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We show that the universal continued fraction of the Stieltjes-Jacobi type is equivalent to the
characteristic series of labelled paths in the plane . The equivalence holds in the set of series in
non-commutative indeterminates . Using it, we derive direct combinatorial proofs of continued
fraction expansions for series involving known combinatorial quantities : the Catalan numbers,
the Bell and Stirling numbers, the tangent and secant numbers, the Euler and Eulerian
numbers . . . . We also show combinatorial interpretations for the coefficients of the elliptic
functions, the coefficients of inverses of the Tchebycheff, Charlier, Hermite, Laguerre and
Meixner polynomials . Other applications include cycles of binomial coefficients and inversion
formulae . Most of the proofs follow from direct geometrical correspondences between objects .

In . this paper we present a geometrical interpretation of continued fractions
together with some of its enumerative consequences . The basis is the equivalence
between the characteristic series of positive labelled paths in the plane and the
universal continued fraction of the Jacobi type. The equivalence can be asserted
in the strong form of an equality in the set of formal series in non-commutative
variables . Using this framework leads to a direct "non computational" proof.

Section 1 contains the proof of this equivalence (Theorem 1) together with a
combinatorial interpretation of the Stieltjes matrix and the Rogers polynomials . It
extends some previous results of Touchard [27] and independent works of Jackson
[14], Read [32] and the author [9] .

Section 2 is devoted to direct derivations of continued fraction expansions for
generating series of known combinatorial quantities. Indeed the expansions of
series relative to many classical combinatorial quantities have integer coefficients
obeying simple laws whose origin can be combinatorially accounted for . In the
case of path enumerations, these expansions follow as direct consequences of our
basic theorem. In other contexts, the proof is achieved by utilizing Theorem 1 in
conjunction with what we name systems of path diagrammes . Path diagrammes
are related to the weighted ballot sequences of Rosen [24] ; they have been used
systematically by Frangon and Viennot [12, 13] to enumerate various classes of
permutations .
We show here that one system of path diagrammes bijectively corresponds to

set partitions . From this, a set of continued fraction expansions (Theorem 2) is
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derived for series involving the Bell numbers, the Stirling numbers of the second
kind, the odd factorial numbers and other related quantities . A second set
(Theorem 3) is obtained by exploiting the Frangon-Viennot's correspondence and
some of its variants [12, 13] between another system of path diagrammes and
permutations . Using it, we derive continued fraction expansions for series involv-
ing the factorial numbers, the Euler numbers, the Eulerian numbers, the Stirling
numbers of the first kind and other quantities ; extensions include the generalized
Eulerian and Euler numbers of order k. Conversely, Theorem 1 makes it possible
to interpret combinatorially those Jacobi type continued fractions which have
integer coefficients . As an application we show that the coefficients of the elliptic
functions cn, do count alternating permutations partitioned according to the
number of minima of even value (Theorem 4) . Finally we show as a continuation
of remarks of Section 1, how to derive generating series for Carlitz's cycles of
binomial coefficients [2] .

Section 3 is devoted to the enumerative properties of convergents of continued
fractions . The denominator polynomials appear in a number of enumerating series
for paths and diagrammes. Their classical orthogonality relations underlie inver-
sion formulae which have the following interpretation : the matrix formed with the
coefficients of the denominator polynomials is the inverse of the Stieltjes matrix .
Considering in particular the convergents of those continued fractions introduced
in Section 2 for enumerative purposes leads to fractions involving the classical
Hermite, Charlier, Laguerre and Meixner polynomials for which combinatorial
interpretations are given (Theorem 5) . In particular, we show that the Taylor
coefficients of inverses of these polynomials enumerate various classes of permu-
tations .

It should be pointed out that all the continued fraction expansions we derive
here obtain as a direct consequence of geometrical correspondences without any
computation over generating functions. Such an attitude towards enumeration
problems originates in the works of Foata and Schutzenberger ; quoting from [11] :
"Plus important nous semble la demonstration du fait que toutes les identites
classiques . . . sont seulement la traduction de proprietes tres simples des mor-
phismes d'ensembles totalement ordonnes" . Strikingly enough, as we see here,
almost all the classical expansions having integer coefficients receive simple
combinatorial interpretations .

1. Labelled paths and continued fractions

1 .1 . The basic equivalence

In this section, we prove the basic equivalence theorem relating the characteris-
tic series of certain labelled paths in the plane to the universal Stieltjes-Jacobi
continued fractions .

Paths we wish to consider here are positive paths in the x-y plane, which
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consist of only three types of steps : rises, levels and falls . More precisely we start
with three step vectors a = (1, 1), b = (1, -1), c = (1, 0) called respectively rise
vector, fall vector and level vector ; to each word u = u iu2 * * " un on the alphabet
{a, b, c} is associated a sequence of points MOM, - - - Mn where MO = 0 = (0, 0)
and for each j s.t . 1, j, n, OM; = OMj _ 1 + u; ; in other words for M, = (x;, y;) and
u; = (Si, ti) :

(i) (xo, Yo) = (0, 0),
(ii)

	

(x;, Y;) = (x;-1 , Y;-`) + (s;, t;)

	

for 1, j , n.
The number n is the length of u ; for each j, the number y, is the height of point
M; ; finally the height of the sequence u (or equivalently of MOM, . . . Mn) is
defined as maxo_,;_ n {y,} and is denoted by h(u) or h(MOM, . . . Mn).
We wish to restrict attention to certain sequences called positive paths or simply

paths : these are sequences such that all the points in the associated sequence have
a non-negative y-coordinate. We let 6'+ denote the set of positive paths

1U1 U2 . . . un E {a, b, cj* I 1 :l-j---- n, Vulu2 . . . u,la >1ulu2 . . . . uilb
and

	

1ulu2 . . . unla = Iulu2 . . * unIb}.

where Jxlc denotes the number of occurrences of c in x.
It proves convenient for later applications to consider the empty word as a

positive path of height and length equal to zero .
We now define labelled paths in which each step is indexed with the height of

the point from which it starts : if u = ui . . . un is a positive path, and if
MOM, . . . Mn with M; = (x;, y;) is the associated sequence of points, the labelling
of

	

u, k(u)

	

is

	

defined

	

as

	

a

	

word

	

over

	

the

	

infinite

	

alphabet

	

X=
{ao, a,, a2 . . . .} U {bi, b2 . . . .}U{co, c i , c2,

	

. . .} by : A (u) = v i v2 . . . vn where for 1
j-n :v;EX, and

(i) if uj = a, then v; = a,,,_,,
(ii) if u; = b, then v; = byj_,,

(iii) if u; = c, then v; = c,,,_, .
We let P = A (,OP') denote the set of labelled paths. The labelling operation and

the geometrical representation of paths are exemplified in Fig. 1 .
We now need a few concepts from the theory of series in non-commutative

variables, whose introduction in the context of enumerative problems is due to

a a b b c a c a b a a b b b
a0 a I b l) b l c0 a0 c l al b2 a I a : b3 b2 b l

Fig. 1
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Schiitzenberger [25] (see also Raney [20] for applications to Lagrange's inversion
formula, or Cori [6] in connection with planar graph enumerations) .
We consider the monoid algebra' C((X)) of formal series on the set of

non-commutative variables (alphabet) X with coefficients in the field of complex
numbers. An element of C((X)) can be written as

s= Y, S.-U.
U(=-X*

Sums and Cauchy products are defined in the usual way :

s+t= E (su +tu )-u
u=)X *

S - t=

	

Z * (Z

	

s� tw)'U.
UEX vw=u

The valuation of a series is defined by

val(s) = min{luI ; s.` 0},

lim val(s - sn ) = +0o.

P. Flaiolet .

with Jul denoting the length of u ; conventionally val(0)=+oo . Convergence in
C((X)) is introduced as follows : a sequence {Sn}n-o where each Sn is in C((X)), has
limit s iii

n-`.oo

In other words, the sequence ISO has limit s ifi the coefficients of the Sn

progressively stabilize starting with terms of lower order. This induces a notion of
summability for infinite sequences .

Multiplicative inverses exist for series having a constant term different from
zero; this is in particular the case for series of the form (1- u) with val(u) > 0, for
which we have

(1- u)_ 1 = Z u k.
k-0

The element (1- u) - ' is known as the quasi-inverse of u.
Finally for every set of words S (= X* we define the characteristic series of S,

which we denote char(S), by

char(S) = Z u.
UES

For E, F subsets of X* , let E + F be an alternative notation for E U F. Let E -F
be the extension to sets of the catenation operation on words and let E* =
s + E + E -E + E -E -E + - - - with s the empty word . We shall make use of the
following classical lemma .

For extensive definitions, we refer the reader to standard treatises on the subject for instance [8] .



