models to applications, dis- 
c u s  a few related models, and provide typical examples of analytic resolution techniques. 
Detailed references and fairly comprehensive expositions of our subject appear in [Flajo 
let 19851 and [Vitter, Flajolet 19871. ’ 

1. Uniform Models and Variants 
A formal (well-parenthetized) expression l i e  (z + logy)/J= is naturally repre- 
sentable by a tree with a binary root (labelled with “/”), and two root subtrees correspond- 
ing to the left and right operands, and recursively constructible in a similar way. That 
expression can be represented is a term appearing in prefix form as / + z log yfiy log z, 
and in Lisp notation it will be a Yist” (/ (+ z (log y)) (J(* y (log z)))), also internally 
represented as a (binary) tree. Many algorithms operate on such formal expressions. In 
its code generation phase, a compiler will need to generate low level instructions corre 
sponding to the evaluation of the expression, and assign registers. A symbolic algebra 
system may have t o  apply to this expression a transformation l i e  6. Theorem proving 
applications and inference systems will also typically perform transformations on tvms of 
a similu form. 

Models in this section aim at analyzing, in the averagc case, algorithms of this sort, 
as L function of their input size. If n is a fixed set of functional symbols, the set of terms 
construcible on p, 7 = Tin], is defined in an obvious way. The simplest input model 
consists in analyzing algorithms under the assumption that all trees in 7 with size n arc 
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taken equally likely. It is called the uniform model or combinatorial model (relative to 
n or Tln]), and sometimes ab0 the “static” model, in contrast to the “dynamic” binary 
search trcc model of the next rection. 

A more wphkticrted model may assign a weight w[f] to any individual symbol f E n, 
and we may wish to reflect in this way the fact that one symbol m twice M frequent as 
another one. If t E 7 of size n comprises symbols f l ,  f2,. e. In, then weights are extended 
multiplicatively and we take w[t ]  = w(/~]w[f~J..-w[~,,]. If W,, designates the n o d i z i n g  
constant Wn = wli], tree t will be taken with probability wlf]/W,,. Such a model 
is called a weighte model. Weighted models should be expected to give more accurate 
predictions than uniform models. If each individual weight satisfies w[f] = 1, we get back 
the combinatorial (uniform) model. If w1.1 is a probability distribution over n, then the 
weighted model resembles a branching process conditioned upon the size of the resulting 
tree, a fact that will be discussed later. 

It turns out, fortunately, that the analytic techniques needed for uniform and weighted 
models are entirely similar. Thus, to  simplify the discussion, we shall mostly concentrate 
on uniform models. The binary case leads to a model that can in many caws be solved 
exactly using generating function techniques. In all generality, however, complex anal- 
ysis techniques are required and they lead to  asymptotic expansions for apectations of 
parameters (random variables) of interest. 

PROBLEM 1. Determine the number of binary trees with m binary modes (hence m + 1 
external nodes and total size n = 2m + 1). 

Let B,, be the number of trees with total size n. We have Bo = 0, BI = 1 and, by 
looking at  all pwsibiiities, 

Bn= BIB,. 
- -- I + r + l m  

The convolution equation is solved by introducing the ordiary generating function (OGF) 
B(z )  = &, Bnzn which satisfies, by (l), 

J 

B(2) = 2 + Z B l ( Z ) ,  (2) 

and solving the quadratic equation, we find 

1 - 4-2 
22 * 

B(z)  = 

A standard Taylor expansion of (1 + z)1/2 nhows that 

BZm+l = bm where bm -rm)- 1 
m + l  m 

Asymptotically, Stirling’s formula yields 

4m bm - - 

(3) 

(4 )  

(5) 

The numbers 6 ,  are known as the Catalan numbers. They first occurred in works 
of Euler and Segner (around 1753!) and are of fundamental importance in combinatorial 

Looking back at our previous equatiozm, we see that the 8, are first dehed  by a 
convolution recurrence that nfiectr the recursive dehition of tmf. Introducing generating 

analysis. I 
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functions shows that B(z )  is M algebraic function, with singularities of a squareroot type. 
Finally, asymptotic analysis shows that En - XAnn'SIa. We are going to see how to 
extend these observations to the case of an arbitrary function symbol set n. 
PROBLEM 2. Determine the number of trees of size n in a family T defined by R. 

