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Abstract. We establish that several classical context-free languages are inherently ambiguous by
proving that their counting generating functions, when considered as analytic functions, exhibit
some characteristic form of transcendental behaviour. To that purpose, we survey some general
results on elementary analytic properties and enumerative uses of algebraic functions in relation
to formal languages In particular, the paper contains a general density theorem for unambiguous
context-free languages.






1. Introduction

We propose here to study an analytic method for approaching the problem of

determining whether a context-free language is inherently ambiguous. This method

(which cannot be universal since the problem is highly undecidable) is applied to

several context-free languages that had resisted previous attacks by purely com-

binatorial arguments. In particular, we solve here a conjecture of Autebert,

Beauquier, Boasson and Nivat [1] by establishing that the 'Goldstine language' is

inherently ambiguous. Our technique is also applied to a number of context-free

languages of rather diverse structural types.
There are relatively few types of languages that have been proved to be inherently

ambiguous. This situation owes mostly to the fact that classical proofs of inherent

ambiguity have to be based on a combinatorial argument of some sort considering

ailpossible grammars forthe language. Such proofs are therefore scarce and relatively

lengthy.
At an abstract level, our methodology is related to a more general principle,

namely the construction of analytic models for combinatorial problems. Informally
the idea is as follows:

To determine if a problem P belongs to a class C, associate to elements

w ofC adequately chosen analytic objects (w) so that a (possibly partial)
characterisation of (C) can be obtained. If J(P) i(C), then P does
not belong to C.

* A preliminary version of some of the results in this paper has been presented under the title

"Ambiguity and transcendence" at the ICALPS5 Conference (Lecture Notes in Computer Science 194

(Springer, Berlin, 1986) 179-188)
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At such a level of generality, this principle is of course of little use. However it has
been successfully applied in the past in the derivation of nontrivial lower bounds
in complexity theory, as the two following examples demonstrate.

(1) Shamos and Yuval [39] have obtained interesting lower bounds for the
complexity of computing the mean distance of points in a Euclidean space by
considering the Riemann surface associated to the complex multivalued function
(especially its branch points) that continues the function defined by the original
problem. They obtain in this way an fl(n2) lower bound on the complexity of the

problem. The fact that the proof of this particular result was subsequently made
algebraic by Pippenger [33] does not limit the interest of their approach.

(2) More recently Ben-Or [4] has obtained anumber oflower bounds for member-
ship problems, including for instance the distinctness problem, set equality and
inclusion . ... His method consists in considering the topological structure of the real

algebraic variety (the number of connected components) associated to a particular
problem and relate it to the inherent complexity of that problem.
Our approach here is to examine properties of generating functions ofcontext-free

languages especially when these functions are considered as analytic functions
instead of plain formal power series. The situation in this case is greatly helped by
the fact that, from an old theorem of Chomsky and Schutzenberger [9], the ordinary
generating function of an unambiguous context-free language is algebraic as a series,
and thus also as an analytic function. Therefore, we can simply prove that a
context-free language is inherently ambiguous provided we establish that its generat-
ing function is a transcendentalfunction. Thus, in the previously described framework,
i is the mapping that associates to a formal language its counting generating
function, and with C the class of unambiguous context-free languages, (C) is a
subset of the set of Q[z]-algebraic functions.

Proofs of transcendence for analytic functions appear to be fortunately appreciably
simpler than for real numbers. A method of choice consists in establishing the
transcendence of a function by investigating its singularities, in particular, showing
that it has a non-algebraic singularity (the way algebraic functions may become
singular is well characterised), or infinitely many singularities or even a natural

boundary. Alternatively, one may study Taylor coefficients of functions since many
of their properties, especially their asymptotic growth, are reflections of functions

singularities.
In the sequel, we shall state some useful transcendence criteria for establishing

inherent ambiguity of context-free languages (Section 3), and then present a number
of applications to specific languages (Sections 4-8).
Note about our presentation: It should be clear in what follows that we have made

no attempt at deriving the simplest or most elementary proofs of inherent ambiguities
of languages. We have instead tried to demonstrate the variety of techniques that
may be employed here as they should prove useful in future applications. It should
also be clear that a very large number of languages are amenable to these techniques
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and some random sampling has been exercised to keep this paper within reasonable
size limits.






2. Some inherently ambiguous languages

A context-free grammar G is ambiguous if there exists at least one word in the

language generated by G that can be parsed according to G in two different ways.
A context-free language L is inherently ambiguous if any grammar that generates
L is ambiguous.
A prototype of an inherently ambiguous language is

L={amhc1n=morn=p}

	

(1)

and the proof of its inherent ambiguity proceeds by showing, by means of some
iteration theorem, that any grammar for L needs to generate words of the form
ab"c" at least twice for large enough n. (See, e.g., Harrison's book 1121] for similar
classical proofs.)
In this paper, we propose to prove the inherent ambiguity of a number of languages

of various types that are structurally more complex than the above example.

Theorem I (Languages with constraints on the number of occurrences of letters).
The languages 0, 04, fl3 are inherently ambiguous, where

03 = {w c{a, b, c}*	 =	 or wl =





U3 ={wE (a, b, c}*HwL, ˆ W1, or w ˆ IwI}.

Theorem 2 (Crestin's language formed with products of palindromes). The language
C is inherently ambiguous, where

C = {WIW2 w1, W2 {a, b}*; w1 = w, w2 = w}

with w denoting the mirror image of w.

Theorem 3 (A simple linear language). The language Sis inherently ambiguous, where

S={abviav2n1;vi,v2E{a,b}*}.