Lemma 1. Let E, F be subsets of X* . Then
(i) char(E + F) = char(E) + char(F) provided E fl F= 0,

(ii) char(E-F) = char(E)-char(F) provided E-F has the unique factorization
property, i.e . du, u' E E Vv,v' E F uv = u'v' implies u = u' and v = v' ;

(iii) char(E*) = (1-char(E))-1 provided the following two conditions hold :
E' (1 E' = 0 for all j,k with j :` k,
each E'` has the unique factorization property .

Lemma 1 thus makes it possible to translate operations on sets of words into
corresponding operations on series provided certain non ambiguity conditions are
satisfied. We can now state

Theorem 1. Let CEh], h , 0, be the formal power series :
1Ch] =

where (ulv)/w denotes uw -'v. Then
(i) the sequence {CEh]}h_o converges, its limit defining the infinite continued

fraction :

lim C[h]
h-

char(9')

g,101 = (Co)*'

	

,

1 - CO

1-CO
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ao b 1

a0

(ii) the characteristic series of labelled paths is equal to this infinite
fraction :

ao b1

bl
a1

C2

a1

9'11 ] = (co + a0c1*b 1)

9,t2] = (co + ao(cl + a1C2*b2)*bl)*,

ah-1 I bh
1 - Ch

b2
a2

b2
a2

I b3

b3

h] _f
= 1CO, C1, . . . , Ch} U

{ao , a 1 , . . . , ah-1} U {b 1 , b2 , . . ., bh } . The set 95th] = g, fl (X[h ])* is also the set of all
labelled paths with height -,<h. We first show that

Proof. For

	

each

	

h,0,

	

we

	

define

	

the

	

set

char(`?th ]) = Oh] .

For each h, the set 95th] is a regular or rational set [8]. Indeed we have

continued
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and

by induction we see that for each

h :-:-O :

9)[h+1] =

9)[h J

o Q.[h` .
where o-,1

is the substitution

:

Ch --> (Ch + ahch+1 bh+1)- We thus have for each h , 0

the

following description of J''[h]

:

[h`=(co

+Qo(C1+al(C2+

. . .

(Ch-l+ ah_lchbh)*

. . .

b2)*bl)*

.

The

series C['3 is obtained from 9,[h3 by replacing each of the set-theoretic

operations

+, - , star operation by the corresponding series operations

:

+, - ,

quasi-inverse .

The equality C[hj = char( `?[hj follows from the observation that all

operations

in the above expression for g[hI are unambiguous

;

this fact is itself

readily

proved by introducing the sets

:

[h,

h]-

J'

	

_

C h,

[h,

h-1] _ (Ch	

.-

	

_1

+ Qh_1 C*hbh)*

. .

and

by checking that each of the 9[h, h-k] has the unique factorization property

.,
To

complete the proof of the theorem-part (ii)-, we notice the following

chain

of inclusions

:

6g)[0l

C C5[11 C 6g5[2l

. . .

C G

together

with the property of the C[h) = char gp[hl

:

val(C[h]-

Oh -11) = 2h,

which

simply expresses the fact that a path of height h must have length !2h (the

shortest

path of height h is anal

. . .

ah_1bh * b2b1)

.

We thus have

lim

C["I = char(),

h-

the

convergence being monotonic

.

	

O

1 .2 .

Continued fractions and power series

:

the Rogers polynomials

We

are here considering connections between power series and continued

fractions .

After Theorem 1, the series char(,9) thus appears as the non-

commutative

analogue of the Jacobi type continued fraction (J-Fraction) which is

usually

taken under the form [19,30]

:

62

z2

1-c1z-

However

here for convenience we define it to be

1
J(X,

z) =

aoblz2

1_c1z-
Q1b2z2
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also denoted J(z). Similarly, the Stieltjes type continued fraction appears when
we set formally the cg 's to 0 . If we let X'= {ao, a l , . . . , b l , b2 , . . .}, we define it as

1

1-
a0b,z2

1-
a l b2 z 2

1-
a2 b3 z

2

Each of these fractions has a power series expansion in z

J(X, z) _

	

Rnzn

	

and

	

S(X', z) _

	

Rnzn.

These expansions define quantities {Rn}n_1o and {Rn}n_o that are polynomials in
X and X respectively ; we name the Rn Jacobi-Rogers polynomials, and the Rn
Stieltjes-Rogers polynomials. These polynomials have been first considered by
Rogers [23] . A simple computation shows :

Ro =1 ; R1 =co ; R2 =co+ao b l ; R 3 =co+co ao b l + ao cl bl + ao b l co
Ro = 1 ; R i = 0 ; R'= a0b1 ; R3 = 0 ; R ' = a0albabl + aoblaobl ; . . . .2

	

4

As will be proved later, the sum of the coefficients of Rn is the nth Motzkin
number, and the sum of the coefficients of Ran is the nth Catalan number. An
immediate consequence of Theorem 1 is :

Corollary 2. The polynomials Rn and R' have the expression

Rn (X) --- char(q' fl Xn ),

	

Rn(X) _= char(q, fl x,, ),

where a=- b means that a and b are equivalent modulo the commutativity of the
indeterminates X.

This interpretation compares to Touchard's remarks concerning the R n. In our
case, we mark both rises and falls (by a's and b's respectively) ; Touchard's
interpretation corresponds to the case where all b; are set to 1, i.e . falls are
unmarked . . Indeed if we let Xi = Q,(X') where o,,(bi) = 1 for all j , 0, we
have

Rn(Xl)

	

ail ail . . . ai" ,
i1=0 O--i2--i 1 +1 0=i3_iz+1

	

0_i�_i-1+1

which is precisely Touchard's expression of the Stieltjes-Rogers polynomials .
The Jacobi-Rogers polynomials Rn are homogeneous polynomials. As a conse-

quence of Corollary 2, we now show that their coefficients have closed form
expressions .

Proposition 3A. The Jacobi-Rogers polynomials have the explicit expression

Rn X

	

P(n0, . . . , nh ; m0, " . . , mh)(aob1)no . . . (ahbh+l)nhChh,h,no, . . .,nh ;mo, . . .,mh
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where the sum ranges over all h , 0 and all sequences (n .. . . . . nh ; mo , . . . , mh)
such that 2no + 2n l + - - - + 2 nh + mo +ml + . - . + mh = n, and p is given by

p(no , . . . , nh ; MO, . . . , mh )
_ n

	

n +n

	

1 n-m -2n

	

n +n

	

1
(m0X on01 1

	

)(

	

m1

	

1)(ln1?1

	

) . . .

. . . \nhnl-+nh-1/(n-mo

	

, . .-rnh_

	

-2no . . .-2nh-1 ) .

h 1

	

h

Conventionally (-i), = 8p,-1 where 8 is Kronecker's symbol.

Proof. The binomials
n

	

(n-mo - 2no
o

count the number of ways of inserting level steps at height 0, 1, . . . . The
binomials

. (nr+nr+1-11
nr -1

count the number of ways of associating nr points at level r to nr+1 points at level
r + 1, in a way consistant with the rules defining paths .

	

0

In the case of the Stieltjes-Rogers polynomials, the expression assumes a nicer
form :

Proposition 3B. The Stieltjes-Rogers polynomials have the explicit expression :

R2n(X/)-
(no+nl-111+n2-1/ . . .(nh-l+nh-1/

h10 no -1 n1 -1 nh - 1 -1

1-coz-

no+- - -+nh = n

The kth convergents J['`] and S[ `] have similar expansions in which the index h
in the summation is restricted to the range 0, . . . , k -1 .

1 .3 . Continued fractions and power series : the Stieltjes matrix

As shown by Stieltjes [26], the relations between continued fractions and power
series can be described in terms of matrix equations . We show here that the
elements of the Stieltjes matrix also have simple combinatorial interpretations .
We first recall Stieltjes's theorem in the form given by Wall [30, p. 203].

Theorem S. (Stieltjes's expansion theorem for J-fractions) . The coefficients in the
J-fraction .

	

1
aoz2

)( (aobl)no(alb2)n, . . .(ahbh+l)nh.



and its power series expansion D(z) =in.odnz n are connected by the relations
dp = ko ,p for all p > 0 and more generally

dp+q = ko,p + al kl,Pkl,q + ala2k2,pk2,q + . . - for all p,q>,-O

where ko ,o = 1, kr ,, = 0 if r > s, and the k,., s satisfy the matrix equation :

Classically, a progressive construction of the Stieltjes matrix (kr , s ) is used as an
easy way of expanding the J-fraction into power series ; conversely recurrent
determination of the Stieltjes matrix from its first column leads to an efficient way
for computing the coefficients of the corresponding J-fraction [26, 23, 19, 30].
We now prove a non-commutative analogue of Stieltjes' theorem . First define

for all k, l , 0 the sets

where

kol

ko2
ko3

kll

k12 K22 v . . . _

k13

	

k23

	

k33

	

* * * )

0 0

9'k,, = {u E:X* I aoa,- . . ak-lusisi _ 1 . . . sl E -OP} .

