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ABSTRACT

We analyse a simple storage allocation scheme in which two stacks
grow and shrink inside a shared memory area. To that purpose, we
provide analytic expressions for the number of 2-dimensional random
walks in a triangle with two reflecting barriers and one absorbing bar-
rier.

We obtain probability distributions and expectations of characteristic
parameters of that shared memory scheme, namely the sizes of the
stacks and the time until the system runs out of memory.

This provides a complete solution to an open problem posed by Knuth
in "The Art of Computer Programming”, Vol. 1, 1968 [Ex. 2.2.2.13].

1. Introduction

The analysis of dynamic data structures is often the source of intriguing
mathematical questions. As opposed to classical average case of algorithms
like sorting, searching etc ..., the difficulty lies in understanding algorithmic
behaviours that are inherently dynamic. This sometimes requires introducing
new probabilistic or combinatorial models, that are of independent interest.

This paper studies what is perhaps the simplest storage allocation algo-
rithm. Assume that two stacks are to be maintained inside a shared (contigu-
ous) memory area of a fixed size m. A trivial algorithm will let them grow
from both ends of that memory area until their cumulated sizes fill the ini-~
tially allocated storage (m cells), and the algorithm stops having exhausted
its available memory.

That shared storage allocation algorithm is to be compared to another
option, namely allocating separate zones of size m/2 to each of the two
stacks. This separate storage allocation method will then halt as soon as any
one of the two stacks reaches size m/ 2.

Several measures may be introduced to compare these two schemes.
One of them is the expected number of operations that can be treated by the
algorithms under some appropriate probabilistic model. Another interesting
measure of the efficiency of the shared allocation algorithm that was pro-
posed by Knuth [7], is the expected size of the largest stack when both stacks
meet and the algorithm runs out of storage: if that quantity is close to m /2,
then little benefit should result from sharing storage while if it differs appre~
ciably from m /2 then the process of sharing memory proves advantageous.
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It is our purpose here to completely analyse this problem and thus solve
a question posed by Knuth in 1968 in [7]. Partial results have been obtained
earlier by Yao [11], but it appears that covering all cases of the original prob-
lem cannot be achieved by an extension of Yao's methods.

Before going to more technical details, one may wish to contrast our
treatment with other dynamic analyses of algorithms.

a. The analysis of simple stacks under sequences of operations has been
undertaken by Knuth in [7]. Corresponding techniques are essentially
enumerative and belong to what Riordan calls the "Catalan domain”
where the Catalan numbers

_ 1 2n
Cn = n+1 (")
play a crucial role. The evolution of a single stack inside a fixed memory

area is studied under a different form (viz. the distribution of height in
planar trees) by [1].

b. Binary search trees were later analysed in a particular dynamic context
by Jonassen and Knuth [6]. The title of their paper (""A Trivial Algorithm
whose Analysis is Not") reveals some of the intricacies of the analysis
where Bessel functions appear.

c. Francon in [5] showed interesting results concerning the analysis of
binary search trees (as well as other comparison based structures) when
considering the set of all possible sequences of operations up to order
isomorphism. The results were later extended in [4] using continued
fraction techniques of Flajolet [3]. Part of our treatment relies on tech-
niques of [3] initially motivated by the work of [1].

d. Returning to storage allocation algorithms, the buddy system was par-
tially analysed by Purdom. As already mentioned the shared storage allo-
cation algorithm was studied by Yao [11] who obtained results that
correspond to what we call here the expanding case. Our results cover
all cases and also lead us to more general distribution estimates of the
varjous parameters involved.

As has been noticed since the problem was initially posed by Knuth, the
natural formulation is in terms of reandom walks [9]. Here the random walk
takes place in a triangle in a 2-dimensional lattice space: a state is the cou-
ple formed with the size of both stacks; the random walk has two reflecting
barriers along the axes (a deletion takes no effect on an empty stack) and
one absorbing barrier parallel to the second diagonal (the algorithm stops
when the combined sizes of the stacks exhaust the available storage).