Theorem 4 (Languages with a comb-like structure). The languages P1, P2 are inher-
ently ambiguous, where

P1 = . !J2k (for all], n21 = n21_1) or (for all], n21 = n211, n3k =

P2 = . fly (n1 = 1, for allj, n21 =2n211) or (for allj, n21 =2n7±1)}

and, for an integer n 0, n denotes the unary representation of n in the form ofa"lx
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Remark. In these definitions, k runs over the integers a 1 and the n, over integers O.

Theorem 5 (Languages deriving from the Goldstine language). The languages G,
G<, 0>, H are inherently ambiguous, where

G	 {lt2..- tip forsomej, n1ˆj},

G<={n1n7.. . pp lfor somej, n< j},

G>={n1n2. .. jfor somej, n>

G={n1n2... pp for

	

n=

H.. ={z17.. . n for somej, n ˆp}.

Remark. Variable p runs over all integers l and the n- over integers 'O.

Theorem 6 (Languages obeying local constraints). The languages K1, K2 are inher-

ently ambiguous, where

K1 = {n1n2... ik for some I, n1±1 ˆ n},

K7={n1n2... i1kLfor some], n1±1ˆ2n3}.

Remark. Variable k runs over the integers 2 and the n- over integers O.

Theorem 7 (A language based on binary representations of integers). The language
B is inherently ambiguous, where

B={ñlñ,...ñklnlˆlor,forsomej,n,±lˆnJ+1}

in which 1 E {O, 1, c}* denotes the standard binary representation (starting with a "1")

of integer n followed by marker "c".

Some of these results are actually known but have been included here for the
sake of illustrating the power of the methods we employ. The case of languages
like 02, 03 is easily reduced to the ambiguity of languages like L defined in (1).
The ambiguity of language 123 is included here because it is related to a stronger
conjecture of Autebert et al., namely that the language

L={ambcnˆmornˆp}

	

(2)

is inherently ambiguous.
The language C has been studied combinatorially by Crestin [12] who proved

that it is of inherent unbounded ambiguity. We establish here the transcendence of
its generating function, which settles a conjecture of Kemp. The result concerning
language S is akin to a result due to Shamir [38] by which the 'more general' language

{ucv1 utv2 u, v1, v2 C {a, b}*}






	Analyticmodels and ambiguity of CM	 287

is infinitely ambiguous. The language P2 has been studied by Kemp [26] whoproved
that the asymptotic density of a closely related language is a transcendental number,

thereby establishing its ambiguity. Finally, the case of the language G, which is
exactly the Goldstine language, solves the conjecture of Autebert et al.

Although it seems quite plausible at first sight that such languages must be
inherently ambiguous, the difficulty owes to the fact that when attempting to apply
iteration theorems (like Ogden's lemma), some of them (most notably the Goldstine
language) behave 'almost' like regular languages.






3. An overview of transcendence criteria used for establishing inherent ambiguity

To any infinite language Lc: A* (A a finite alphabet) we associate its enumeration

sequence (also called counting sequence) defined by

1,, =card{we LIw = n}.

This sequence is characterised by its generating function, called the generating
function of language L:

l(z)=
,

This function is an analytic function in a neighbourhood of the origin, and its radius
of convergence p satisfies

1
card A

since 4, (cardA.
Consideration ofanalytical properties ofthe function 1(z) or, in an often equivalent

manner, of asymptotic properties of the sequence {4,} permits in a number of cases
to establish inherent ambiguity of the context-free language L by means of the

following classical theorem of Chomsky and Schutzenberger [9].

Theorem. Let 1(z) be the generating function of a context-free language L. If L is

unambiguous, then 1(z) is an algebraic series (function) over Q.

We recall that a series /(z) is algebraic over a field K (or over K[z] if one prefers)
if it satisfies an algebraic equation in the ring K[[z]] of formal power series in one
variable, of the form P(z, 1(z)) = 0 for some bivariate polynomial P(z, y) E K[z, y].
It is also known that an algebraic series (over Q or C) represents (a branch of) an

algebraic function in a neighbourhood of the origin. Last, from classical elimination

theory follows that a componentof a solution to a finite system of algebraic equations
is also an algebraic function in the above sense. In other words, sets of equations
can be reduced rationally to a single equation (see, e.g., [30]).
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The classical Chomsky-Schutzenberger theorem is established in a constructive
manner by transforming an unambiguous grammatical specification of the language
into a set of polynomial equations. Since we later need repeatedly to transform
specifications of context-free languages into equations for corresponding generating
functions, we shall illustrate the use of this theorem by means of an example.

Example. Consider the grammar with axiom A (assignment), nonterminals B
(boolean), E (expression) and V (variables) over the terminal alphabet

{:=, not, or,

	

log, if, then, else, fl. x, y, w}

and production rules

A- V:E,

B-notB+orBB+'EE,

E - *EE + log E + ifB then E else E fi + V,

V-). x + y + w.

This grammar describes simple assignment statements in a rudimentary programming
language. Letting a(z), b(z), e(z), v(z) be the generating functions of the languages
associated to the nonterminals A, B, E, V respectively, we have

a(z)= zv(z)e(z),

b(z) =zb(z)+zb(z)2+ze(z)2,

v(z)= ze(z)2+ze(z)+z4b(z)e(z)2+v(z),

v(z) = 3z.

By elimination, we find that a(z) is an algebraic function of degree 10:

a(z)8 -27(z3 -z2)a(z)5 + + 59049z1° = 0.