The elements of 9'k, I will be sometimes referred to as extended paths from
(height) k to (height) l, and we have 9' = 310,0.

Proposition 4. In the set of infinite matrices over C((X)), the following equality
holds

(T) y = 8i-,,j ;

	

(I)if = siosio ;

Combinatorial aspects of continued fractions
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ao 0 0
c l al 0
b2

	

c2

	

a2

	

. .

0 0
1 0
c2 1

and II is a matrix of extended paths :

(17) i; = char(gol fl X`) .

In particular the sum of the first column of II is equal to char(J') .

Proof. The proof is the matrix translation of the obvious recurrences :

,go, n Xi+1 = (y)o,-1 nXi )ai + ( ' o,i n Xi )ct + (° o,i+1 n Xi )bi+1 ,
for j > 1 and i , 0 .

koo 0 0 0

kol k1l 0 0

ko2 ' k12 k22 0



134

	

P. Flajolet

Example. Writing explicitly the first elements of II, T, d, I, the identity expressed
in Proposition 4 reads :

The elements on the diagonal of M are 1, ao , ao a l , aoal a2, . . . and the
elements immediately below are co, coao + ao c1, coao a l + ao al c2, . . . .

Proposition 4 trivially entails Theorem S. The proof here is achieved without
determinant manipulations and it reveals a simple combinatorial interpretation of
the Stieltjes matrix . As noticed by Rogers [23, 30, p. 204, 19], Theorem S can be
interpreted as an addition formula: if in the notations of Theorem S we let

then

Xn	X n

f(x) -

	

ko,n -

	

and

	

fr(X) = E kr,n -`
n_0 n!

	

n_r n!'

f(X + y) = fo(X)fo(y) + aofi(X)fi(y) + aoa1f2(X)f2(y) + . . . .

We shall see in Section 3, that allowing commutativity leads to a simple
combinatorial expression for the matrix lI-1 .

2. Enumerative properties of continued fractions

The equivalence between paths and continued fractions leads to direct con-
tinued fraction expressions of generating functions relative to path enumerations .
The introduction of various classes of path diagrammes which are in natural
correspondance with set partitions and permutations shows the process to apply in
these cases also . Finally the observations of Section 1 lead to a simple treatment
of Carlitz's cycles of binomial coefficients [2] .

It should be emphasized here that continued fractions are introduced without
any computation over generating functions, by simply observing direct geometri-
cal correspondances between objects. The steps we take here makes it possible to
read off the properties of the enumerated objects directly on the continued
fraction . As explained in the introduction this attitude towards enumeration
problems originates in the works of Schutzenberger and Foata (see especially

1
Co

co+ao b l

1
ao

coax +a0 c l

0

0
an a l

0

1

0

0

0

1

0

0

0

1 0
Co ao 0 0 1 0 0

X Co ao
bl C 1 al 0 . . .

)
+

1
0 0 0

0 b2 c2 a,, - - - 0 0 0



2.1 . Paths in the plane

Let Mn be the number of paths of length n, and let Cn be the number of paths
of length 2n without level steps :

Mn .= card(' fl Xn);

	

Cn = card(? (1 X,2n) .

The Mn are the Motzkin numbers, and the Cn the Catalan numbers : {Mn} =
{1, 1, 2, 4, 9, 21 . . .}

	

and

	

{Cn} = {1, 1, 2, 5, 14, 42 . . .} .

	

Using

	

the

	

morphism

	

/I
C((X))--> C[[z ]] defined by ,u (a;) = [, (ci) = z for all j, 0, and g (b;) = z for all j ,l
i .e . counting all steps by z we get as immediate application of Theorem 1 :

Proposition 5. The generating function of the Motzkin and Catalan numbers have
the expansions

So that :

Z MnZn =
n-0

Z CnZ2n =

	

1
n=0 Z2

1-
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Z 2

As is well known the generating functions have the expressions

MnZn =
1+z--,11 -2z +3Z2

	

Cnzn=
1-,/1-4Z

`
n-0

	

2Z
Classically, Proposition 5 is derived as a consequence of the (periodic) continued
fraction expansion for a quadratic irrationality . The expansion of the Catalan
series in the context of enumeration problems arises in [28, 1] .
By utilizing various morphisms, we can derive expressions for other generating

functions . Let for instance Mn,k denote the number of paths in 9, of length n
containing k level steps . The generating function EMn,kUkZn is obtained by
means of the morphism :

g(a) =tt(bk)=Z ;

	

1t(c;) = zu

	

for all j%0, k,1 .

kn

	

1Mn,kU Z -

	

z2nk-0, 1-zu-

On the other hand, as is not difficult to see

Mn,
kUkZn = 1 +(2- u)a -10 - uz)2-4z2

n,k-0

	

2z
In a very similar way, we can derive an expansion of the generating function of

binary trees according to number of leaves (terminology is the same as in [15]).
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We now turn to a different type of enumeration result related to the so-called
q-generations . Define the area below a path without level steps as the sum of the
height of the points in the path . The area a (u) of path u is defined inductively by :
a(--)= 0 ; a(a;)=j ; a(bk)=k for all j,0, k,1; and a(xy)=a(x)+a(y)forx, y in
X* .
The area is always an odd integer. Let An, k denote the number of paths of

length n having area k. The morphism 1, is defined by

g(a,) = zq'

	

and

	

pt (bk) = zq k	forall j, 0, k,1,

so that g(u) = zIuIq'(u) . Applying it to the equality given by Theorem 1, yields the
following result first obtained by Carlitz [3] :

Proposition 6. The generating function of paths partitioned according to area has
the expansion

A(z, q) = I An,kz
n
g

k
=

2.2 . Path diagrammes and set partitions

1
z2q 1

z 2q 3

z
2
g
s

This continued fraction has been studied by Ramanujan (see [19, p. 126]), who
showed it to be expressible in terms of the q-exponential function:

nZx n

G(x)=l+
g

n_1 (1-q)(1-q2) . . . (1-qn)`

Path diagrammes are related to objects considered by J. Rosen under the name
of weighted lead ballot sequences [24] . They also appear in various forms in
works by Strehl [27] and Dumont [7] . However their systematic use in enumeration
problems relative to permutations is due to Frangon and Viennot [12, 13] .

Definition. . A system of path diagrammes is defined by an application pos : X--> N
called a possibility function ; a path diagramme is a couple (u, s) where u =
u l u2 . . . un is a path and s is a sequence of integers s = s1s2 sn such that for all
j 0 - s, < pos(u;) .

A path diagramme (u, s) where I uI = n can be represented by a path together
with a set of n points P1 °,

	

1
2

	

. . . Pn In 1 where the abscissae yj are integers
subjected to the condition 0

	

yj <pos(u;) .

Example. Consider the system defined by the possibility function :

pos(a;) = pos(c;) = j + 1

	

and

	

pos(bk ) = k+1

	

for all j, 0, k,1 .
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A diagramme belonging to this system is

d = (u ; s) = (a°al c,b2a,a2b3b2 c 1 b° ; 0, 1, 0, 2, 0, 1, 3, 1, 0, 0) ;

it can graphically represented as in Fig. 2 with the P;'s being drawn as crosses.

	

11

(i) (i) C(i)lY=.{a i , bk

	

i Ii,j :-;,O k.1

Fig. 2

Path diagrammes can also be described as words over a labelled alphabet

d = (a(°)

	

a(1)

	

c(°)

	

b(2)

	

a(°)

	

b(3)

	

b(1)

	

c(°)

	

b(°)) .0

	

1

	

2

	

2

	

1

	

3 ) 2

	

1

	

0

where letter xl') represents the jth possibility relative to x1 EX. Thus for the
diagramme in the last example the representation (also denoted d) is

Let 9 be the set of path diagrammes relative to the possibility function pos ;
path diagrammes are obtained from path by substituting to each variable Wi (W =

a, b or c) the sum of all corresponding possibilities . Thus :

Proposition 7A. The non-commutative series char(!@) has the non-commutative
continued fraction expansion

char() =
(o>

	

(y)

	

_

	

(a0(0)+ - . . + ao« )) ( (b(1°)+ . . . + b (R))

1_(ci°) + . . .+cly'))_ (ai°)+ . . +al`')) I (b2°)+ . . .+b2R'))

where @ + ,y = pos(c°) ; 1 + a = pos(a°) ; 1 +P = pos(b1) ; 1 + -y'= pos(c l), etc.