It may be of interest to note that random walk problems bearing some
resemblance to ours appear in queuing theory when studying coupled queues.
In particular Flatto, Fayolle and lasnogorodski use in this context conformal
mapping techniques to solve a functional equation problem essentially
equivalent to a 2-dimensional walk with two reflecting barriers. (See also
Cohen’s book on random walks and boundary value problems for some related
issues.) It does not seem that their techniques apply here because of the
presence of a third absorbing barrier. However, it may be of interest to
notice that while their solutions involve elliptic integrals, the expressions we
obtain in one of the cases (the "metastable case”) lead to functions of the
form

p(z:q) = 3 =

n=11—q"
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Figure 1: The Markov chain modelling the shared storage allocation algorithm
{when m=4).

also clearly related to elliptic functions.

Two-dimensional counting problems otherwise occur in statistical
mechanics, most notably in the study of the Ising model (see e.g. [8]). It is
another wonder that the common denominator for expressions of probabili-
ties obtained here in the metastable case coincides with expressions occur-
ring in the solution of the dimer problem of statistical mechanics.

We now proceed with precise definitions and a more detailed presenta-
tion of the contents of the paper.

We consider two stacks coexisting in memory by growing and shrinking
inside a shared memory area of size m with memory cells numbered by the
integers [1..m]. A 2-stack history is an infinite word over the alphabet:

{ 11.15,D1.D,

where J, represents an insertion on stack 1, I, a deletion from stack 1 {this
has no effect if stack 1 is empty), and /5,0, are similar operations performed
on stack 2.

At any stage, stack 1 occupies memory locations [1..2] for some integer
z (if =0, then stack 1 is emptly), and stack 2 occupies locations [m~y +1..m]
for some ¥ (y is thus the size of stack 2, and if y=0 stack 2 is empty), with
the obvious constraint z+y=<m. Initially both stacks are empty so that
z=y =0. The state of the system at any time is described by the couple of
integers {x,y); the effect of operations I,,/5,0.D5 is to move from a state
(z.y) to a new state (z'y’), where (z'y’') is determined by the rules:

I.(z'y")=(z+1y) if z+y<m, (z,y) otherwise;
Dy (z'y')=(z-1y)if 2>0,x+y<m, (zy) if z+y=m, (0,y) otherwise;
L (z'y)=(zy+1)if z+y<m, (z.y) otherwise;
Do {z'y')=(zy-1)if y>0.z+y<m, (zy)if z+y=m, (0,y) otherwise.

Thus operations have no effect after a state (z,y):z+y=m has been
reached, when the algorithm runs out of memory and stops. In this case, we
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say that overflow or absorption has occurred.

One can see that the set of histories such that no overflow occurs has
measure 0. The problem asked by Knuth which we address here is as follows:

Problem: Assume an insertion Iy or I occurs with probability p, and a dele-
tion D, or D, occurs with probability q:

Pr(ly)=Pr(Iz)=p: Pr(D;)=Pr(D;)=q ,
with p+q=%—. Let (z,y) denote the absorbing state reached. What is the

dependence of max(z,y) on p and m? What is the asymptotic form of
max(z,y) for fized p as m tends to «?

The quantity max(z,y) is a measure of the efficiency of the storage allocation
scheme, as we saw already. Knuth’s model is nothing but a Markov chain (see
Figure 1) with number of states equal to

(m+1)(m+2)
5 :

so that the probabilities of hitting a given absorbing state can always be
determined numerically, for any given value of m, by inverting a matrix of
dimension O(m?), a process that itself consumes a rather exorbitant 0(m$)
time. It is both impractical and uninformative. On the other hand, an asymp-
totic analysis gives results that are fairly simple to interpret and constitute,
as we shall see later good numerical approximations even for relatively small
values of m (like m=16 or 32).