Thus the theorem simply expresses the fact that disjoint unions and (unambiguous)
catenation products correspond to sums and ordinary products of generating func-
tions (also, equations correspond to equations...).
We shall need a related principle also to be found in [9]: if two languages are

such that L= M*, then the corresponding generating functions satisfies

1-m(z)

provided the 'star' operation on M defines L unambiguously.

The theorem will be used in the sequel under the following trivially equivalent
form.
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Corollary. Ifthe generatingfunction 1(z) ofa context-free language L is transcendental
over Q, then L is inherently ambiguous.

The above corollary (see [35] for general information on languages and formal
power series) therefore permits to conclude as to the inherent ambiguity of a language
provided the following two conditions are met:

(i) (counting condition): one has at one's disposal a combinatorial decomposition
of the language, in away that gives access to the sequence l and permits to 'express'
1(z);

(ii) (transcendence condition): a transcendence criterion is available to establish
the non-algebraic character of 1(z).
We now proceed with the statement of a few simple transcendence criteria of

which applications will be given in the following sections.

3.1. Transcendence of values

This method constitutes in principle the most straightforward transcendence
criterion for functions, although it is almost invariably the most difficult to apply.
(Transcendence results are usually much easier for functions than for numbers.)

Theorem A. Let 1(z) be an algebraic series over Q and w an algebraic number. Then
1(w) is algebraic.





Theproof simply follows from eliminating w from the set of two equations:

JR(w)=O,
P(O), l(w))=O.

Hence, we can formulate the following criterion.

Criterion A (Transcendence of values at an algebraic point). Ifl(z) is a (convergent)
series of Q[z]] and if 1(w) is transcendental for some algebraic w, then 1(z) is
transcendental.





3.2. Nature of singularities

The next criterion is based on the fact that an algebraic function has a finite
number of singularities' that can be explicitly determined.

Theorem B. An algebraic function 1(z) over Q defined by an equation P(z, 1(z)) = 0
has a finite number of singularities that are algebraic numbers z satisfying one of the





Singularities are meant here in the sense of analytic functions (not in the sense of algebraic curves):
for us, ./i is singular at z = 1.
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equations:




	I	 8P(z, y)1(i) Resultant L' y),

	

	j = 0,
ay





(ii)

	

Pd(Z)0,

where pd(z) is the coefficient of the term of P(z, y) of highest degree in y.





This result is of course a very classical one (see, for instance, [27, 37]).
If in equation P(z, y) = 0 the coefficient of the highest degree term in y vanishes,

then some of the points of the algebraic curve y(z) are rejected to infinity and one
has a pole (at least for some branch of the analytic function).

Otherwise, around a point (z0, yo) satisfying P(z0, Yo) = 0, one has a locally linear
relation:





(z-z0)(z0, YO) +(y-y0)(z0, yo)	 0.

	

(3)liz

	

ay

If aP/ay is not zero, then relation (3) locally defines y as an analytic function of z

by the implicit function theorem. Else, one has a branch point.





Example. Let s denote the empty word. The grammar

D-. aDbD+E

defines the usual parenthesis language. The corresponding generating function
satisfies the equation in y:




	z2y2-y+1=0.	 (4)

From Theorem B, singularities are to be found amongst:
- the roots of p2(z)= z2 = 0, that is z = 0;
- the roots in z of the system:

z2y2-y+1=0,	 2z2y-1=0;

that is to say, z =

This can be checked here by solving (4) directly. The two solutions of (4) are

1_,J14z2

	

1+,I1_4z2
Y1	 2z2	 Y2	 2z2

The branch Y2 has a pole at the origin and hence, cannot represent the generating
function of language D. The branch Yi (which represents the generating function
of D) admitsz = ±assingularities.
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Criterion B. A function having infinitely many singularities (for instance, a natural

boundary) is transcendental.

In the sequel, this result is used to establish the ambiguity of Crestin's language
C taking advantage of Kemp's determination of its generating function which
appears to have infinitely many singularities. Other applications stem from the
existence of natural boundaries for lacunary series (also called gap series [34]) as
an application of theorems of Hadamard, Bore! and Fabry.

Theorem (Lacunary series theorem). A series of the form

y(z) =

such that the c's are integers satisfying the 'lacunary' condition:

sup(c±1 - c,) = +a

admits its circle of convergence as a natural boundary.

Thus, such a series cannot represent the expansion ofan algebraic function around
the origin. Examples of such series related to some of our future applications are:




	z''';	 z2";	
[log

	

1

These functions all have the unit circle as a natural boundary and thus fail to he
algebraic.

3.3. Algebraicity and transcendence of local expansions

A more refined way of establishing the transcendence of a series consists in
observing the appearance of transcendental elements in local expansions around a
singularity. Indeed, for an algebraic function, one has the following theorem.

Theorem C. If 1(z) is algebraic over Q, it admits, in the vicinity of a singularity, a

fractional power series expansion of the type




	l(z)=	 ak(1_-) ,	 mvN, rv Q

where the coefficients ak are algebraic.

The above expansion is nothing but the familiar Puiseux expansion ofan algebraic
function. Theexponents maybe determined explicitlyby Newton's polygon rule [14].