In the sequel, we shall freely extend to path diagrammes the terminology relative
to paths : we shall thus speak of the length and height of a diagramme ; we shall
consider diagrammes without level steps . . . .
The importance of path diagrammes in the context of enumeration problems

comes from the following :

Proposition 7B. Let D,, denote the number of path diagrammes of length n relative
to a possibility function

pos(a;) = a; ;

	

pos(bk ) = j9k ;

	

pos(cj ) = 'Yj

	

for j , 0, k ,1 .
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The generating function D(z) = Ln .0 Dnzn has the expansion :

1
D_(z) =

1- yoz -
«opiZ

2

1 - ylz -
a1P2Z2

1- y2z _ «203 22

Proof. It immediately follows from Proposition 7A, using the morphism 11

defined by p, (W;` )) = z for w E {a, b, c} and i, j EN.

	

O

Path diagrammes are of interest as they can be put into simple correspondence
with many usual combinatorial objects like permutations, set partitions . . . . They
thus appear as the adequate tool for obtaining continued fraction expansions of
ordinary generating functions . Notice that any J-fraction with integral coefficients
enumerates a certain system of path diagrammes for which interpretations can be
sought (see Sections 2-3) .
We now exhibit a correspondence between a system of path diagrammes and

set partitions . This correspondence extends some previous results by Frangon
and Viennot [13] relative to involutions, i.e . to partitions into singletons and
doubletons only. We have :

Proposition 8. Set partitions of size n are in one-to-one correspondence with
diagrammes of length n relative to the possibility function , defined by

pos(a;) =1 ;

	

pos(bk) = k + 1 ;

	

pos(cj ) = j + 1

	

for all j , 0, k ,1 .

Proof. The proof is constructive. We start with a partition 7r relative to a set of n
elements which we assume to be canonically numbered {1, 2, . . ., n), and we
construct a path diagramme (u, s) of length n. Given -rr, elements of [1 . . . n] are
divided into three classes :

(1) opening elements: these are elements belonging to a class of cardinality ,2
which are smallest in their class ;

(2) closing elements : these are elements belonging to a class of cardinality > 2
which are largest in their class ;

(3) transient elements: all other elements, i.e . either non extremal elements of
classes of cardinality , 2, or elements of singleton classes .

Let v = vlv2 . . . vn be the unlabelled path corresponding to u ; the vg 's are
defined by

vj = a if j is an opening element in r,
v, = c if j is a closing element in r,
v; =,b if j is a transient element in r.

Now the sequence sls2 . . . sn is constructed as follows :
(a) if j is an opening element (equivalently if v; = a), then, s; = 0 . Giving an



element j and a class a = {al , a l ,

	

-,--a, }, we say that a overlaps with j iff
a l < j _ a, ; then :

(b) if j is a closing element or a transient element in a class of cardinality ,2,
we consider the classes ovelapping j and we arrange them according to the order
of their first elements.

	

Let {aol _ ao2 ` * ' - , ao ,;0}, {a lt,a12 , * * , alsl}, - - - be
these overlapping classes with aol <all<a21 <

	

-

	

. If j belongs to the class
{av,1= av,2 _ .

	

}, then we set si = v.
(c) if j belongs to a singleton class, si is equal to the number of classes

overlapping j.
The correspondence is readily checked to yield a path diagramme consistent

with the possibility rules :

pos(a;) = 1 ;

	

pos(bk ) = k+1 ;

	

pos(c;) = j + 1,

and it is obviously revertible .

	

O

Example. The somewhat esoteric nature of this correspondence is easily unco-
vered by an example . Take for instance n = 13, and consider the partition

w= 11, 7, 11}{2, 4, 6, 9113115, 10}{8}{12, 13}.

The partition can be graphically represented in a simple way (see Fig. 3) .

1 2 3 4 5 6 7 8 9 10 11 12 13
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v=aaccacccbbbab and

Fig. 3

On this graph, we see that {1, 7, 11}{2, 4, 6, 9} and {5, 10} overlap with the
element 6 . The unlabelled path of the diagramme associated to -rr is v =
v lv2 * . . v13 . The element 1 opens class {1, 7, 11} so : v1 = a ; the element 2 opens
class {2, 4, 6, 9}, so V2= a ; the element 3 is transient (member of a singleton
class), so v3 =c ; 4 is also transient so v4 =C.... , until v13 which is a b since 13
closes the class {12, 13}. Thus we have

u = aoalc2c2a2c3c3c3b3b2blaobl .

Now the sequence sis2 - . * s13 is also easily determined : s1 = s2 = O since 1 and 2
are opening elements . At point 3, which is a singleton class, two classes are
opened ; these are {1 . . . } and {2 . . .}, so that we take S3= 2 . Element 4 is
transient in the second opened class, so that s4 = '(we rank classes starting from
zero!) . Ultimately we have s = 0 0 2 1 0 1 0 3 1 1 0 0 0, and the planar representa-
tion of the diagramme (u, s) is shown in Fig. 4.
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In particular :

(la)

	

Z Bnz n =

(iia)

	

Z Inzn =

has the expansion

O(ull u2, t, Z) -

n1,n2,ma0

2z
2

1-2z-

Proof. We use the morphism :

Using this correspondence, we get :

Fig. 4

Theorem 2. Let O n1,n2,m be the number of partitions having nl singleton classes, n2
classes of cardinality , 2, and m non-singleton transient elements, then the generat-
ing function

n, n2 m m+nl+2nP(ul, u2, t, Z) -

	

`,

	

Nni,n2,m ul u2 t z

1u2z2
2u,z2

1-(u l +1t)z-

1

	

1
lz2

	

(iib)

	

L Jnz n =

	

1z2

2

1-(ul+2t)z 2-3u z

1

	

1
(ib)

	

L S(n, k)ukzn =
1-1z-

	

1-uz-

2z2

	

272
1-z-

	

1-
3z2

tL(a,)= u2z ;

	

p,(bk )= kz ;

	

g(c;)=(ul+(j-1)t)z,

	

for j,0, k, l .

0

1-(1+u)z-
2uz2

where the Bn are Bell's exponential numbers ; the S(n, k) are the Stirling numbers of
the first kind ; In counts involutions on n ; Jn counts involutions on n having no fixed
point, i.e . J2n = 1 - 3 - 5 . . . (2n -1) ; J2n+1= 0 .

The other cases are special applications, for instance (ia) is derived by setting
u 1 = u2 = t = 1, (iia) by u 1 = u2 = 1, t=0-



Similar expressions hold for the (2-) associated Bell and Stirling numbers
counting partitions without singleton classes [5, vol 2 p. 57]. Call Bn

2) the number
of such partitions of a set of n elements, and Sn2k the number of those comprising
k classes :

is given by:

and

B(2)z n
n

n_-0

S(2)Z n =n
n,k--O

Z n

Bn

	

= exp(e' - 1) ;
n .
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1Z2

1
1 UZ 2

1-lz-
2uz

In particular as is well known :

.Z n
Bn2)i= exp(ez - z - 1) ;

n .

L(fF(t) ; u) _

	

e`f(tu) dt,
0

2Z 2

1-2z- 3Z
2

2

Notice that all these quantities have exponential generating functions of a
simple form ;

z n,+m+2n2
_ (`

F'(ul, u2, t, Z) - ` Nnt,nz,m u nli u2 t
(n l + m +2n2)!

Z2 Z 3 t Z 4t2
R(ul, u2, t, z) = exp(ulz +

u2(2!
+

3! + 4 !
+ _ . . )) .

k Zn

	

Zn

	

z+z 2/2 .

	

Zn

	

z 2/2 .S(n, k)u -=exp u(e -1) ; Dn-=e

	

Jn-=e

	

,
n!

	

n!

	

n!

Zn
S(2k) uk

	

i`
= exp u(ez - z

It is possible to use a formal Laplace-Borel-transform L(f(t) ; u) defined by
L(tk ; u) = k! u k and corresponding to the analytical expression

to rephrase Theorem 2 as continued fraction expansions of the Laplace trans-
forms of some exponential series .
The continued fraction relative to the Bell numbers is implicit . in several
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analytic works relative to the Charlier polynomials [4] . The continued fraction
relative to the odd factorial numbers Jn is classically derived as a limiting case of
the continued fraction of Gauss which expresses the quotient of two contiguous
hypergeometric functions .

2.3 . Permutations

In this section, we use a fundamental bijection due to Frangon and Viennot
[13, 12] between a certain system of path diagrammes and permutations, to derive
continued fraction expansions relative to the factorial, Euler and Eulerian num-
bers . We then use . Theorem 1 together with a classical expansion to construct a
new interpretation of the coefficients of the elliptic functions cn, do which is not
trivially reducible to the first known interpretation due to Viennot [29] .

In order to better understand the correspondence between permutations and
path diagrammes, we first recall the representation of permutations by tournament
trees. A tournament tree is a binary tree with node labels that increase along each
branch . Given a permutation o- = o-1 o-2 - - - an of [1 . . . n], such that 1 occurs at
position i, i.e . a = a1 a-2 * , , o-i-11 of+1 . . . o-n , the tournament tree associated to o-
is obtained by putting 1 at the root and by taking as left subtree the tournament
tree recursively associated to o-1 - - - ai_1, and by taking as right subtree the
tournament tree recursively associated to o-i+1 . . . o-n .
For instance to the permutation o- = (1, 7, 10, 4, 8, 6, 9, 2, 5, 3) there corres-

ponds the tree shown in Fig. 5 .