Let q5k denote tbc number of functional symbols in R that have arity equal to k, and 
introduce the structure polynomial @(u) = c&t$kuk. Let T,, be the number of trees of 
sue  n. There is a convolution equation 

which shows that the OGF T ( x )  of the T, is defined implicitly by 

T(E) = Z G b ) ) .  (7) 

Equation (7) shows that T(z) is an algebraic function. In general, it cannot be solved in 
closed form. However, T(z) is a solution of an equation P ( r , T ( z ) )  = 0 where P ( z , y )  = 
0 - zd(y). By the implicit function theorem, that equation has a solution that is locally 
analytic around E = 5 with T ( z )  = r provided PL(s,r) # 0, the dependence between z and 
T ( z )  being there locally linear: 

P:(s,r)(z - s) + Pi(T(z) - r )  - 0. 

From that observation, we find the dominant singularity p of T(z) as p = r /d ( r ) ,  where 
r is the smallest positive solution of the equation d(r )  - r#(r)  = 0. Furthermore around 
( r , T )  = ( p , r )  the dependence between z and T is now locally quadratic. Hence 

(z - p) - c (?'(E) - r)'. (8) 

More precisely, a full expansion can be obtained (this is the dassical Puiseux expansion 
in fractional powers of an algebraic function around a singularity), and we find that T ( z )  
admits the expansion 

T ( z )  = R (m where R(u) = HO + Hlu + Rau2 + * e .  (9) 

In particular around E = p, T ( z )  is of the form HO + HI \/i7. 
The Darboux method in asymptotic analysis [Henrici 19771 guarantees that, for a 

function with only algebraic singularities on its circle of convergence, a singular uymg 
totic expansion (9) of the function can be translated term by term into an asymptotic 
expansion of the coefficients. The coefficients of & have a known asymptotic form 
(see Problem I ) ,  hence 

The above derivation is due to Meir and Moon 11978). It relies on classical singular 
expansions of algebraic functions, and also on Darboux's theorem whose proof is itself 
based on Cauchy's formula 

(111 
! T , , = % / T ( z ) w .  1 d Z  
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The use of this type of technique in graphical enumerations goes back t o  the important 
paper of P 8 y r  {LQ37{. R 

PROBLEM 3. Determine the Urpectations, w a function of n, of inductive vduations over 
tree structures. 

Tbere is an clus n€ tm puunekm (random variables, "valuations") that 
covers many elementary statistics oyer treea. Let ult), vlt], wlt) be functions from trees to 
red numbers. To A valuation ult], we associate the generating function 

U ( 2 )  = ult)r'*' 
*E7 

SO that the coefficient Un = ( tn]U(z)  is the cumulated value of .I.] over ail trees of site n, 
and on = Un/Tn is the corresponding expected value. Then, from convolution equations, 
we find "translation rules" from valuations t o  generating functions. For instance, when 
T = 8 ,  the class of binary trees, we have: 

(12) 
rltJ = .It] + w[t] 4 U ( 2 )  = V ( 2 )  + W ( 2 )  
sb] vltldt] w[tri&ht] e U ( z )  = zv(Z)W(z). 

In particular, if ult] is defined inductively oyer subtrees in terms of a simpler valuation 
ult], we derive from (12): 

For instance, path length hi defined inductively over mbtrecs from the size function ult] = 
ltl, urd we find -_ 

3 n + l  2n 
. n + l ( n )  

Wan+, = 4n - - 
In the same way, there is an extension to famiiia T = T[n ] ,  for which the relation between 
U ( s )  and V ( t )  becomes 

I 

A typical example of application ISteyaert, Flajolet 19831 is to counting occurrences of a 
b e d  pattern tree P inside trees in 7: The valuation "number-ofoccurrences" is defined 
inductively from the valuation "rootoccurrence", itself defined inductively oyer subtrees. 
In this manner, pattern matchiing algorithms on term trees can be analyzed. Another a g  
plication IFkjolet, Steyaert 19871 is to symbolic differentiation whose cost is decomposable 
over subtrees and found to be always O(nSIa). I 
PROBLEM 4. Determine the expected height of a random b h q  tree with n internal 
nodes. 