Let A,(m) denote the expected value of max(z,y) under Knuth's proba-
bilistic model. Depending on the value of p, rather different behaviours of
Ap(m) occur:

1. p=%: no deletion occurs. The system reaches an absorbing state in m
steps exactly. Knuth {7, ex. 2.2.2.12], has shown that in this case:

Ap(m)=1g‘——+ m

m_ -1/2
2n+0(m ).

2. %—<p <—é— : we call this the expanding case since then p>q. The system is

expected to reach an absorbing state in O(m) steps. Yao [11] has proved for
the expanding case that

- m m log?m

4p(m) = 3 +\/ zmap-ny) T O )
Yao's argument is in essence that after logm operations, the probability for
one of the stacks to return to an empty state is asymptotically 0, so that the
analysis reduces to that of a much simpler random walk with only one
absorbing barrier. Yao's argument also shows that the distribution of absorb-
ing states is closely centered around (m/2;m/2), the expected deviation
being O(m1/2).

3. p=% : the system is slowly expanding, and we call this the metastable case.

In analogy to one-dimensional walks, see e.g. [9], we expect it to reach
absorption in O(m?) steps. We shall prove that there:
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Ap(Mm) ~ 0.67526...m

so that the largest stack has size slightly over %m Under this stack usage

model, memory sharing proves quite efficient. We shall prove further that the
probability for the system to reach state (Am ;(1~A)m} approaches a limiting

distribution {when m gets large) with density 4( %i- J (A)+f (1-1)), where f(A)
admits the pseudo-Fourier expansion:

bed ’ inh 7 Am
A= A _SLH_L_
A JE:XCOSJ T sinhjm
The limiting distribution of stopping times is also characterised in terms a
sort of bivariate theta function.

4. 0<p <% : the system is contracting since then p<q. It is expected to reach

m
an absorbing state in O((-q-) ) steps. We prove the somewhat surprising

result that in this case the limiting distribution of absorbing states is uni-
Jorm, so that:

A(m) ~ 2m

and memory sharing is a real advantage. We also prove that the normalised
stopping times obey a limiting exponential distribution of a simple form. Note
that for a fized value of m, as p -0, Knuth states that the probability distri-
bution of z tends to a quasi-uniform distribution so that then again:

. 3m
ppApim) ~

Thus rather different situations occur depending on the relative position
of p and q. Note that Yao's proof of case (ii) is based on probabilistic approxi-
mations with the expanding character of the random walk "built in" the com-
binatorial reasoning, so that it cannot be extended to cover the general prob-
lem. In contrast in this paper, we propose to give analytic expressions for the
probability distribution of absorbing states, from which precise asymptotic
expansions may be obtained.

Plan of the paper: The analysis of the shared memory allocation scheme
decomposes into simpler and simpler combinatorial subtasks which we shall
explore in the subsequent sections:

(i) The problem of estimating the probability distribution of absorbing
states reduces to the problem of counting trajectories (walks) in a triangular
subset of the integer lattice NxN; the probabilities are related in a simple way
to the generating functions of path counts.

(ii) Using an adequate extension of the reflection principle of Andre (see
e.g. [2]) the counting of walks in a triangle is reduced to a Z-dimensional
counting of walks in a square (with adequate boundary conditions).

(iii) Walks in a square are in turn decomposed as shuffles of 1-
dimensional walks over an interval (again with suitable boundary conditions),
an operation which corresponds to products of exponential generating func-
tions.

(iv) Walks over an integer interval have generating functions naturally
expressible in terms of continued fractions [1,3] and we treat them using the
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general theory set up in [3].

The expressions obtained from this chain of combinatorial reductions
are then subjected to asymptotic analysis. Essentially, this involves studying
the asymptotic distribution of poles of a class of rational functions related to
Tchebychefl polynomials. From there, limiting distributions of absorbing
states and absorption time are obtained.

Radically different behaviours occur in the 3 cases: expanding, meta-
stable and contracting. To save space, we shall not develop the treatment of
the expanding case corresponding to Yao's result.