Fig . 5

Conversely reading the labels of the tree in left to right order gives back the
original permutation.
We now state Frangon and Viennot's theorem [12] :

Theorem F-V. (The fundamental correspondence between path diagrammes
and permutations) . Permutations of [n + 1] are in one-to-one correspondence with
path diagrammes corresponding to the possibility function

pos(a) = j + 1 ;

	

pos(bk ) = k + 1 ;

	

pos(c) = 2j + 2

	

for all j :,:- 0, k .1 .

Proof. We only sketch the proof here, referring the reader to [12] for a precise
description of the correspondence .
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For ease of presentation, we shall set cj = c` + c". The characteristic series for
paths char(9) then becomes a series on the alphabet

lajlj_0 ULbklk--l U 1Cjjja0 U {C jlja0 "

In other words level steps can be marked either by a prime () or by a double
prime (") . Path diagrammes relative to alphabet X" can be defined in a similar
way, and we readily check that the path diagrammes corresponding to

pos(aj ) = j + 1 ;

	

pos(bk ) = k + 1 ;

	

pos(aj ) = 2j + 2,

are in correspondence with path diagrammes defined by
pos(aj ) = j + 1 ;

	

pos(bk ) = k+1 ;

	

pos(c;) = j + 1 ;

	

pos(c") = j + 1 .

Now starting with a diagramme (v, t) of length n we describe the algorithm that
constructs a tournament tree over [n + 1] . Our terminology concerning binary
trees is again that of Knuth [15] .
The algorithm proceeds by successive insertion of nodes 1, 2, 3, . . . starting

from an empty tree at stage 0 which corresponds to one position to be filled . At
stage j for 1 <j_ n, j positions are available to insert node j . If the letter vi is an
a, the node labelled by j is taken to be a double node ; if vj is a b, the node j is a
leaf ; if vj is a c', j is a left branching node ; finally if vj is a c", j is a right branching
node .
At each stage j, when the height in the path is hj, the number of vacant links is

1 + hj before j is inserted . If the number in the possibility sequence is sj , we assign
node j at the 1 + sj vacant position starting from the left .
The construction is terminated by putting node (n + 1) as a leaf in the last

vacant position after stage n.

Example. Here again, an example will be of use . Take the diagramme (v, t) with
v = co ao ci a l b2 a l c2 b2 b,

	

and

	

s=001021011 ;
then the sequence of partial trees shown in Fig. 6 is generated .

Fig. 6

.0
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As before the correspondence is useful in connection with emuneration prob-
lems. Given a permutation o- = aja .2 . . . o-n, element a; said to be a maximum if
o';_ 1 < o-i >. o-j+1 ; a minimum if o-;_ 1 > o; < o-j+, ; a double rise if a';_1 < ai < oVj+, ; a
double fall if o-;_, > o-; > o ";+l (conventionally a-o = o-n+l = 0) . A rise in a permuta-
tion is a value o-i such that o`i_1< o';, i .e . a rise is either a double rise or a
minimum. Obviously, the number of maxima of a permutation is equal to the
number of its minima plus one.

Theorem 3A. Let 9'k,l,m be the number of permutations having k minima (hence
k + 1 maxima), l double rises and m double falls. The generating function

has the expression :

P(u, v, w, z) _

In particular :

P u v w z

	

P

	

ukvIw'z2k+l+m+1

An+l,k+1u k
z
n

n,k--O

(iii)

	

Z E2n+1Z
n_-0

2n+1 -,

` 2uz2
1-1(v+w)z-

1
2 - 3uz21-2(v+w)z-

(i)

	

(n+ 1)! zn =

	

1
nao1- 2Z2

1-2z-
1-4z-2-3Z

2

+ u)z

	

1-2uz2

1-2(1+u)- 2 - 3uz2

z
1 2z 2

1-
2 - 3z2

1- 3 - 4z2

in which An,k is the Eulerian number counting the permutations of [1 . . . n] with k
rises and E2n+1 is the odd Euler number or tangent number counting the alternating
permutations of [2n + 1] .

Proof. The proof results directly from a combination of Theorem 1 and Theorem
F-V: an a in the correspondence is associated with a minimum, a b with a
maximum, a c' with a double fall and a c" with a double rise. We thus use the
morphism p,

p,(a,) _ (j + 1) uz ;

	

Ix(bk ) = (k + 1)z ;

	

p,(c`) = (j + 1)vz ;

	

p,(c") = (j + 1)wz.



The special cases are obtained by setting :
(i) u=v=w=1 ;

(ii) u=w,v=1 ;
(iii) v=w=1, u=1 ;

and rearranging the expressions . D
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There is an important modification of the Fran`on-Viennot correspondence
also considered in [13] . Let S � +l denote permutations where (n + 1) occurs in the
last position .

Sn+l = jQl

	

. " (Tn+l I on+.l = n + 1}.

The set Sn+l is obviously isomorphic to Sn . Now permutations in Sn+l correspond
to trees with (n + 1) at the bottom of the right branch . By the Frangon-Viennot
correspondence ; they are associated to diagrammes (u, s) with forbidden posi-
tions, given by

for all 1- i - n,

	

if ui = bk :

	

si =` k,
if

	

ui = c" :

	

s i :` j .

These restrictions express on the path diagramme the fact that no left branching
son nor leaf different from (n + 1) can occur on the right branch of the tournament
tree at any intermediary stage of the construction .

Theorem 3B. The following expansions hold

ni Zn =

	

1

n

	

1222
.0

	

_1- z

	

222.2
1-3z-

An,k u
kZ n =

n,k .0 1-uz-

E2nZ2n
=

I Sn,ku
kz n =

1 2 2 2

1-uz-

1 _
3 2 2 2

12UZ2

1-(1+2u)z

	

22z2
-

1-(2+u)z-
(1 + u)2 z2

where the An , k are the Eulerian numbers ; E2n is the 2n-th Euler number of secant
number counting the alternating permutations of [2n] ; sn,k is the Stirling number of
the first kind counting the permutations of [n] having k right-to-left minima .
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Proof. From the above remarks, Sn which is in bijection with Sn+1 corresponds to
diagrammes relative to the possibility function :

pos(a;) = j + 1 ;

	

pos(bk ) = k ;

	

pos(c;) = j ;

	

pos(c") = j + 1,

	

for all j , 0, k ,1 .

The result follows by choosing adequate morphisms in each case . For instance
right-to-left minima correspond in a diagramme (u, s) to positions i such that

ui = a,

	

and

	

si = j,

ui = C
/I

	

and

	

s i = j

	

for some j , 0.

The morphism which gives the Stirling numbers of the first kind is thus

1u,(a;) = tk(c") = ((j -1)+ u)z ;

	

Fk(bk) = kz ;

	

[L(c`) = jz

	

for j .0, k ,1 .

	

O

Theorem 3C. Let Cn,,n 2,n be the number of permutations in Sn having n l cycles of
length 1 and n2 cycles of length ,2. The generating function

has the expansion

n l n 2 n
C(U1, U2, Z)

	

Cni,n2,nU1 U2 z

C(U11 U2, Z) =
1U2Z2.

1_ul z_

In particular for Dn the number of permutations without fixed points :

Z Dnz n =
1 2 2 2

1 _
22 zz

1-2z-

k_z n = 1- u
An,kU

	

n

	

1- uez( l- ")'
n,k_0

1- (2 + u l)z - 2(1 +
u2)z2

Proof. The proof follows directly from the fundamental bijection [11, p . 13] of Sn
on itself, that exchanges smallest elements of cycles and right-to-left minima .
Singleton cycles correspond to right-to-left minima that are double rises ; smallest
elements of non-singleton cycles correspond to right-to-left minima that are also
minima . O

All the quantities appearing in Theorem 3 have exponential generating func-
tions of a simple type . We mention :

Z2n+1

	

Z2n

	

1
E2n+1

	

= tg Z ;	`, E2n

	

= sec z =

	

,
n`0

	

2n+1!

	

n a0

	

2n!

	

COs z

E,
n

sn,kU k z = exp(-u ln(1- t)) =

	

1 u -
n,ks0 n!

	

(1-t)



_C

	

nn z n _ exp(ul -U2) z
ni,n2,nl! 11u2

z

	

un!

	

Z)U
z n

	

e-Z
Dn nl

=
(1 - z) .