This problem lies analytically deeper than the previous ones. Though height of a 
tree can be defined in terms of the heights of root rubtrees, t h e  definition involves a max 
operation that is not amenable to the t ru tment  given in the previous Kction (Eq (12), 
(13)). From a computational point of view, the height parameter hi of interest rn it 
represents the maximum stack size neceasq for a m u n i v e  traversal of the tree. 

In this problem, we take the size of a binary tree to be the number of its internal nodes. 
Height is defined as the kngth of the longest branch from the root to an &ern11 node (or 
kd), with the convention that a tree of size 0 has height 1. We kt bh,,, be the number of 



binary trees with beight ai mast h m d  durn. with OGF bh(z) = c, bh,,s". The problem 
is to  determine the expected height R,, = E. {b,,, w k  B, = &tlPn heightit] satisfies 

The difficulty comes from the fact that the bh,,, satisfy non-linear nhhistory" recurrences for 
which no closed form nolution is likely to  exist. Our presentation follows [Flajolet, Odlyzko 
19831 (see [Brown, Shubert 19841 and IKolchin 19861 for related treatments). 

From basic combinatorial decompositions, we derive the recurrence 

and the OGF of H ,  is related to the bh(t) via 

with b(t) the fixed point of recurrence (16a) and also the OGF of the Catalan numbers: 

1 - G  b(t) = b,r" = 
n>O 22 - 

Function B ( z )  is expected to be singular at L = 1/4 since H, 5 nb, and by (S), b, 
grows roughly l i e  4,. The attack consists in establishing the behaviour of B(z)  in a 
neighbourhood of z = 1 / 4  and analysis will reveal that 

(174 
1 

1 - 42 
H ( t ) - C  lop- as z +  144. 

The estimate of H ,  will be completed if we can "transfer" the asymptotic equivalence 
(17a) into an asymptotic equivalence for coefficients: 

(176) 
4" 
n 

H , - C -  as n-cq 

and, if this is granted, we get for the expected height n, - C G .  
Darbow's method is one way of ensuring the transition from (17a) to (17b), but 

it requires differentiability conditions on error terms that are rather stringent for this 
application. Tauberian methods are not applicable since they apply to functions that 
are large around their singularity (while the remainder term implicit in (17a) is small) 
and, in addition, require side conditions that would be hard to establish on m o r  turns. 
Thus, we take anothtr route, suggested by [Odlyzko 1982]. It consists in establishing 
approximation (17a) in an area of the complex plane that extends beyond the circle of 
Convergence (21 = 1/4 of R(s) ,  using Cauchy's formula (11) with a contour of integration 
that leaves the singularity "at an angle" from the circle. That method k quite general and 
is rapidly finding applications in combinatorial enumerations IFlajolet, Odlyzko 19871. 

What is required is thus to establish (17a), on the basis of the recurrence (16a-b). 
We observe that when lzl< 1/4, the bh(z) converge geometrically to the k e d  point b(z). 
When 121 i s  large, because of repeated squaring, the bh(z) grow doubly exponentially, and 
for instance, at L = 1, their values are 1,2,6,26,676,456976 etc. We arc thus facing what 
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may be called a "singular iteration problem" which consists in obtaining approximations 
for recurrence (16a) when z is in a region near a singularity of the fixed point, where the 
recurrence is just between geometric convergence and double exponential divergence. 