2. WALKS OVER AN INTEGER INTERVAL

Consider the graph I'y, whose set of vertices is the integer interval [1.m] and
set of edges is:

f(z.z+1) | Osz<m ] y H{z,2-1) | O<z=m} U {{0,0);(m m)]. (1)

The 3 categories of edges in (1) are called respectively forward edges, back-
ward edges and loops. We let U, ,, , denote the set of paths in I, from vertex
0 to vertex k comprising a total of n steps, out of which ¢ are loops. The
problem is to estimate U, , , =card U ,, ;.

The approach uses generating functions. Let
U(zu)= ¥ Uppeztut
n,t20
One has:

Lemma 1: The generating function of the Uy, ., has the continued fraction
expansion:

Uz u) = L : (2)

1~

{—zu

where the number of 2 in the fraction is equal to m.

Let ¥<™> denote the generating function of path in the graph I, that do not
traverse the loop around (0,0). We find, using techniques akin to those of [1]
and [3]:

Fopoi(z)—2uF,, (2)

V<m> rau) = 3
( ) Fons2(x)—2uFp 4 (2) )

where the F,, are the Fibonacci polynomials:
Folz)=0; F(Z)=1; Fpol@)=Fp, (z)—-23F, (z) . (4)

From there, we can determine the quantities U, for general k; decom-
posing paths according to their last passages at levels 0,1,2, - - -, we find:

Up(z ) = Up(z u)zVm—1>(z w)zV<m 2> (z,u) - - - 2V *>(z u) (5)
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so that Up(z,u) is equal to:

k
l—xu—xalf(m‘b(z ) Vg ) VMR ) - VMRS (2 )

After simplifications, we obtain:
Proposition 1a: The generating functions U, {(z,u) satisfy:

Fon—k+1(2)—2uFp 4 (z)
Fm+2(x)“szm+l(x)+xzu2Fm (z) .

(6)

Up(z u) = z*

There is an obvious connection between Fibonacci polynomials and Tche-
bycheff polynomials. Comparing their recurrence relations shows that:

1 = 1 m~—1 Sinm?3
F 2cos? )= 2cos? ) sin® ()

Proposition 1b: The generating functions U, (z,u) satisfy:

sin(m —k +1)8 —usin(m —k )9 ‘ (8)

Uk(-—1-—,u) = 2cos?
sin(m +2)0 —2usin(m +1)¥ + u®sinm ¥

2cosy

This last form is necessary in order to determine the inverse Laplace
transform of U, that will be required later. To prepare for that task, we com-
pute here the partial fraction expansion of Up(z,u). For convenience rea-
sons, we first set:

Definition 1: Let E(¢) be a function of ¢, such that: %(I?)- = F(cosy), for some

polynomial F(2). A multiset ¢ of roots of equation E(¢)=0 is said ts be a prin-
cipal set of roots iff the multiset Z = {cosg{ is the multiset of roots of P(z)
each appearing with its multiplicity.

Pr;)position lc: For a fixed 4 >0, and m large enough, the poles of Uy(z.,u),
taken as a function of z, are all simple. Function U, admits the partial frac-
tion decomposition:

Ue(m) = = ¥ T2z cong)

where ¢ is a set of principal roots of equation:
E(¢) = sin(m +2)p—2usin(m +1)p+usinmy = 0
and ¢, (¢) is given by:

sin(m —k +1)¢—usin(m —k )y
(m+2)cos(m +2)p~2(m +1)ucos(m +1)p+mucosme¢

¢, (9) = 2sing

for ¢#0, with ck(¢)=—zi+-1— if ¢=0.

The proof relies on the trigonometrical form of U;. The quantity E(p)/ sin(g)
represents a polynomial of degree m +1 in cosg that has, for general u, m+1
distinct roots. In particular, for the special case when u=1, for even m the
roots of E(y) are simply
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- ..jl_ y
é ’m+1 | O<j=m |,

a fact to be used in later analyses of the metastable case.