The continued fraction expansions of the two generating series of factorial
numbers already known to Euler are - limiting cases of Gauss' continued fraction,
to which the expansion relative . to the Stirling numbers also reduces . The
expansions relative to the Euler and Eulerian numbers have been derived by
Stieltjes by means of standard addition formulae on the corresponding exponen-
tial generating series, as an application of his basic theorem.
The construction in Theorem 3 can be further extended . Consider 'r-forests of

tournament trees such that (n + j) occurs at the bottom of the right branch of the
jth component of the forest for all j(=- [l . . . n]. Such forests are bijectively
associated to the class Sn(+, of permutations of Sn, where values n+1, n +
2, . . . , n + r appears as a subsequence in that order :

Sri+r={012 . . . On+2I n+1=oi1 . . n+r=v;,`jl<j2 . . <j.=n+r}.

Obviously Sn+i is identical with Sn+1 . We can modify the Frangon-Viennot
correspondence to see that r-forests of this type correspond to path diagrammes
relative to the possibility function :

pos(a;) = j + r ;

	

pos(bk ) = k ;

pos(cf) = j ;

	

pos(c") = j + r
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Notice that the cardinality of S;`+2 is expressed by the rising factorials :

card(S;`(+r) = (r)n = r(r+ 1) . . . (r+ n -1) .

for j,0, k,1 .

Now parameters of tournament trees can be extended additively to forests . New
parameters are thus defined on S;`(+r . For .instance starting with the double nodes
and right branching simple nodes of tournament trees, the corresponding parame-
ter on forests is the total number of double nodes and right branching simple
nodes and for an r-forest of size n + r ; it corresponds to the number of rises in the
associated permutation of Sn(+r when one does not count possible rises of the type
(n + j ; n + j + 1) . Call Anrk the number of permutations of SnI+r having k such
rises ; the A(r)k are the Eulerian numbers of order r [21, 11] . Similarly; call EZn the
number of permutations of Stn+, such that the elements 1, 2, 3, . . . , 2n are either
minima or maxima, i .e . no value 1, 2, . . ., 2 n can either be a double rise or a
double fall . The E2,), are the Euler number of order r . We have

Proposition 9. The generating series for the rising factorials, the Eulerian and Euler
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numbers of order r have the following continued fraction expansions :

1

where

The

na0 1-rz-
1 rZ 2

1-(r+2)z-
2(r + 1)Z2

A(r)

	

k

	

n =n kU Z
n,k--O 1-ruz-

(r) 2n =
E2nZ

n=0

_Zn_ 1
`0(r)n n !

	

(1
- Z)r

1 rZ 2
1

	

2(r+ 1)z2
1-

exponential generating functions :

r
n,k

	

0

	

)

	

_k Z

	

1 - Un

	

r
A(n,ku

	

n!

	

(1- u exP(z(1- u))/

A (r)

	

rn,k= r * an+r,n+l-k`

U2n
cn(u, a)=

	

_l

	

I

	

Cn(a2) ;
n `1-0

	

2n!
U2n

dn(u, a) = Z (-1)n-1Dn(a2),
``o

	

2 n!

1 ruZ2

1-((r+1)u+1)z-
2(r+1)UZ2

These enumeration results have the interest to be expressible by rth powers of

Z2n
E(r)2n

	

'

	

- seCr Z ;
n_0 2n!

The A(r) are related to quantities that appear in the enumeration of permuta-
tions with restricted positions [21, 11]. For instance they are given by

where the ran ,p are the numbers of [11, p . 45] .
From an algebraic point of view, the continued fraction of the series of the

rising factorials coincides with the expansion relative to the Stirling numbers. The
continued fractions relative to the E2n and A(r)k have been computed by Stieltjes
[26] and Rogers [23] .
We now turn to the study of elliptic functions. The elliptic functions cn and do

are defined [31] by

cn(u, a) = cos am(u, a) ;

	

dn(u, a) =

	

1-a2 sin2 am(u, a)

am(u, a) is the inverse of an elliptic integral : by definition

am(u,a)=` iff u=

	

dt

fo ,I1-a 2 sin' t

functions cn(u, a) and dn(u, a) have power series expansions :



where Cn and Dn are polynomials of degree n -1 with Dn the reciprocal
polynomial of Cn . The noticeable fact about the Cn polynomials (hence the Dn ) is

that they have positive integer coefficients . Furthermore, the coefficients of Cn
(and Dn) add up to the Euler number E2n : this corresponds to the well known
property of the elliptic functions to reduce to the hyperbolic function when the
modulus a equals 1 . Since E2n counts the number of alternating permutations
over [1 . . . 2n], the question naturally arises whether there is some natural
partitioning parameter of alternating permutations enumerated by the coefficients
of the Cn 's . We prove :

Theorem 4. The coefficient Cn , in the expansion of the elliptic series

u 2n
cn(u, a) = Z (_1)n ka 2k

n,k`--0

	

2n!

counts the alternating permutations over [2n] having k minima of even value.

Proof. As is classically derived from the addition theorems for elliptic functions,
the following expansion holds :

(-1)nCn,ka2kz2n
=

n,ka0

Thus Cn , counts the number of path diagrammes of length 2n,

possibility function : .

pos(c;) = pos(c") = 0 ;

	

pos(a;) = j + 1 ;

	

pos(bk ) = k

whose path comprises 2r letter in {al, a3 , as, . . . } }U%, b4, b6 . . . . )-
Equivalently, Cn , counts diagrammes whose path has r letters

{al, a3 , as, . . .}, since in a path a letter a2;+1 is matched by a letter b2; . Notice also
that in a path like

ao a l b2 a l a2 93 b4 s3 s2 sl
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1

1 2 2 2
1 +

	

22a2Z2

1 +

	

3222
1 +

	

42a2Z2

relative to the

for all j . 0, k ,1,

in

the a l, a3 , as , . . . (underlined above) occur at even positions starting from the
left . Using the Frangon-Viennot correspondence between Sn+1 and diagrammes
of length n, we see that the a2i+1 correspond to minima of even value .

	

El

This interpretation is distinct of the first interpretation of the coefficients of
elliptic functions given by Viennot [29].

Example. If 'Cn,, is the set of alternating permutations of 2 n with k even minima,
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we have :

6̀0,0 = 101 ;

	

(61,0 =1211 ;

	

(62,0 = 12143} ;

	

(62 , 1 =14231,3142,3241,41321,

which is consistent with the known values of the C,. .

2 .4 . Cycles of binomial coefficients

In this section, we use the results of part 1 to obtain a combinatorial proof of an
expression for generating series of quantities akin to Carlitz's cycles of binomial
coefficients [3, 22] .
We consider here (planted plane) trees in the sense of Knuth [15], where each

node has any number of successors . The height of a node is the distance measured
in number of edges from that node to the root of the tree . A tree has specification

(j1, j2, . . . . jh) if it has size 1 +j1 + j2+ - - - + jh and is formed with j1 nodes of
height 1, . . . , jh nodes of height h. For instance the tree in Fig. 7

has specification (3, 2, 1, 3) .

Proposition 10.2 (i) The number a(j1

Q1, j2, . . . . jh) has generating function

expressed by

A1h1(

	

_
u1, U2 . . . . , uh)

and its value is

Lr a (j1 , j2, . . . , jh)U11U` . . . Uk

Fig . 7

u1
u2

,j2,- . .,jh)

a(jl, j2, . . . , jh) _ (j1+j2 i
11

. . . (jh-1+jh 1 1) .
i1

	

jh-1
2 Proposition 10(i) has been derived independently by Read [32] .

of trees with specification



(ii) The number P(il , i2, . . . , i h ) of trees with specification (i1 + 1, i2 + 1, . .
1) having their leftmost branch of height exactly h has generating function

B [h,(Ul, U2, . . . , uh) = ``(il, i2, . . . , ih ) ullu

	

. . . uhh
expressed by

and its value is

B[h](Ul, " . . , Uh) = A [11(Uh)A[21(Uh-1, Uh) . . . A[hl(Ul, U2, " . . , Uh)
1

	

1

	

1

- ( 1 1+I2) . . .
(
ih-

lhl-1

+lh

il

	

) .
R(li,l2, `Zh)

Proof. The classical correspondence between path and trees associates to a tree
with specification (j1, j2, . . . , jh ) a positive path of height h with jk occurrences of
letter ak-1 matched by jk occurrences of letter bk for all 1, k _ h. Part (i) of the
proposition follows from the expression of the Stieltjes-Rogers polynomials in
Proposition 3 using the morphism fk (a;) = u;+1 ; A (sk) =1 .
The same correspondence associates to a tree with specification (i 1 +1 ; i2 +

1 ; . . . ; i h'+ 1) and with leftmost branch of length h, a path from h to 0 having
height h. In such a path we can single out the rightmost occurrences of letter Sk

for all k :1, k , h, which yields the factorization

w = Shvh-1Sh-1vh-2Sh-2 . . . v1S1vo .