Example. Consider the grammar

S - fSSS +x
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defining the language S of functional schemes (terms) with x as a nullary symbol
and f as a ternary symbol. By Theorem B, the singularities ofthe generating function
s(z) of language S are found to be




22/3
p,	 p e2''3,	 p e2"3	 with p

At z = p, one has s(p) = 2-". Setting Z = 23(z -p) and Y=2113(s(z) _ S(P)), one

gets the relation

-9Z-6 Y2 - 9ZY -2 Y3 - 9ZY2 -3 ZY3 = 0

so that when Z 0, we have Y - ±i/-Z and a full expansion of Y in powers of
can be obtained. (Note: one has there a branch point of order 1 and the

generating function s(z) corresponds to the minus sign.)
The case of equations with the particular form y = ztp(y) is discussed by Meir

and Moon [32], and it corresponds to so-called simple families of trees (or,
equivalently, to terms formed with a fixed set of functional symbols).

Criterion C. If1(z) has, in the vicinity of a singularity, an asymptotic equivalent that
is not of the form

z

.(1
-----
a

with w and a algebraic and r rational, then 1(z) is transcendental.

In particular, the occurrence oflogarithmic terms in a local expansion ofa function
will immediately reveal that the function is transcendental.





3.4. Density results for coefficients

It is also well known that the local behaviour of a function in the vicinity of its

singularities is closely reflected by the asymptotic behaviour of its Taylor coefficients.

Corresponding 'transfer' lemmas rely on contour integration techniques. From

Cauchy's formula

l=_1
_J			

1(z)--j-	 (5)2nr	 -

	

z

using an adequate contour of integration, one can relate the local behaviour of
function 1(z) to the asymptotic form of the coefficients 1. For that purpose, one

may use either the classical Darboux method [22; 11, p. 277] (i.e., integration on
the circle of convergence) or the type of contour of [16] (i.e., integration on a
contour extending outside the circle of convergence). Basically, these methods

guarantee that the coefficients of a function 1(z) satisfying the expansion ofTheorem
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C can be obtained asymptotically by extracting the coefficients of the expansion,
noticing that2:

-d

(n

+d-1 nd1
-z)	
	d-1

Finally, the contributions from all dominant singularities have to be added. Thus
using these classical results, one finds the following theorem.

Theorem D (General density theorem for unambiguous context-free languages). If
1(z) is an algebraicfunction over Q that is analytic at the origin, then its n-th Taylor
coefficient 1, has an asymptotic equivalent of the form

m

(s): lfl=	
nn'		

Cw7+O(f3nt),
F(s+1)

where sv Q/{-1, -2, -3.... }, t <5; /3 is a positive algebraic number and the C, and
to, are algebraic with o = 1.





Criterion D. Let 1(z) be a function analytic at the origin; if its Taylor coefficients lfl

do not satisfy an asymptotic expansion of type (), then 1(z) is transcendental.

In passing, Criterion D generalises a result of Berstel [5] who observed that if
there exists an integer /3 such that the limit





nA =lim-
/3"

exists and A is a transcendental number, then 1(z) is a transcendental function, so
that L cannot be an unambiguous context-free language. Theorem D does provide
a generalised density characterisation for unambiguous context-free languages that
extends Berstel's results.

Examples. Aparticularly useful set of applications of Theorem D is for coefficients
with asymptotic equivalents of the form

- y/3"n'.

If either r is irrational, /3 transcendental or yT(r+1) is transcendental, then 1(z)
is a transcendental function. Therefore, the following asymptotic behaviours are
characteristic of transcendental functions:

O(e"n'); O(/3"n'); o(); o(); 1/24"n3<.........






2 We let, as usual, [z']f(z) denote the coefficient of z" in the Taylor expansion of f(z).
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The third example corresponds to a logarithmic singularity. For the fifth example,
it suffices to notice that we can write it as

4"n-3/2
_,7T

4"n
2 E(-)

(since F() f) and use the fact that 'rr is transcendental.
In contrast, 24'n3"2 does occur in the expansion of algebraic functions as

the classical example of the Catalan numbers that count words in the Dyck language
(the language D defined above by well-parenthesised expressions) demonstrate:

2 1_J1_z2	 1 /2n\

	

4
2	

=

	

)2z	 n+1	 n	 '/'Trfl

Similarly, by the Lagrange inversion theorem [22], the language S of ternary
functional terms satisfies

=
1
(3("

2n+1\nJ	 \4/ 4lTn

On the other hand, it is easy to see, using again Stirling's formula, that amongst
the sequences

a=(2t)

for integral k, it is only for k= 1 that the a are coefficients of an algebraic function
(see [40] for related questions). For instance, a'-' 16/irn and the factor n1
corresponds to a logarithmic singularity.

3.5. Polynomial recurrences

The last batch of methods is based on a theorem by Comet [10] to the effect that
any algebraic function satisfies a linear differential equation with polynomial
coefficients, a fact itself reflected on its Taylor coefficients by the following theorem.

Theorem E. If 1,, is the sequence of coefficients of an algebraic function, there exist a
set ofpolynomials q0(u).	q,,(u) such that, for all n n0,





	q1(n)l1=0.
j=0

Criterion E. Let 1(z) be an analytic function. If there does not exist a finite sequence
ofpolynomials q0, q1,.. ., q,, such that, for n large enough,

q(n)4,=0,
j-0

then 1(z) is transcendental.
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The reader is referred to Stanley's paper [40] for additional information regarding
sequences satisfying polynomial-linear recurrences that have been named P-recur-
sive sequences. Notice also, in passing that Comtet's result makes it possible to
determine in linear time the number of words of given length in an unambiguous
context-free language L. It can thus be used to generate 'at random' words of given
length in an unambiguous context-free language efficiently (thereby improving some
of the complexity bounds of [23]).
Note on the application of the transcendence criteria: In some cases, the above

transcendence criteria can be used directly on the generating functions I of context-
free languages. In some cases however, one has to proceed indirectly as follows:
From 1(z), build a new function (z) by means of an adequately chosen 'algebraic
functional': (z) = i'2 (z, 1(z)). (An algebraic functional is defined here as a functional

transforming algebraic functions into algebraic functions.) Then use one of the
above criteria to prove (z)-whence 1(z)-transcendental.