3. WALKS IN THE SQUARE

We now consider walks on a square lattice. Define A, to be the {multi-) graph
whose set of vertices is:

{{z1.x2] [0Sz, 22=m .
and set of edges:
fzyza)llz 1"z ) U ([, 2) [ 2, -1 "2 2])
Ut[zyzallzy |z 41 " DUz 2] 20 [ 221 1*]))
where x,,2, are in the integer interval [1..m ], and

ly |t = if u>0 then u else 0;
ly]™ = if u<m then u else m.

We let @, p,n: denote the number of paths connecting the origin [0,0] to the
point [ky.kz] in n steps, out of which ¢ are loops. We have:

Lemma 2: The exponential generating function of the @, i, n ¢ satisfies:

~ N -~ -~
Qroko (2 %) = T Qpuppn et = = Up(2.u) 0 (2.u)
n.tz20 n:
where the f),, are the exponential generating functions of the numbers of 1-
dimensional walks:
o~ n
Ozu)= 3 Uppeut 2.

]
n,t>0 n:

Proof: The proof corresponds to the fact that a 2-dimensional walk in the
square decomposes into the "shuffle” of two 1-dimensional walks on the line,
whence the recurrence:

n
Qeykent = 2 (ni)Uk,.n,,t,Ulcg,ng,t.~ . (9)
Ni+Ne=N
ty+tg=t

Combining Lemma 2 with the result of Proposition 1c permits to express
the ordinary generating function of the @, z,n¢:

Proposition 2: The ordinary generating function of the @ ., ¢ is given by:

Ck,(?x)ck,(fl’z)
erpicd 12T (cos{gy)+cos(gs))

Qe k()= Y @ ppneutz™ =
n, t20

Proof: From Proposition lc, we see that the exponential generating function
Up(zu)is:

Oe(zu) = T ep(p)e?roome
ped
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since, by inverse Laplace transform, the exponential generating function
corresponding to an element (1-az)~! is exp(az). Thus, by Lemma 2, @ has
the expression:

Gep(zu)= T cp lor)ck(pa)e=coserteosea)
1.926%

and ¢ is obtained by transforming @ by means of a Laplace transform: each

element exp(fz) in the above expression transforms back to (1—gz)"1. ®

4. WALKS IN A TRIANGLE AND THE PROBABILITY DISTRIBUTION OF ABSORBING
STATES

Andre’s reflection principle has been originally developed in connection with
1-dimensional walks or ballot sequences.

Definition: A class of walks over the integer lattice defined by a set of elemen-
tary steps ¥ is said to satisfy the reflection principle for a straight line 4 if
the following isomorphism holds, for all points 4,5:

Path25[A,B] ~ Path {48 / Path,[sym,(4).B].

where Path,[X,Y] is the set of paths relating X to Y in n steps, Path24
denotes the subset of those paths that do not touch A, and sym,(4) is the
symmetrical point of 4 with respect to A.

The interest of this principle is to reduce the problem of enumerating
paths (with set of steps &) that do not touch a given line to enumerating to
sets of unconstrained paths, usually a simpler combinatorial problem. To
ensure its applicability, we essentially need that ¥ be closed by symmetry
with respect to A. Indeed, in this case, each path from 4 that touches A has a
first contact step (starting from 4), and can be bijectively mapped onto a
path relating sym,(4) by reflecting (by symmetry w.r.t. A) all the steps until
that first contact.

Thus the set of walks in the integer lattice with set of steps North, South,
East, West satisfies the reflection principle for any line parallel to the second
diagonal passing through one of the lattice points. A short reflection shows
that the principle also applies to the set of walks in the square when A is the
line of equation z+y=m.