Thus the series of the u's factorizes into a product. Writing W for the
characteristic series of the w corresponding to our description, we have

W= Sh

where V is the characteristic series of paths from j to j with height , h and such
that all their points have height , j . Thus

Vh-1Sh
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_ 1-uh . 1-
uh-1

. .

	

1- U1

Visi Vo,

1 - Uh

from which the product expression of B['3 is derived.
The closed form expression for R (i1, i2 , . . . , in ) follows from a straight forward

modification of the counting argument of Proposition 3 .

	

O
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Anticipating on some of the developments of Section 3, we can see that the
successive numerators and denominators in the product giving BEh3 simplify,
leaving only the last denominator standing in the expression, so that

where

3 .1 . Convergents

where

B`h,(Ul, u2, . . . , uh ) =

	

1
[-ul, -u2 , . . . , -uh]

where the cumulants [X1, X2 , . . . Xn] are defined recurrently by

[ ] = 1 ; [XI]=1+X1;
[X1, X2 . . . . , Xn] = [X1, X2. . . . , Xn-1]-f-[X1, X2, . . . , Xn-2, Xn] "

From this follows the equality :

B BIhI(

	

1
ul, u2, . . . , uh)

=
au 1 un + bu t + can +d '

a = [- u3, . . . , -un-2];

	

b= -[-u3, . . . , -un-1] ;

C = -[- u2, . . . , -un-2] ;

	

d= [- u2. . . . , -un-1] .
This expression is essentially Carlitz's result [2].

3. Enumerative properties of convergents

Starting with a J-fraction
1

J(z) =

J[h](Z) =

1-coz-

we define the hth convergent as the (finite) fraction

1- coz -

aoblz
2

aob l z
2

1-Chz
The hth convergent corresponds to paths with height , h (see Section

allowing commutativity of indeterminates, one has classically
.[hl(Z) = Ph(Z)/Qh(Z)

Ph and Qh are polynomials which satisfy a linear recurrence
P-1(z) = 0;

	

PO(Z) = 1 ;

Ph (Z) = (1- ChZ)Ph-1(Z) - ah-1 bhZ2Ph-2(Z) ;

Q_1(z) = 1 ;

	

QO(Z) = 1 _ coz ;

Qh(Z) = (1 - ChZ)Qh-1(Z) - ah-1bhZ2Qh-2(Z) .

Here we have set conventionally f-l3 = 0= 0/1 .

1) and



The polynomials P and Q appear in a number of enumeration results relative
to paths.

First consider the paths of height exactly equal to h ; these have generating
function

Using the classical determinant identity, we have

so that
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J[h] _= J
[h_ll = Ph - Ph-1 - PhQh-1 - Ph-1 Qh

Qh Qh-1

	

QhQh-1

PhQh-1-Ph-1 Qh = anal . . . ah-lblb2 . . . bhZ2h,

hence
2h

J[hl-J[h-1l=
'khZ

	

,

	

with 'kh =(aobl) . . . (ah-lbh) .
QhQh-1

This result is consistent with the fact that J[hl-J[h-11 counts paths of height
exactly h, which have necessarily length >,-2h.
Consider now paths from height h to height h whose elements are all at height
h. Application of Theorem 1 shows that the corresponding generating function

denoted J/h/ has the expansion
Jih/ =

1- chz -

Jro/(z) = J(z) ;

ah+lbh+2Z
2

hence using again the determinant identity :

we shall call it the hth truncation of the continued fraction J. The truncation J/h/ is
expressible by

1

	

Qh-1 (Z)J(Z) - Ph-1(Z)J/h/(Z)= ah-lbhZ2
Qh-2(Z)J(Z)-Ph-2(Z).

Finally consider the generating series Kh (z) of the paths from height 0 to height
h ; obviously

Kh(z) = Jiol(z ) , aozJill(z) , a1z . . . Jlhl(Z),

Kh(Z)

	

b b

	

1 . b
zh(Qh-l(z)J(z)-Ph-1(z))-

1 2

	

h

In particular, paths from 0 to h with height h have a generating function
denoted Khh', whose expression is obtained by replacing J(z) by PhlQh in the
expression above :

Khh?(z)

	

b b
_

	

1 .
b z h ( Qh-1(Z) Q_

	

()
- Ph-1(Z)) ;

1

	

2

	

h

	

h (

z

)

hKhh](Z) = anal . . . ah-1 Z
Qh(Z)
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We thus see that the numerator polynomials Ph, and the denominator polyno-
mials Qh appear in several enumeration formulae relative to generalized paths.
The denominator polynomials usually have simpler expressions . The numerator
polynomials Ph can be expressed by convolution of J(z) with Qh (z) as follows : for
each m :-:-O, define the erasing operator Em as a linear operator from C[[z]] into
C[z] satisfying:

Em (zn)-`
0

	

if n>m,
z

	

if n, m.
As is readily checked val(Kh (z))=h, and thus val(Qh-1(Z)J(z) - Ph-1(z)) = 2h ;

the polynomial Ph -1 of degree h -2 thus coincides with the first h -1 terms in the
product Qh_1(z)J(z) ; hence, shifting indices, we get

Ph(Z) =Eh -1(Qh(Z)J(Z)) "

3.2 . Inversion relations

We have seen the identity :

Kh(Z) - b b "
1

" b zh(Qh-1(z)J(z)-Ph_1(z))`
1 2

	

h
where val Kh (z) = h. Thus,

val(Qh - 1 (z)J(z) - Ph-1(Z)) = 2h.

This property can be rephrased as an orthogonality relation (see
193]) : Let J(z) = E,_ORnzn be the power series expansion of J; a linear
C[z] is defined by

fix') =Rn ;
it can be extended to a bilinear form over C[z] by setting

Now let

(xm I x n) = / x m+n) = Rm+n "

Qh-1(Z) =

	

E

	

Qh-1"Zr
0_r_h

and define the reciprocal polynomials :

Qh-1(Z) = ZhQh-1 \Z/
- ` Qh-l,h-rZ

The Oh-1 are normalized (the coefficient of z h is 1) and we have

(Zn I ()h-1(Z) > = (ZnQh_1(Z)) = `Z Qh-1 h_rzn+r\ .

= I Rn+r(:?h-l,h-r
0_-r_h

= coeff(J(Z)Qh-1 (Z) ;Zh+n).

From the preceding remarks, we see that

`Zn1Qh-1(Z)) = 0

	

if 0, n < h = deg(Qh_l).

e .g . [30, p .
form over



Notice also for n, h the relations for Kh(z) = Zn.o kh,,,Zn

kh,n
_

	

1

	

(Z'1Qh-1(Z)),b lb2 . . " bh

and in particular

We thus obtain :

(ZhIZI) =
(Zh I Oh-1(Z)) = b 1b2 . . . bhkhh

Thus the polynomials LQh-1Ih_o form an orthogonal family of polynomials with
respect to the bilinear form associated to J. The change of basis from the {Zn}n30
to the lQh-llhr0 is thus described by

Qh-1(Z) -

	

Qh-l`h-rZ
r

0=r--h

_ (Z n lQh-1(Z)) _ kh,nZn -

	

Qh-1(Z) - `

	

Qh-1
0--h--n (Qh-l(Z) I Qh-1(Z))

	

a0a1 " " " ah-1

Proposition 11. The Stieltjes matrix of extended paths normalized by columns:

kh,nS = (Sh,n)

	

with 9h, =
anal . . . ah-1

and the matrix of the coefficients of the denominator polynomials:

Q = (qh,r)

	

with qh,r - Qh-l,h-r`

are inverse of each other.

Example. The first elements of the Q and S matrices are given below when c; = 0
for all j.

Qsxs

0

	

1

SSx5 =

	

Ao

	

0

	

1

0

	

A0 +,k,

	

0

	

1
,ka+,ko k l 0 A0+Al+Ik2

Here we have set a; = a b,+ , .
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0 -ao-'k l-A2 0 1

=(aobl) . . . (ah-lbh) .

1

0 1

-,k0 0 1

0 -,k0-,k1 0
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The elements of the S matrix can still be interpreted as extended paths whose
falls only are marked with the A;'s . The elements of the Q matrix also represent
certain types of paths in a lattice, as can be seen from the recurrence :

Qh,r - Qh-1,r - ChQh-1,r-1 - Ah-1 Qh-2,r-27

or equivalently :

qh,r - 4h-l,r-1 - Chgh-l,r - 4-14h-2,r-

In particular when c; = 0 for all j apart from the sign, the coefficient qh , r
corresponds to paths in the x-y plane with steps given by all and plo starting from
the line y = x. This observation is exactly the Euler-Mindig interpretation of the
convergents . Recently G. Viennot (private communication to the author) has
given a combinatorial proof of these inversion relations based on direct path
manipulations.

3 .3 . Specific cases

Each system of path diagrammes has an associated family of polynomials .
Combining results from the last section with geometrical interpretations in Section
2, we obtain a few combinatorial interpretations for inverses and quotients of
classical polynomials .