The normalized "Ccarts" c ~ ( z )  = ( b ( s )  - bh(z))/(Zb(r)) satisfy the recurrence 

Ch(2) = (1 - =)Ch(Z)(l - C h ( L ) )  (18) 

and studying them at  z = 1/4 illustrates the analytic technique used. There, setting 
fh = ch(1/4), we find 

(19) 
1 
2 fh+ i  = f h ( 1  - f h )  with 10 = -. 

Itcration (19) is typical of iteration of a function g ( z )  (here g(z) = z(1 - z)) around a 
fixed point L = g(L) when g'(L) = 1. The essential "trick" is to compare iteration (19) 
to iteration of a linear fractional transformation. More precisely, we start from (19), and 
take inverses to get 

Thus, as a rough approximation 
justified rigorously, and indeed, one CUI show that 

1 + so that we expect 1;' ~ l :  h. This can be 

jh - h + 1,; + O(1)' 

A similar manipulation on the more general recurrence (le) provides an approximation for 
C h ( l ) ,  in the form 

Equation (21) is the main approximation lemma. Its validity region can be established at 
some effort. Basically, we are justified in using it inside the definition (16b) of H ( z ) :  

as z -.) 1/4, ie. E -.) 0. We have thus found the singular expansion (17a) and the proof 
can be concluded using Cauchy's formula. We find in this way for the expected height of 
a binary tree with n internal nodes: 

The same treatment applies mutati6 mutondi6 t o  families Tin]. The singular iteration 
problem we encountered in the complex plane is related to  Mandelbrot and Julia fractal 
sets. In general, no explicit form is likely to  exist for such non lincar iterations. There 
is however an interesting exception, namely the crse of trees where all node degrees are 
allowed. It was studied by IDe Bruijn, Knuth, Rice 19721 and corresponds to a structure 
function 4(u) = (I - .)-I. In that case, height statistics requires iteration of a linear 
fractional transformation, and explicit forms, related to continued fractions, are known. 



An expression resembling the approximation (21) then appears M an exact formula for the 
OGF of trees with height at most h, so that the asymptotic analysis of height can be done 
with 1- analytic machiinery. 

Let US mention finally that there is some super6cial resemblance (that can be jus- 
tified in particular cases) between this problem and the height of random walks. Most 
notably, there is a limiting distribution for height whose density distribution involves a 
tbeta function. I 

The weighted model can be subjected to the same analytic trcstment. If the weights 
wlfl  with J E 0 are a probability distribution, it is then easy to see that the model is 
equivalent to a branching process conditioned upon the size n of the resulting trees. A par- 
ticularly interesting case is when the branching process is ‘critical” (the expected number 
of offsprings in a generation is 1). That condition corresponds to a natural combinate 
rial conservation condition on edges, and asymptotically each node type f occurs with 
probabiiity wlf]. 

Statistical study conducted by Clarke 119771 on large Lisp data structures suggest 
that a branching process model is a reasonable approximation to reality, with parameters 
rather independent of specific applications. This adds some practical justi6cation for the 
study of models considered in this section when applied to terms, expression trees and Lisp 
data structures. 

2. The Binary Search Tree Model 
In this section, we consider the splitting model defined by Eq (1.2) that arises in the 
study of several data structures used for maintaining dynamically varying collections of 
data belonging to an ordered domain. The model underlying this random tree model is 
that of random permutations. It is practically justified when data items are produced 
independently according to a continuous probability distribution. 

Heapordered trees. Heapordered trees are binary trees whose binary (internal) nodes 
are labelled with distinct integers, in such a way that labels aldng any branch from the root 
of the tree, the labels form an increasing requence. Given a permutation u = uluz on, 
the associated heap-ordered tree HOT(u) is defined by a simple recursive rule. Let j be 
the position of the smallest element in o; then 

HOT(0) = ( H O T ( U ~ U ~  - * * ~ j - i ) ;  ~ j ;  H 0 T ( ~ j + i ~ j + z  . * * ~ n ) ) .  (1) 

Conversely, given a HOT, a permutation is obtained by reading the labels in left-teright 
(in&) order. 