We now define the quantities Ty .. ¢ when k;+k,<m to be the number of
walks in the square (i.e. the graph A,;) of length n comprising ¢ loops con-
necting the origin (0,0) to the point {(k,k,) that do not touch the line
z+y=m. It proves convenient to extend the definition of the Ty ,, to the
situation where k,+k,=m. In that case, we let 7, .. ., denote the number of
walks with terminal point (k,k3) which apart from their terminal point do not
have any point on the diagonal z+y=m.

Such walks are called here triangular walks. From the previous argu-
ment, we obtain:

Proposition 3: The ordinary generating function of triangular walks defined
by
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TepkllZ ) = % Ty eufz®
n ta0

satisfies when k+k,<m:
Ty ool T ) = Qi (2. 0)~Qm ko —k, (T 1) .
and for k;+k;=m:
T (T2} = (@1, (7 0) + Qo gyt (T 0) = Qa1 (28] — Qg (Z210))

We can now derive the probability distribution of absorbing states under
Knuth's probabilistic model:

Lemma 3: The probability m, ,. of reaching the absorbing state (k.k;) (with
k,+kp,=m) is equal to:

Ty = (B 2T 4 ((P)V 2(1)12)
q P
Proof: Observe that any path of length n with ¢ loops is formed with N.5.E, W
steps going North, South, East, West respectively, and it has probability:

pN*EqH+Sqt = (pg)n/3(Lyt/z ®
p

Whence our first theorem:

Theorem 1: [General Absorption Probabilities Theorem] The probability of
reaching absorption in state (k ,k,) satisfies:

T kg = (pq)l/Z(E)m/Z 24»
g P1.P26¢

(Crye1=Cy+1)Ck, +Ck (Chpmy —Cipe1)
1-2z (cosp, +cosg,)

where z=(pq)'/ 2, u=(1)1/2 Y.t is to be interpreted as a sum with ¢, not
both 0, $ is a set of principal roots of equation:

sin(m +2)p—2usin(m +1)g+u’sinmg = 0
and cp=cg (p) is (ck,=Ck,(@1), Cp,=Ci,(¢2)):

sin{m ~k +1)p—~usin(m —k)e
(m+2)cos(m +2)p~2(m +1)ucos{m +1)}p+mucosme

celp) = 2sing

. 1 .
with ¢, (ga):—;;ﬁ if =0.

5. THE METASTABLE CASE

What we call here the metastable case is the situation where p=¢=1/4. In this
case, the expressions of Theorem 1 simplify appreciably since the set & is for
even m:

=¢ A i
¢ ImH | Osj=m |
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Whence, an adapted form of Theorem 1 in the metastable case:

Corollary 1: In the metastable case, the absorption probabilities are given by:

Ty ke = A +4{M) 4+ B{M) | (11)
where
2 - - i
m Sin —J—- sin—L7_.
A = 2 1 ERAR (ke 2 L0,
(m+1) i=1 (1—COS—‘L——)
sin AL in Jam in Jam in Jem
m) m+l  2m+2_ m+1° 2m+2
Belles = -(;*'1)2,21122 Jemm Jam Jam
1= 42~ —_ — — -—— LA
(1 cosm )(1 cos "= 1 (cosm+1 +cos +1))
N L 1 Jamm . Jam . Jam 1, 17
[sin ——l sin(k,+ 2)'m.+1 cos(k 2+2)m+1 + sin = sin(k,+ 2)’_’”_1 cos(k,+ 2)m+1 ]

116
354

meta: 16,32/64/inf

Figure 2: Convergence to the limit distribution (Theorem 2) of the exact
distributions computed by means of Corollary 1, for m=16. 32, 64.