Proposition 12 . Let

	

h] be the number of paths of height h and length n, and let
CE'] be the number of paths of height h without level steps, we have

where

(z

	

'w ,rfh] Z n = Qh-1l

	

)

	

and

	

C[h]Zn = Qh- (1z)

n_0
1V1 `

n	Qh(Z)

	

n_0 n

	

Qh(z)

(i)
Qh

(z)
_ (p h+3 _ P h+3/ (p _ P) with p, P the roots of the equation y 2 - (1- z) y +

z 2 = 0 ;
(ii) Qh(z) _ (p,h+3 _ P,h+3)/( p _ P) with p', P' the roots of the equation y2 - y +

z
2 =0.

The obvious proof is omitted . The polynomials Qh are elementary variants of
the Tchebycheff polynomials . These classical results have been first established by
Kreweras [16, 17] who also found the expression of Khh ] in this case . The result
appears in [1] under a different form .
We now come to partitions . Given a partition -;r of [n], define the width of 7r at

x denoted w(-;r, X) as the number of classes overlapping x, that is having (at least)
one element - x and (at least) one element > x ; define the width of 7r denoted by
w (7r) by :

co (7r) = max{co (ir, x)}.
xs[n]



For instance with 7T= {1, 7, 11112, 4, 6, 9113}{5, 101181112, 13}, the width of 7r at
6 is equal to 3 co(7r, 6) = 3 since there are exactly 3 classes overlapping 6 :
{1, 7, 11}, {2, 4, 6, 9} and {5, 10} ; similarly co(7r, 3) = 2 and co(7r) = 3 .

Theorem 5A. Let Bn
hl be the number of partitions of [n] of width , h; let Bnh+h

denote the number of partitions of [n + h] of width h such that 1, 2, . . . , h belong to
different non-singleton classes, then

(

	

h
`,
B[h]

z n =
Ph-1(Z)

	

and

	

B[h]z .n =

	

h .z

na0

	

n

	

Qh-1(Z)

	

ma0

	

m

	

Qh-1(Z)'

where Qh-1(Z) is the hth reciprocal Charlier polynomial, and Ph _ 1 (z) is determined
by the rules of Section 3 .1 .

Proof. The hth Charlier polynomial is defined by

Ch (Z)=

	

E

	

(-1 )n-k(
n
)x(x -1)

.
. . (x - k + 1),

0_k-_n

and has exponential generating function
h

Ch (Z)
u

	

=e-"(1 + u)".
h--O h!
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The corresponding three-term recurrence is

Ch (z) =(z-h)Ch-1(Z)-(h-1)Ch-z(Z),

	

h,2,

with Co = 1 ; c 1 = x -1 . From this immediately follows that Qh_1(Z) = zhCh(1/z)
for h , 0 . Thus the polynomials Qh are denominator polynomials associated to
the continued fraction of Theorem 2. We complete the proof by checking that the
geometrical correspondence between path diagrammes and set partitions trans-
forms the height of the diagramme into the width of the partition .

	

E

Involutions being special cases of partitions, the notion of width applies equally
well to them . The width of an involution is thus a measure of the overlap of its
cycles .

Theorem 5B. Let In
hl be the number of involutions of [n] having width , h; let

Inh+h denote the number of involutions of [n + h] having width h and such that
1, 2, . . . , h belong to different cycles of length 2 . Let Inh ] and I ,̀ h ] be the
corresponding quantities relative to involutions without fixed points. Then

_ Ph-1(Z)

Qh-1(z)

I`[h]Zn = Ph-1(Z)
n`0 Qh-1(Z)

and

and

�[h]

	

m =

	

h!z'

m`Olm Z

	

Qh-1(Z)'

If[hl,m= h!zh
m

M;3.0 Qh-1(Z) '
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where

	

Q,,_ 1 (Z) = zhHh (1/z)

	

is

	

the

	

hth

	

reciprocal Hermite

	

polynomial

	

and
Qh+1(z) = zhHh (1/Z -1) . The numerator polynomials P,,_ 1 and P;, _ 1 are given by
the rules of Section 3 .1 .

Proof. We only need to identify the denominator polynomials .
polynomial is defined by

Z m-2k
Hm(z)

	

k!(m _2k)!__

	

(_1)k

	

2k0_ksm/2
m!

and has the exponential generating function
um

`Hm (Z)-=etu-u2/2.
m t

The corresponding three term recurrence relation is

Hh (z) = zHh_1 (z) - (h -1)Hh_2(z),

	

h , 2,

with HO (z) = 1 ; H,(z) = z, which shows Q;, _ 1 to be
polynomial of Hh (z).

The convergents of the continued fraction relative to the series of the factorial
and secant number can also receive combinatorial interpretations .

Given a permutation o- EY�, and a value x E [0 . . . n] we consider the word
w(x)E{+, -}" called the signature of x in o, defined by

if 0-t > x,
if o-c , x.

only. We can then define the clustering
number of clusters in w(x) .
Thus with o-6493 15827, the

w(0)=+++++++++,

w(1)=++++-++++,
w(2)= ++++-++-+,
w(3)=+++--++-+,
w(4)=+-+--++-+,
w(5)= +-+---+-+,
w(6)=--+---+-+,
w(7)=--+---+-_-

w(g)=--+-_----,
w(9)=-_------- .

signatures w(0), w(1), . . . are

The mth Hermite

identical to the reciprocal

(w(x))` _ {±

A cluster in a word w E{+, -} is a maximal factor of w, formed with + symbols
of a at x denoted by cl(o,, x) as the



The clustering of a is defined as

cl(ar) = max cl(or, x) .
x

Combinatorial aspects of continued fractions

	

159

In the last example, the clustering of the permutation is equal to 4 .
The clustering of a permutation measures the amount of scattering of consecu-

tive elements in the permutation. We have

Theorem 6. Let Ftth3 be the number of permutations in Sn having clustering < h ; let
E2n3 be the number of alternating permutations in Stn having clustering < h ; then

Fnh+`z n = Ph(z)

	

and

	

E2tt]z2 n = Kh (z) ,
n-0 Qh(Z) n-0 Nh(Z)

where Qh(Z) is the hth reciprocal Laguerre polynomial of order 1, and Nh (z) is the
hth reciprocal Meixner polynomial ; Ph and Kh are determined from Qh and Nh by
the rules of Section 3 .1 .

Proof. We define the mth Laguerre polynomial of order 1 by

_

	

n+1 _n!
0--k--n (k + 1) k!

or equivalently by means of the generating series :

uM _

	

1

	

zu
oL `m`(z ) m !

	

(1+ u)2 exp (1+ u) .

It satisfies the three term recurrence relation :

L`m)(z) = (z -2m)L`m) 1 (z)- m(m -1)L,n_2(z),

	

with LO = 1 ; L 1 = z -2 .

The Meixner polynomial Mh have generating function [18, 4] :

Mh

	

i = (1 + t2)- li2 exp(x arctg t),
h-0

and can also be expressed as terminating hypergeometric functions . They satisfy
the three term recurrence relation :

Mh+l(z) = zMh (z) - h 2Mh _ 1(z),

	

with Mo =1 ; M1 = z.

It is readily checked that in the Frangon-Viennot correspondence, the cluster-
ing of a permutation differs by 2 from the height of the associated path
diagramme . We thus obtain the generating function of the {Enh]Jn-o and {Fnh%10

by taking the convergents of the continued fractions of path of unbounded height .
Comparison of the three term recurrence relations with those given above
completes the proof of the theorem .

	

E
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In [10], we make explicit the inversion relations corresponding to these four
classes of polynomials and use them to compute in a simple way the double
generating functions of the elements of the Stieltjes matrices . These relations have
close relationships to the Meixner classification of orthogonal polynomials [18].

Conclusion

A natural way of continuing this work is to look for other classes of com-
binatorial objects in correspondence with systems of path diagrammes . Notice for
instance that almost all the continued fraction expansions considered here have
coefficients at level k that are linear in k. Natural candidates for such an extension
are integer partitions and sequences . As shown elsewhere [33], continued frac-
tions are also a natural way of introducing various classes of q-generalisations
whose study should hopefully prove of interest .
Also a deeper investigation of the combinatorics of the addition formulae a la

Rogers might be of interest . Our combinatorial interpretation of the coefficients
of the elliptic functions cn, do ultimately relies on the addition theorems for these
functions.

Finally the Stieltjes matrix and the matrix formed with the coefficients of the
denominator polynomials should be made explicit in each case . In [10], we use the
inversion formulae relative to the Meixner class of polynomials to derive an
integral expression for a linear transform over C[[x]] associated to the Stieltjes
matrix of some of the continued fractions introduced in Section 2 . The result is
related to the analysis of the behaviour of dynamic data structures in Computer
Science [10].
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