Thus, heapordered trees constitute a bijective representation of permutations. The 
uniform distribution over the symmetric group of rank n (where each permutation is taken 
with probability l/n!) induces a probability distribution over the set En of binary trees 
with n internal nodes, when one Yorgets” the labels. (Here again, it is convenient to define 
the size of a binary tree M the number of its internal nodes). That distribution is certainly 
non uniformbsince in general b, does not divide n!. The probability that the left subtree, 
in a tree of size n, has size k is equal to 1/n independently of the value of k, 0 5 k 5 n- 1, 
since in a random permutation, the minimal element can occur in any position with equal 
probability. This justifies consideration of the splitting model (0.2) of the introduction in 
which 

1 

n 
Zn,k = -. 

HOT’S are only one amongst a whole class of data structures that arc useful for 
implementing priority queues: The “find-minimum” operation is a dmct  ucem to the 
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th is  aquztioo being a direct consequence of (2). If u[ t )  k defined inductively over sub t rw  
from u!tj, 

ult) = ultlcfr) -f u[trigbr] v [ t ] ,  (Sa) 

then, by ( 5 ) ,  the corresponding OGFs are related by 

and the corresponding differential equation is readily solved by the %ariationof-parameter" 
method. so that 

(1 - Z ) V ' ( Z )  dz. V ( 0 )  ; 1 .  U ( 2 )  = - 
(1 - 2 ) 2  (1 - 2)' 1 

The study of inductive valuations now takes us into the reah of integral and differ- 
ential operators, while uniform models only implied algebraic operators. An interesting 
appYiion is internal path length, for which we find, through an application of (k), 

Un = 2(n + l)an+a - 2n - 2 - 2n log n + O(n), 

with E, = 1-1 + 2-I + - - e  + n-l, a harmonic number. This quantity represents the 
expected cornpariron cod of treaort, the procedure that sorts a file by constructing a 
binary search tree. Like quicksort, that can be subjected to a similar analysis, it hw 
complexity 

The expected height of 8 binary tree with r~ (internal) nodes M - 4.31107 log n. This 
remarkable result M due to Devroye [1986] who established it using the theory of branching 
random walks. Though basic generating function equations can be net up like for Prob- 
lem 4, with integrab replacing products, it is still an open probled to find a purely analytic 
derivation that should involve a treatment of singular Picard approximants to a non h e a r  
ODE around a spontaneous singularity. So we shall turn again to a study of more complex 
inductive valuations in the style of Problem 6. Thmw are related to the analysis of partial 
match retrieval of multidimensional data, following [Flajolet, Puech IQSS]. 

PROBLEM 6. Detumine the cost of &ding a mord in R' specified by one component, 
in a 2-dimuuional searcb tree. 

An extension of binary search trees, called k-dimensional (k-d) trees stores k dimen- 
sional points at nodes of a binary tree, and uses, at level f in the tree, component (1 mod k) 
as a discriminating attribute in the style of binary search t res .  The probability distri- 
bution induced over binary trees appeare to coincide with that of the BST model. For 
instance. the number of nodes traversod when searching bn element in the tree has the 
same distribution in dimension k and in dimension 1. A partial match query has only 1 
out of the k attributes that are specified. At levels in the tree where the dwriminating at- 
tribute is specified, mxmh proceeds in only one subtree; a t  other levels, both s u b t r w  have 
to be explored. In this way, the analysis of partial match retrieval necessitates andyzing 
k different valuations that are cyclically related. 