Also, we make an occasional use ofan extension of the basic Chomsky-Schutzen-
berger theorem under the following form: Let denote the number of words in

language L with n1 occurrences of letter a1,..., nk occurrences of letter ak. Then the
multivariate generating function


	

1(z1

	

zk)
=	

l,,	 kZ"	 . . . . z


	

is an algebraic function over Q[z1.		zk].

The two methods may be combined. Thus, in the case of a binary alphabet, if

e.g. the function





(z2) =1(z1z, z2z)L1=1
c3z1

is transcendental, then the language L is inherently ambiguous.






4. Transcendence of values of generating functions

This method is in principle the most direct. However, in practice, it turns out to
be rather hard to apply because of the relative scarcity of transcendence results for
real numbers. (Actually, it is even the case that many arithmetic transcendence
results are established by function-theoretic techniques). That method can be applied
to the following languages:
- the language 04 defined by occurrences constraints (Theorem 1);
- the 'comb-like' language P2 (Theorem 4).
The reader is referred to either [18, 36] for an exposition of classical transcendental
number theory.

Language 04. This language is the union of two unambiguous (actually determinis-
tic) context-free languages. In the sense of multisets, one can write the equation
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04=L1+L2-I where J=L1nL2 and L, L2 are defined by:

L1 ={w {x, , y, }* HwI = wI},	 L2= {w E {x, , y,

	

=

Corresponding generating functions' 11(z), 12(z) are algebraic, so that 04(z) has the
same transcendence status as the generating function 1(z) of 1. Note in passing that
language I encodes 2-dimensional walks on a square lattice starting and ending at
the origin.
A direct computation shows that:

12	
[z2]I(z)=(2)((2t

2k)	
(6)		

/2n\"0(n 1		 (7)
\ fl / k=O \k/

/ 2n\ 2
=( .				(8)\fl/

Here, (6) is the basic counting of I as a shuffle of two languages whose enumerating
sequence is the central binomial sequence; (7) comes from simplification of factorials
and (8) relies on Vandermonde convolution.
From there, we find that 1(z) is a hypergeometric function [41, p.499] but also

an elliptic integral, as can be checked by direct expansion using Wallis' integrals:

2	 2
1(z) =-	 (1- 16z2 sin2 )-1/2 di.

IT0

One can then use a classical result in transcendence theory [361 concerning values
of such integrals at algebraic points to deduce the transcendence of 1(z) and hence
of the generating function of 04 which is thus inherently ambiguous.

Language P2. This language also presents itself as the union of two deterministic
context-free languages. One can write P2 = L1 + L2 - I with now:

L1={n1n2... ik[nl=1,forallj, n21=2n21_1]},




	L,=	 [for allj, n21 = 2n2±1]},

and I = L1 n L2. Languages L1, L2 are again deterministic, whence unambiguous,
and with algebraic bivariate generating functions. Since we have

I = {aba ba22ba23b. .. ab p '

we find that the bivariate generating function of I is




	2-1
I(a,b)=

p1

We adhere from now on to the implicit convention of denoting a language L, its generating function
1(z) (Or L(z)) and its counting sequence 1, (or L,) by the same group of letters.
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The function x+ xI(x, 1) is exactly the Fredholm series: F(x) = x2' and the

approximation theorem of Thue-Siegel-Roth shows the value of the series to be
transcendental at any point x = 1/q for integral q> 1. Thus, I (x, I) and I(a, b) are
transcendental functions so that P2 is inherently ambiguous.

The last example of language P2 has been inspired by the construction due to

Kemp [26] of a context-free language with a transcendental density.
Let us recall that a language L over an alphabet A of cardinality a has asymptotic

density if





= lim -.
"-= a

In general, there is a relation between values of generating functions at particular
rational points and densities of languages: let B be a proper superset of A with
bE B/A. Then the language




	M=LbB*	 (9)

has a generating function that satisfies





	M(Z)=l(z)Z	 (0)I -,8z

where 13 = card B. Thus, m(z) has a simple pole at z = 1/f3, and a direct residue
calculation with Cauchy's integral formula (5) shows that

m

so that 3l(/3') is the asymptotic density of M (see also [6, P. 23]).
Therefore, taking an alphabet B with at least five symbols and L 04 or an

alphabet B with at least three symbols and L P2, construction (9) furnishes two

examples of (ambiguous) context-free languages with a transcendental density. The
second example (built from P2) is exactly Kemp's construction.






5. Functions with infinitely many singularities

Criterion B expresses that any function with infinitely many singularities is
transcendental. Such a property may either be apparent from the very expression
of the function or it may result from the theorem on lacunary series cited in Section
3. That method is applied here to the following examples:
- the simple linear language S (Theorem 3);
- Crestin's palindrome-related language (Theorem 2);
- the Goldstine language G and the related languages H and G< (Theorem 5).
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Language S. We can decompose S unambiguously, recording the first occurrence
of a group a" as follows:

S=	 abRa'{a,b}*,

	

(11)

where R is the regular language formed with all strings over {a, b} ending with a
b-or empty-that do not have n consecutive occurrences of letter a:




	R= ((s+a+a2+	 a")b).	 (12)

In terms of generating functions, decompositions (11) and (12) lead to


	

S(Z)=
Z	

Z2 'R,	 (13)1 --2z


	

R(z)=	 1	 =	 1z	
(14)

1z(l+z+z2++z"1) l-2z+z"1

so that, finally,




	S(z)=	 ±1"	 (15)12z ,,11-2z+z

The terms in the sum of (15) are defined except at the roots of their denominator.
Let P(z) denote 1-2z+z", and consider the P's for z<1, Each P for n2
has a unique real zero p,, between and 1. Using the principle of the argument, it
is easy to check [28] that this is the unique zero satisfying Furthermore, as
n increases, these zeros tend to and are clearly all distinct.