This expression, though rather complicated, lends itself to easy numeri-
cal evaluation. Furthermore, it can be asymptotically analysed for large m.
The dominant contribution comes from small values of j,j;,j» in the
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expressions of 4,B. We can justify, for large m, the natural substitutions:
sin-df_ , LT, 1-cos 47— 5 s . (12)
m+1 m m+1 2m?
then extend the sums in Corollary 2 to indices 7,5,.52 going to +e,

In the process, there appear Fourier expansions of the periodic con-
tinuation of function -g——x as well as sums that can be reduced [10, p. 190]
using the Fourier expansion:
sinha(n—=z)

sinhz

j sinjzx
f=1 a®+j2

=
=3 (13)

From these computations, we get:

Theorem 2: [Asymptotics of the metastable case] Assume A ranges over any
fized subinterval [«;B] of [0;1]. Then in the metastable case (p=g¢=1/4),asm
tends to infinity in such a way that A m is an integer, the absorption proba~
bilities tend uniformly to a limiting distribution with a continuous density:

] 1
#ﬂm.TrAm,(l_x)m = 4[‘é"+f N+ (1-A)]

where f (z) is the function:
sinhnnz

J(z)= 3 cosnnzx e

nzl

The expected size of the largest stack when the shared memory algorithm
stops satisfies:
/2

lim oy am) = o() = §=2 [ (f ()41 (1-2))dz

and the constant a{1/ 4) evaluates numerically to: 0.67526.

6. THE CONTRACTING CASE

In the contracting case where p<q, the set ¢ of principal roots of E(g) no
longer has the simple form of regularly spaced points. Rewriting the equation
E{¢)=0 under the form:

sin(m+l)g _ _ u?-1
sinmg 2(u —cosyp) ’

one can prove:

Lemma 4: When p <q. for m large enough, a set $ of principal roots of E(p) is
formed of:

a. {m—1) roots that separate the regularly spaced points:

mo.2r 8n. . (m-Un mn
m'm ' m' m "m
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b. Two complex roots ¢; and g,, called dominant roots, satisfying:

cosg,, COS@y = -%—(u.+-117)+ o(u™m) (14)

where u =(g—)1/2> 1.

It is actually these two complex roots that dictate the asymptotic
behaviour of the absorption probabilities. From detailed asymptotic expan-
sions (obtained with the help of the MACSYMA system) of the dominant roots
and corresponding expressions of Theorem 1, we get:

Theorem 3: [Asymptotics of the Contracting Case] Assume A ranges over any
fized subinterval [a;8] of [0;1]. Then in the contracting case (p<q), as m
tends to infinity in such a way that A.-m is an integer, the absorption proba-
bilities converge uniformly to the uniform distribution:
lim m -")\m,(l—)\)m =1
m oo
The expected size of the largest stack when the shared memory algorithm
stops satisfies:
! 3
1 — = = -
im =—A,(m) = a(p) "

m - MM

Thus the largest stack has size approximately 0.75m when absorption is
reached. The really surprising fact is that the limitirz distribution of absorp-
tion states is uniform in that case, for fixed p. (Note: this is quite different
from the "not difficult” result cited by Knuth that concerns the case where

p-1).

7. STOPPING TIMES

Let Wy,(m) be the random variable denoting the time when the shared
memory algorithm stops, having run short of memory. As indicated in the
introduction, knowledge of this parameter is of interest if shared memory
allocation is to be compared to separate memory allocation. From previous
methods, we can prove:

Theorem 4: [Waiting Times: Metastable Case] M the metastable case
(p=q=1/4), the stopping time has for large m an expectation which is O(m?)
and it obeys a limiting bivariate theta distribution.

For lack of space, we refrain from giving here the complete expressions of the
limiting distribution and the implied constant in the 0(m?) result.

Theorem 5: [Waiting Times: Contracting Case] fn the contracting case (p<q),
the normalised stopping time:

W(m) = o Wy (m). (B,

K a constant for fized p, has in the limit an exponential distribution:
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lim Pr{a<Wy(m)<g] = e f—e~= .
msos

In particular, in the contracting case, one expects to be able to process a
number of request of the order of 0((%)"‘).

8. NUMERICAL ESTIMATES AND FINAL CONCLUSIONS

In order to attain numerically accurate results, we have used the MAPLE sym-
bolic computation system to determine exact rational expressions of stopping
probabilities. Figure 3 displays the probability distributions of absorbing
states for m =20 when p=0.05, 0.10, - - - ,0.45. (Note the graphs have been
splined for easier readability.)