We shall first briefly explain here the mathematics involved in the c b ~  k = 2 and 6 = 1. 
There are two pat- of partial match queries, +S and S+, where m e w  a specified 
attribute and I+" means unspecified. We let Cp,, denote the expected cost of match 
with pattern P and file size n, and introduce the generating functions C P ( Z )  = cn FP,nZ", 

Dp(zj = z n ( n  + l)Cp,,rn. A development of the aame spirit as that of Problem 5 shows 

1.3862n log, n and is thus about 40% off from optimum sorting. 8 
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that Ds.(z) = yl (s )  where yl(z) is a component of the differential system 

0 2(1- 2)-’ -2-2(1- 2)-’ 2(1 - 2)- 

f (i:) = ( 2(1-2)-’ 2-’(1-2)-’ 

0 ).(!!)+( ( l - ; - j .  0 1 0 - -  
(7) 

(We .Is0 have D.s(z) = yl(r)  = yk(z).) Various methods would make it possible to  reduce 
the system to a unique differential equation of order 3, but it is just as simple to continue 
with the original system. System (7) CM be put in the form 

with y the column vector of the yi etc. The interesting property is that A ( r )  is analytic at 
z = 1. In the classical theory of differential systems, we say that z = 1 is a regular singular 
point [Henrici 19771, and the solutions should have algebraicdogarithmic ningularities at 
this point. 

Again, no closed form expression ici likely to  exist for the solutions but zsymptotic 
expansions around the singularity z = 1 can be obtained. Fixst, one examines the homc- 
geneous version of system (E), namely 

-Y(z )  d = -A(z) 1 *Y(z). 
dz 1 - 2  (9) 

H A(z) is constant, A(L) = A(1), the system is called an Euler equation. Then by 
diagonalizing A(1), one finds explicit solutions that are combin tions of functions of the 
form (I-z)~ with X an eigenvalue of A(1). The characteristic po?ynomial of A(1) equated 
to zero gives the indicid equation, and its solutions determine the characteristic exponents 
that appear in the sohtion of system (9) even when A(z) is not constant. 

In this way, one can determine full asymptotic expansions around z = 1 of solutions to  
the homogeneous system (9). Solutions to the inhomogeneous system (8) can be generated 
either by a method of indeterminate coefficients or by a matrix version of the variation- 
of-constant method. In our case, one hds the indicial equation in the form 

X(X + 1) - 4 = 0 (10) 

(11) 

so that 
l+dZ Ds.(z) - C(1- z ) ~  with X = --. 2 

The final stage CM use either Darbow’s method or, more conveniently, transfer thec- 
rems briefly discussed in relation to Problem 4. Ths enables us to translate the asymptotic 
expansion of generating function D around its singularity into a correspondw ssymptotic 
form for coefficients, and get the ha1 result 

The same approach can be extended, at some effort, to the study of the general case 
of k-d t r e e  of arbitrary dimensions. What is required is totextract the structure of the 



matrix A ( r )  and especially of A(1)  and its characteristic polynomial which is found to be 
of a simple form, 

~ ( x )  = ~ y i +  a)&-# - 2k,  

I altural  generalization of form (10). I 

conquer recurrences of the form 
The same approach has the advantage of extending to many probabilistic divideand- 

Most Xn,k that are rational fractions in n and k will yield to this treatment. others as 
well, as shown by the case of Quad-Trees (Flajolet, Gonnet, Puech, Robson, unpublished) 
for which 

zn,& = -[Ifn- Hk] where E, = 1 +  - +  -+--.-. 1 1 1  1 
n 2 3  m 

3. The Digital Trie Model 
Perhaps the simplest description of the random tree model corresponding to tries is in 
terms of splitting processes. A group G is split recursively into two subgroups Go and GI 
by having independently each member of C flip a coin. The process is halted as soon as 
a subgroup with cardinality 5 b is obtained. An execution of the process is described by 
a binary tree in which internal nodes represent the splitting phases while external nodes 
contain groups of cardinality at most equal to b. Here we shall be primarily concerned 
with the threshold parameter b having value 1. 

Tries. The trie data strncture is a tree representation of sets of binary strings. If a 
file F is to  be stored;it can be organized as a tree, called a trie, with the left and right 
subtrees associated to  Fo and Fl, where F, i s  the subset of strings starting with 0 and 1 
respectively (stripped of their original bit). Thus, rearch in ruch a tree of a "key" fi is 
obtained by following a path guided by successive bits of fi  in tbe tree trie(F) until a leaf 
is found. In a similar way, if b is the page capacity of a disk, the trie can be used m a 
'directory" to access the file on disk: When used in connection with hashing, this gives 
rise to Dynamic Hashing or Extendible Hashing [Larson 19781, [Fagin et d 1979). 