Therefore, for any complex z, <, that is not equal to one of the pa's or to ,
the sum in (15) converges and defines an analytic function (observe the presence
of the 'convergence factor' z2"). On the other hand, each ofthe pa's is a pole of S(z).
We have thus shown that S(z) is analytic in Iz < except for infinitely many poles

p and their accumulation point . Thus, S(z) is transcendental and S is ambiguous.
We may mention here that, not too surprisingly, functions S(z) and R(z) are

related to classical statistics on runs [15] and, accordingly, R,, occurs in an analysis
by Knuth of carry propagation in some binary adders [28].

Language C. The language C has been introduced by Crestin [12] and Kemp [25]
has shown that its generating function is

zm(1+z"')(l+2z"
C(z)=1+2	 /i(m)	

(1-2z2'")2

where ç&(m) = fl (1 -p), the product being extended to all prime divisors of m. From
that expression follows, as in the previous argument, that, for Iz 1, C(z) has
isolated singularities (double poles) at points

=2" e1"
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that cancel the denominator of one of the terms composing C(z). (Note: this
observation answers a question of Kemp regarding the transcendence offunction C.)

Language G. The Goldstine language can be characterised via its complement
w.r.t. {a, b}* which consists of two types of words:

(A) words in {a, b}*a since they fail to have the formal n1n2.. .

(B) words of the form:

e; oh; aha2b; aba2ba3b..........

Thus the generating function G(z) of G is

G(Z) =

	

-A(z)-B(z)1-2z

with A(z) and B(z) being the generating functions for words of type (A) and (B):




	A(z)=-
Z	

B(z) =	 z±1V21
1-2z

	

nll

so that




G(z)

	

z±)12.
1-2z z,,1

From this last equation results that G(z) has the same transcendence status as the
series




O(Z) = z+1V2.
nII

Function 9 is an elliptic theta function; it is a lacunary series and, as such, admits
the unit circle as a natural boundary. Thus it cannot be algebraic and the Goldstine

language is inherently ambiguous.

Language H. The argument is almost the same as for the Goldstine language.
Only, for words of type B, substitute the set

e;	 oh;	 (a2b)2;	 (a3b)3

	

(ab); .

with generating function

B(z) =

	

""'>

again a lacunary series.

Language G<. As in the previous two examples, consider the language

B=({a, b}*/G<)r{a, b}* b.

This language admits the decomposition:

B= a2a*b+ a2a*ba3a*b + a2a*baSa*ba4a*b+ .
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so that




B(a b)=			
k-1

k1	 1-a 1-a	 1-a akl\1-aJ

which is rationally expressible in terms ofthe 6) function and is again transcendental.

The case of the Goldstine language is the one that initially motivated our study
because of the previously mentioned conjecture of [1] regarding its inherent
ambiguity. The reader may consult [3] for several related enumeration issues. We
observe that a similar argument based on lacunary series could have been used to
treat the Fredholm series and hence the generating function of language P2. Also,
since the Fredhoim series satisfies the functional equation F(z) = z+F(z2) and
F(i)=+cx, a direct argument might have been employed to establish that F has
the unit circle as a natural boundary.





6. Local behaviour around singularities

Studying the local behaviour around singularities is certainlythe most comfortable
method to apply. The mere appearance of logarithmic terms in the local expansion
of a function around a singularity is sufficient to establish its transcendence. Such
local analyses may often be treated by Mellin transform techniques, a not too
surprising fact considering the arithmetical character of many of the languages we
study. We shall apply this method here to the following languages:
- languages K1 and K2 (Theorem 6);
- the 'comb-like' language P1 (Theorem 4);
- the Goldstine-like language G.

Language K1. As in the case of the Goldstine language, we enumerate K1 by
considering its complement. Define the language

D = ({a, b}*/K1) n {a, b}* b.

It suffices to establish that the generating function of D is transcendental. But D
has the simple form

D=

	

(a'b)m
,n1

so that its generating function is

D(z) =	 z" =	 d(p)z",	
pl

where d(p) is the divisor function counting the number of divisors of integer p.
We propose here to establish the transcendence of D(z) by showing that, as z - 1,




	D(z)--(1 - z)' log(1 -z),	 (16)
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a typically transcendental behaviour. To do so, one can consider the function
ii(t)=D(et) and determine its asymptotic behaviour as t-40.

The Mellin transform (see, e.g., [8, 13] and, for uses in analysis of algorithms,
[17]) of the function t is, by definition, the function given by

=
J	

(t)t' dt,

	

(17)

which, for Re(s)>1, is equal to:

(s) =	 T(s) = 2(s)T(s).

	

(18)

(c(s) is the Riemann zeta function and F(s) is the Euler gamma function.) From
the general inversion theorem for Mellin transforms

1	 I	 j*()d

	

(19)
211T Jj

which can here be taken with c = 2, calculating the residue of the integrand of (19)
at s = 1 and shifting the line of integration to Re(s) = , one finds




(20)t	 t

	

(71) -

This last equation entails (16). Thus, D(z) is a transcendental function and language
K1 is ambiguous.