20

m=20, p=0.05..0.45

Figure 3: Absorption state probabilities for m=20 and p=0.05(0.05)0.45
(after splining).

This provides a check for the exact expressions obtained for the meta-
stable case whose convergence to a limit distribution was depicted in Figure
2. We also notice the flatness of the curves for low values of p (0.5-0.15)
which clearly confirms the uniformity of the limiting distribution in the con-
tracting case. As an other example, when m =32, the probabilities of stopping
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at states 4, 8, 12, 16 when p=1/6 are respectively:
0.0317708, 0.0332356, 0.0333272, 0.0333326 .

(The computation took 15 hours of CPU time on a VAX 11/780!).

Thus these numerical computations confirm the usefulness and the vali-
dity of these asymptotic approximations even for small values of the memory
size m. A summary of the results for this problem is displayed in Table 1.

Largest Stack Stopping Time
Expect. Distrib. Expect. Distrib.
Expanding 0.5m Dirac (Gaussian) o(m) -
Metastable 0.6752m  pseudo-Fourier 0(m?) biv. theta
Contracting 0.75m uniform 0(c™) exponential

Table 1: A summary of available results for the shared allocation algorithm.

The separate allocation algorithm can be analysed in an even simpler way
(since it corresponds to walks in a square, ¢f. Sect. 3). It appears from Yao's
results that not much difference results in the expanding case when p >q.
Notice however that this situation does not seem to model real-life situations
too well since then the allocation algorithms steadily progress to a situation
where memory gets exhausted.

The metastable and contracting models seem more realistic. If
p=g=1/4, we have seen that the algorithm based on sharing can accommo-
date fairly dissymmetrical files. That conclusion is even more true in the con-
tracting case where one can further prove that the sharing algorithm will
accept a number of requests exponentially larger than the separate alloca-
tion algorithm.

Therefore, an intuitively clear conclusion of our study could be:
"Share with somebody if you can!”

Acknowledgements: The author would like to thank A. Odlyzko, F. Baccelli, G.
Fayolle, B. Chazelle, R. Sedgewick and J. Savage for several stimulating discus-
sions during the elaboration of this work.

References

1. N. De Bruijn, D. E. Knuth, and S. 0. Rice, “The Average Height of Binary
Trees and Other Simple Trees,” pp. 15-22 in Graph Theory and Comput-
ing, Academic Press, New-York (1972).

2. L. Comtet, Advanced Combinatorics, Reidel, Dordrecht (1974).

3. P. Flajolet, “Combinatorial Aspects of Continued Fractions,” Discrete
Math. 32 pp. 125-161 (1980).

4. P. Flajolet, J. Francon, and J. Vuillemin, "“Sequence of Operations Analysis
for Dynamic Data structures,” J. of Alg. 1 pp. 111-141 (1980).



9.

10.

11.

340

J. Francon, "Histoires de Fichiers,” RAIRO Inf. Theor. 12 pp. 49-62 (1979).

A. Jonassen and D. E. Knuth, A Trivial Algorithm Whose Analysis Isn't,”
Stanford University Report STAN-CS-77-598 (1977).

D. E. Knuth, The 4Art of Computer Programming: Fundamental Algorithms,
Addison Wesley, Reading, Mass (1968).

J. K. Percus, Combinatorial Methods, Springer Verlag (Applied Mathemati-
cal Sciences 4), New-York (1971).

F. Spitzer, Principles of Random Walk, Springer Verlag, New-York {1976).
(2nd ed)).

E. T. Whittaker and G. N. Watson, A Course in Modern Analysis, Cambridge
University Press (1927).

A. C. Yao, “An Analysis of a Memory Allocation Scheme for Implementing
Stacks," SIAM J. Comput. 10(2) pp. 398-403 (1981).