Protocols. The tree communication protocol of Tsybakov-Mikhailm and Capetanakis 
nanages collisions on a local area network in the following way: Stations are granted access 
to the channel upon arrival of a message. In case of a collision (two or more users attempt 
transmission simultaneously), we w e  the splitting process above to resolve their access 
conflict (hlassey 19811, [Massey 19851. 

These two implementations of the abstract splitting process, tries and protocols, r t  
quire analysis. Path length in the tile represents the cost of searching all elements, and 
i ts  expectation (divided by n, the group size) represents the expected cost of a positive 
search. Similarly, the session length in the protocol implementation corresponds to the 
total number of nodes in the associated tree. Thus, methods for estimating such inductive 
tree parameters are of special value. From analysis it results that the expected search time 
in a trie built on rmdom binary strings is close to log2 n, and thus is close to a theoretical 
optimum. The Ythroughput" of the tree protocol is log 2 i lo-'. 

PROBLEM 7. Determine ILS a function of the group size n, the expectation of inductive 
tree parameters under the random trie model. 
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For a fair coin, the splitting probabilities are given by 

*n,k = '(") 2" k ' 

M they an Bernoulli trial probabilities. The analysis method consists, as usual, of two 
park An easy translation from valuation specifications into (here exponential) generating 
functions of a p e c k d  values. Asymptotic methods that introduce interesting Mellin trans 
form techniques, originally a tool from analytic number thcory. We can state rules that are 
analogues of Eq (1.1'4, (1.13) for random plane trees, and of (2.6). (2.6) for random binary 
search tms. It ult] is a tree parameter and Un is its expectation under the assumption 
that the tree is a trie randomly built from a group G of size n, then we introduce the 
exponential generating function (EGF) of expectations 

We find the basic translation rules 

The second part of the rule is directly inferred from the convolution equation resulting 
from (1) and the definition of the 9rn,k, 

In particular, if u[.] is dehed  inductively from V I . ] ,  

then, from (Z), we get a diference equation, 

U(2)  = 2c=/2u(;) + V(2). (31) 

There are two ways of solving (3b). The first method proceeds by iteration, and one 
gets the form 

U ( 2 )  = C 2 j [ c * ( 1 - 2 - f ) V ( f ) ] .  2, (4) 
i l o  

Extracting the coefficients of (4) permits t o  express the U,, in terms of the Vn. 
The alternative method introduces the Poisson generating functions 

I 

O(2) = P U ( Z ) ,  P(2) = C - = V ( Z )  (5) I 
that represent the expectations of uI.1 and uI.1 when the size is ibelf a random variable 
with a Po-Ewon distribution of parameter 2. Then (3b) becomes I ir(2) = 2ir($) + li(L), 

A 
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which CUI & solved by the rne thd  of mdetuminrtc coefficients (with fin the coefficient 
of r*/n! m U(z) ) :  

on = 2-on + ri, 

-].-e 

- 9s (7) 

Finally, from (7), we can recover the Un from the On by a convolution, since U ( L )  = &(E):  

For instance, when we take u[t]  t o  be 1 if the size of (the group associated to) t i 2 2 
and 0 otherwise, u[t]  is the number of internal nodes in trie 1. We have then V ( z )  = ~ ~ - 1 - z  
and by (4) 

and extract'mg d c i e n t s ,  we find 

If we take the second route, we find o ( z )  = 1 - (1 + L)c-=, K) that p,, = (-l)"-I(n - 1) 
for n 2 2, and (6 )  yields the alternative form 

Similarly, using ult] = It1 (ie. the she  of the underlying group) corresponds to takiag 
V ( E )  = L(C' - l), and yields path length (taken over non empt j  external nodes), for which 

This systematic chain makes it possible to analyze exactly a large number of param- 
eters of random tries. 8 

PROBLEM 8. Analyze wyrnptoticdly tbe expectations of inductive tree parameters under 
tbe random trie model. 

