
Zeta Function Expansionsof Classical ConstantsPhilippe Flajolet and Ilan VardiFebruary 24, 1996Many mathematical constants are expressed as slowly convergent sumsof the form C = Xn2A f( 1n); (1)for some well-behaved analytic function f and some \reasonable" subset Aof the integers. The convergence of such sums can be accelerated easily oncevalues at the integers of the zeta function�A(s) := Xn2A 1ns (2)are known: we have, formally at least,C =X fm�A(m) where f(z) =Xm fmzm (3)is the Taylor expansion of f at 0. This scheme is especially e�ective in thecontext of high-precision evaluation of mathematical constants as it oftenexhibits geometric convergence. It is also very easy to implement in currentsymbolic manipulation systems that have built in many mechanisms for thefast computation of zeta values.In this note, we show the application of the rearrangement summarizedby (1-3) in the case where A is either the whole set of integers, the primenumbers, or a congruence subset of the primes. This yields fast numericalschemes for the evaluation of many constants like: the number �, Euler'sconstant , Khinchin's constantK, the Hafner-Sarnak-McCurley constant �,Hardy-Littlewood's twin prime constant H , or the Landau-Ramanujan con-stant �. The reader is directed to Finch's beautiful pages [4] for backgroundinformation on these and other classical constants.1



x1. The number � and Gregory's formula. Many classical constants canbe de�ned by a series of the formS = 1Xn=1 f( 1n); (4)where f(z) is analytic at 0 and f(z) = O(z2) there. If f(z) is analytic theclosed unit disk, then rearranging the series givesS = 1Xn=1 1Xm=2 fm( 1n)m= 1Xm=2 1Xn=1 fm( 1n)m= 1Xm=2 fm�(m) (5)where f(z) = 1Xm=2 fmzmis the Taylor expansion of f and �(s) = Pn�1 n�s is the Riemann zetafunction. While the original series (4) is slowly convergent, the transformedseries (5) exhibits geometric convergence.Similarly, if f(z) is analytic in jzj � 1=n0 for some positive integer n0,then S = n0�1Xn=1 f( 1n) + 1Xm=2 fm ��(m)� 11m � � � � � 1(n0 � 1)m � ; (6)a formula that again converges geometrically: let r > 1=n0 be such thatf(z) is analytic in jzj � r, then the \speed" of convergence is O((rn0)�m).In addition, formula (6) may be used to accelerate the convergence ofseries like (4,5) by choosing an n0 that is suitably large. This gives a wholerange of formul� that are intermediate between the original (4) and thetransformed (5).Vardi's book [9, p. 156] gives as an example Gregory's series for �,�4 = 1� 13 + 15 � 17 + � � � = 1Xn=1� 14n� 3 � 14n � 1� ;whose rearrangement is found to be� = 1Xm=1 3m � 14m �(m+ 1):2



The same technique applies to Catalan's constant,G = 1� 132 + 152 � 172 + � � � = 1Xn=1� 1(4n� 3)2 � 1(4n� 1)2� ;for which G = 116 1Xm=1(m+ 1)3m � 14m �(m+ 2);since 1(1� 3z)2 � 1(1� z)2 = 1Xm=1(m+ 1)3m � 14m zm:Given the formul� (5,6), a sum like (4) is \easily" computable, oncevalues of the zeta function at the integers have been tabulated, assumingthat the Taylor expansion of f is itself easily computable. The table of zetavalues can be built from the Euler-Maclaurin formula [3] while zetas of evenargument are computable directly from Bernoulli numbers. In this way,Stieltjes [8, vol. II, p. 100] determined in 1887 the values �(2); : : : ; �(70) to30 digits of accuracy.x2. Euler's constant. By de�nition, Euler's constant is := limn!1 (Hn � log n) :The limit de�nition transforms into a sum, = 1 + 1Xn=1� 1n + 1 + log nn+ 1� ;whose general term converges like O(n�2). The series rearrangement nowapplies upon taking n0 = 2, = 32 � log 2� 1Xm=2(�1)mm� 1m [�(m)� 1] :This is one of the many ways to �nd a geometrically convergent scheme forthe computation of Euler's constant. An equivalent formula was alreadyknown to Euler and Stieltjes used precisely the formula corresponding ton0 = 3 to check his computation of zeta values.3