Language K2. The argument is quite similar. Consider now the language E formed
with the complement of K2:

E = ({a, b}*/K2)n (a+b)2(a+b)*.

Its bivariate generating function is

E(a, b) =

	

..

=			 (21)
k,1

Function E(z, 1) thus has the expression

E(z, 1) = d2(n)z",

where d2(n) is the number of divisors of n of the form 2"- 1 with k 2. To prove
that E(z, 1) is transcendental, one may again determine its asymptotic behaviour
at z= 1. The Mellin transform of E(c-', 1) is


	

(s)F(s)
k2 (2"	

.
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To the left of the line Re(s)= -1 the Dirichlet series o) (s)	 (2/c - 1)

	

has
simple poles at all points of the form (2iklT)/log 2 with kEZ. Thus, around t = 0,
E(e', 1) has an expansion of the form

E(e', 1) =			 log t+		ct2Ik/loe2+o()	 (22)tk72	 1

	

	keZ

a typically transcendental expansion due to both the logarithmic terms and the
imaginary exponents. Thus K2 is also ambiguous.

Language P1. A combinatorial decomposition like that used for language P2 reduces
the problem to proving that the generating function of language I, here defined by

1{(amb)2kk> 1, m'O},

is transcendental. But this function is directly related to the divisor function since

I(._, Z)	
2krn

	

d(n)z2",
k,m1

	

n1

so that I(z, z) is transcendental by the argument given for language K1.

Language 0=. We shall prove this language to be ambiguous by showing essentially
that around a singularity a derived function behaves like

11
e 1-z

with e the transcendental number e=2.71828 .... A somewhat related reduction
(though concluding with adensity argument instead) will be used in the next section
when dealing with language 0>.
Words of the format m .. . (p 0) that are not in G. are described by

(a*/a)b(a*/a2)b(a*/a3)b... (*/k)j
k1

so that their bivariate generating function reads

bk
B(a, b) =	

kO -a(l -a))(1-a2(1 -a))
ko (1- a)




	3(1	
k

x(1-a-a)) ..... (1-a (1-a))

and




B(a, z(1-a)) = z(i - a(1-afl(l - a2(l -a))

x(1-a(1-a)) ..... (1-a(1-a)).

Thus, as z1 for fixed a, Ia<1,

B(a, z(1- a))	 Q(a)
(1-z)






Analytic models and ambiguity of CFLs	 303

where




Q(a) = fJ (1-a'(l-a)).
j1

Now, if B(a, b) were algebraic, Q(a) would be an algebraic function. But, by a
classical identity of Euler (see [11, p. 103]),

1		u"a"1-I		 2	 3
111-ua

Therefore, function Q(a) has the alternative form





Q(a) l+(1+a)(1+a+a2) . ... (l+a+a2+

so that




lirnQ(a)=
C1			 ,,,.0m!	 e

Thus Q(a) is transcendental and so is B(a, b). Language G=. is ambiguous.

We observe that we could alternatively have used the Lambert series expansions

d(n)z=	 m

	

d2(n)z'=
m1 1				 Z	 n;1	 .121_Z

to establish that these functions have the unit circle as a natural boundary.
Also, Mellin transform techniques when applied to the Fredholm series reveal

the presence of a logarithmic term together with periodic fluctuations similar to
those of Eq. (22).






7. Generalised asymptotic densities

The argumenthere is based on the existence of generalised densities for coefficients
of algebraic functions given by expansion () of Theorem D. Here it is applied to:
- languages 03, 123 defined by occurrence constraints (Theorem 1);
- the Goldstine-like language G> (Theorem 5).

Languages 123 and 03. Language 123 has a complement which is

I = {a, b, c}*/123 ={w I	 = JWIb =
Thus, the number of words in I of length 3n is given by the niultinomial coefficient

(3n '\ (3n)!
Il, n, n)		(n!)3'
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so that




123(Z)-
1

-I(z)=	 -

	

(3n)!,,
1-3z	 1-3z ,,(n!)

Function 1(z) is transcendental since, by Stirling's formula,





27m

and, because of the n factor, this expansion fails to be of type (s).
Similarly, 03 is the union of two deterministic languages (see the treatment of

04), whose intersection is exactly the language I defined above. Thus, 03 is
transcendental.

Language G>. Once more, we prove it to be ambiguous by showing that its comple-
ment has a transcendental generating function. Therefore, we consider the language
B ={a, b}*/{a, b}*b. It is formed with words of the type

a°b; a°b(a°+a1)b; a°b(a°+a')b(a°+a'+a2)b;..

so that its bivariate generating function is

B(a b) =	 b k la	 la

	

1-a"
k'1	 1-a 1-a 1-a

	

1-a

from which we get

B(a, z(l-a))= ?(1-a)(1 -a2)... (1-a").
k1

That function is a basic hypergeometric function. For Ia < 1, B(a, z(l - a)) has a

simple pole at z = 1 and one has

B(a, z(1 - a))	 H (1-a ").

	

(23)1 - z k1

Assume a contrario that B(a, z(1 -a)) were an algebraic function; then, so would
be (1- z)B(a, z(1 - a)) together with its value at z= 1, namely

Q(a) = fl (1 -a ").