The asymptotic analysis of expectations of trie parametem is not as innocuous s 
might seem at a h t  glance. The difficulty lies in the fact that sums l i e  (10) or (11) 
do not appear to have a smooth growth decribable in terms of standard functions l i e  n, 
log n etc. Instead non-trivial periodicity phenomena appear, and for instance, in the case 
of path length, Un/n is an asymptotically periodic function of log, n. The main technique 
used is the Meliin transform (see eg [Flajolet, Rcgnier, Sedgewick 1985j) whose basic steps 
are: 

1. Consider U,, (or a closely related function) as a real function of a real variable. For 
instance, in the case of path length, we have U,, = nF(n) where 

F(2)  = c [1- (1 - $)=I . 
iW 
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We may also use approximate interpolation functions. Thus, using (1 - a)" E 
exp(-na), we can justib by elementary means that U, - nG(n) where 

2. Compute the Mellii transform of the real function interpolating Un (the exact F ( z )  
or the approximate C(z)). The Mellii transform of a real function J(z)  is a function 
of the complex variable a defined by 

I'(6) = lm f(Z)Z*-' d2. (15) 

A sum like (13) or (14) is called a harmonic sum. It obeys the general pattern 

and by analogy with Fourier analysis, we may consider the A j  to be amplitudes and 
the fij to be frequencies. The Mellin transform of a harmonic sum (16) is easily found 
to be 

which is thus decomposed as a product of the transform 9*(a) of the base function 
and a Dirichlet series involving only frequencies and amplitudes. In the case of (l4), 
we find 

J (18) 
G*(a) = -- W) 

I. - 2.' 

3. Finally, there is a well-recognized correspondence [Doetscb 19551 between singularities 
of a Mellii transform in a half-plane extending to the right of its definition strip and 
terms of the asymptotic utpansion of the original function as t 4 m. For instance, 
transform (18) is defined for -1 < W(a) < 0, and the double pole at a = 0 contributes 
the term 

7-1 1 
log2 2 

log, 2 + (- - -). 
Complex poles of the Mellin transform further contribute fluctuating terms IKnuth 
1973, p.1311, IFlajolet, RCgnier Sedgewick 19851 in the form of a Fourier .cries involving 
values of the Gamma function on the imaginary line. 

Applying the algebraic techniques of Problem 7 and the asymptotic methods of Problem 8 
constitutes a production chain (that could be automated using symbolic algebra systems) 
which applies to a large number of characteristics of tries. It is in thia way that numerical 
results mentioned at the beginning of this section can be established. 

We obtain that tries are an almost optimal data structures, that pages are about 
log 2 E: 69% full if dynamic hashing schemes are used. We also find that resolving a colliision 
between n USM in the tree protocol requires on the average E 2n/ log 2 slots. Thus the 
throughput of the blocked access version of the protocol is close to  kog2/2 p: 34.65%. 
Analysis of the free access version can also be d e  along 6imiirr linea, though at a 
considerably greater effort (see [Fiajdet, JIcquet 18871 for a brief 6WeY). 

I 
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Conclusion 
Each of the random tree model we have examined carries a coherent set of algebraic 
techniques by which parameter specifications are mapped to  generating function equations, 
which are  then solved if elementary enough. kr a second phase, asymptotic methods are 
applied to extract useful information, and they normally rely on complex analysis. We 
have tried to illustrate this philosophy on three classes of problem: 

1. Uniform tree models with algebraic equations and algebraic functions as solutions. 
Singularity analysis is the main asymptotic tool there. 

2. Binary search trees. This is the realm of differential ayatema. Either they have el- 
ementary solutions or, otherwise, singularity analysis is applied at regular singular 
points. 

3. Tries lead to difference equations and Mellii transforms. 
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