	

(24)
k I

We may now resort to a density argument. Indeed, by a celebrated theorem of

Hardy and Ramanujan [20] concerning the number p of partitions of integer n,
we have




1	 e""
p[x		(25)

Thus, Q(xY1, hence also B(a, h), is transcendental, and G> is inherently ambiguous.
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Observations: For G>, many routes are conceivable to establish the (clear)
transcendence of Q(z) defined by (23). One may directly observe from the infinite

product expansion that Q(z) has the unit circle as a natural boundary. Also, by the

Euler Pentagonal Number Theorem, Q(z) is a lacunary series since

(i z') = (l)kzk(3k+1)/2
k'1		kEZ

Conversely, density arguments could have been used for other languages. For
instance, for language 04 studied in Section 4 (see Eq. (8)) we have

1 6
Tm

Similarly for languages K1 and P1, the mean order results (cf. [8, 17])

d(k)-logn;

	

d2(k)=1092n
k=1		 flk=j

are evidence of the transcendental character of the generating functions of d(n)
and d2(n).





8. Polynomial-linear recurrences

Recall that Criterion E based on Comtet's theorem states that ifno linear recurrence

with polynomial coefficients exists between terms ofa sequence l, then that sequence
cannot be the sequence of coefficients of an algebraic function. It comes as a useful

complement (or as an alternative) to transcendence proofs based on lacunary series

mentioned in relation to Criterion B. We shall apply it here to
- language B based on binary representations of integers (Theorem 7).

Language B. The language C = {0, 1, c}*/ B is formed with words that are the prefixes

ending with a letter c of the infinite word:

b = lc 1Oc lie 1OOc 1O1c 1Oc 111c 1000 c ....

Let A(k) denote the rank of the kth c in b. We have

A(1)2; A(2)5; ,k(3)=8;	 A(4)=12;

and, in general,




k

A(k)=k+1+	 [1092 k]
j=1

with [x] representing the ceiling function of real x: [x] -1 <x [x].
Therefore, C,,=1 if n is of the form A (k) for some k and C=0 otherwise.

Assume a contrario the existence of a polynomial linear recurrence:

ci

CN=	 pJ(n)CN_J.

	

(26)
j=1
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One has, for all k, A(p)-A(p--l)[log2p]; thus, taking in (26) N=A(p) (with
for instance = d+1) one reaches a contradiction since all terms on the r.h.s. of
(26) are 0 while CN = 1.

Of course, all other languages where lacunary series intervene could have been
treated by means of Criterion E which, for our purposes, is in principle more

powerful than the lacunary series theorem. Conversely, language B could have been
dealt with by using that theorem since the generating function of language C is a
lacunary series. At present, we do not have examples of applications of Comtet's
theorem that are not also lacunary series.






9. Conclusions and open problems

(1) The first conclusion of this work is that analytic methods are well suited to
proving inherent ambiguity of a variety of context-free languages since a transcen-
dental element in a generating function can be almost invariably recognised 'at
sight' using the classical arsenal of complex analysis.
Our methods seem well-suited to languages of intermediate structural complexity

in the following sense: the languages have to be simple enough so that we can solve
their counting problems with the available technologies of combinatorial analysis;
they have to be not too simple since otherwise their generating functions could
become algebraic or even rational and the method then ceases to be applicable.
At the lower end of the spectrum, we find the languages L and L' defined in

Equations (1), (2), which have rational generating functions:

L(z)=(1)12)5;		
L'(z)=-------1--.

At the upper end of the spectrum, there probably lie languages like the 'hardest
context-free language' of Greibach or even Shamir's language (compare with

language S in our Theorem 3):

S' = {ucv1uv2 U, Ci, V2 c {a, b}*}

whose counting problem is equivalent to the general enumeration of occurrences
of patterns in strings [19].
Sincemany of the languages considered here appear to be of unbounded ambiguity

[12, 38] a natural question is whether our methods can be extended to cover the
following situation.

Question 1. Are there sufficient conditions on generating functions to ensure that
a language is infinitely inherently ambiguous?

We believe the answer to this question is yes.
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(2) The second conclusion is that there is a fairly rich analytic structure amongst
generating functions of ambiguous context-free languages. Many of these functions
are related to classical special functions, a fact perhaps not too surprising since the
language definitions are often closely related to integer partitions and compositions.
Thus we have the following problem.

Question 2. In which class of transcendental functions do generating functions of
(general) context-free languages lie? (For instance, in our work we came nowhere
close to expressions involving the exponential function.)





A closely related problem is the following.

Question 3. Are there general results on densities of (ambiguous) context-free
languages? For instance, can the number ofwords of size n in a context-free language
grow like exp(c'./)?

In relation to Question 2, it has been proved by Bertoni and Sabadini [7] that it is
undecidable whether a context-free language has an algebraic generating function.
In another direction, Kuich and Shyamasundar [31] have obtained characterisations
of generating functions associated to (usually non-context-free) languages produced
by some Lindenmeyer systems.

In relation to Question 3, Baron and Kuich [2] as well as Ibarra and Ravikumar
[24] have shown that it is decidable whether a context-free language is 'sparse',
meaning that its enumeration sequence grows no faster than a polynomial. Recently,
Kornai [29] has employed analytic techniques to study a related notion of density
for some special context-free languages. Counting results for particular languages
are also given by Beauquier and Thimonier [3].

(3) Finally, it would be very interesting to have ways of establishing the inherent
ambiguity of languages like (1):

{a"b"c° n= m or n =p}

using analytic methods. This would probably require the construction of quite
different analytic models that should be of interest since they would better capture
inherently noncommutative properties of formal languages.
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