x3. Khinchin's constant. By taking logarithms, in�nite products canalso be computed. For instance, Vardi's book [9, p. 163] discusses the com-putation of Khinchin's constantK = 1Yn=1�1 + 1n(n + 2)�logn= log 2along these lines. There, the general scheme applies with minor adjustments:because of the logarithms in the exponent, the rearranged series of logKinvolves the values � 0(m). Other rearrangements, likelogK = 1log 2 1Xm=1 hm�1m (�(2m)� 1); hm = mXj=1 (�1)j�1j(due to Shanks and Wrench, 1959) are known that do not require a specialcomputation of the derivatives. However, Vardi's method has the advantageof complete generality as it applies to sums and products of the formXn�2(logn)f( 1n); Yn�2�1 + h( 1n)�logn ;of which Khinchin's constant is a particular instance.x4. Sums over primes and the Hafner-Sarnak-McCurley constant. Asum of the form T =Xp�2 f(1p); (7)where by usual conventions an index p ranges over the prime numbers, canbe rearranged into T = 1Xm=2 fm�(m); (8)provided f is analytic in jzj � 1. There,�(s) :=Xp�2 1ps : (9)If f(z) is analytic in jzj � 1=n0, one hasT = n0�1Xn=1 f( 1n ) + 1Xm=2 fm ��(m)� 11m � � � � � 1(n0 � 1)m � ; (10)4



again with geometric convergence.This technique makes it possible to evaluate T e�ciently. In e�ect, �(s)is related to the zeta function, as results from the Eulerian product,�(s) =Yp �1� 1p�s��1 ;by taking logarithms, log �(s) = Xk�1 1kXp�2 1pks= Xk�1 1k�(ks):The last formula is a clear case of application of Moebius inversion and one�nds �(s) =Xk�1 �(k)k log �(ks): (11)In summary, T is e�ciently computable from the formula (8) (or itsvariant (10)) with �(s) given by (11) which permits to build a table ofvalues of �(m). Alternatively, one can compute T directly from the zetavalues by combining the Moebius formula for �(m) and the expansion of f :T =X��2 g� log �(�); g� = �Xk=1 �(k)k f�=k: (12)Hafner, Sarnak, and McCurley [5] have shown that the probability thattwom�m and n�n matrices,m;n large, have relatively prime determinantsis � =Yp 0@1� "1� 1Yn=1(1� 1=pn)#21A(it is well-known that this is 6=�2 when m = n = 1). An application of themethod to log � [9, p. 174] gives an equivalent form� = Ym�2 �(m)�amand, upon taking 100 factors, we get� � 0:35323637185499598454 : : : ;5



The speed of convergence is determined by singularity analysis [9, p. 258-261] and is here roughly 0:57n.x5. The Twin-primes constant. Hardy and Littlewood [7, p. 371] devel-oped in 1923 a heuristic model for the distribution of prime pairs accordingto which the number of prime pairs p; p+ 2 with p � x must be asymptoticto 2H x(logx)2 ; H = Yp�3�1� 1(p� 1)2� :The same constant also occurs in heuristic models of the Goldbach prob-lem [4].The twin prime constant is a direct case of application of the methodof (12). It is amusing to note that the coe�cients g� that appear there arerelated to �nite �elds. Let In be the number of monic irreducible polynomialsover the coe�cient �eld GF (2) with degree n. We have [1, sec. 3.3]In = 1n Xd j n�(d)2n=d:On the other hand,log(1� 1(p� 1)2 ) = � 1Xm=1(2m � 2) 1mpm :Thus, H = 1Yn=2 ��(n)(1� 2�n)��In ;which converges like (23)n. Using a cutpoint n0 like in (6,10) gives a wholecollection of formul� of whichH = 34 1516 3536 1Yn=2 ��(n)(1� 2�n)(1� 3�n)(1� 5�n)(1� 7�n)��Inhas rate of convergence � (112 )�n, thus giving approximately 3=4 of a digitper iteration.A closely related example is Mertens's constant [7, p. 351],B1 =  +Xp �log(1� p�1) + 1p� ;6



that intervenes in the formulaXp�x 1p = log log x+B1 + o(1):By the same device, we haveeB1 = e 1Ym=2 �(m)�(m)=m;since ez = 1Ym=1(1� zm)��(m)=m:x6. The Landau Ramanujan constant. This constant is de�ned by� =  12Yr 11� r�2!1=2 ;in which Qr indicates a product where r ranges over the prime numbersthat are congruent to 3 modulo 4. It is known from work by Landau in1908 rediscovered later by Ramanujan and mentioned in his �rst letter toHardy [2, Ch. 23], [6] that the number of integers less than x that are sumsof two squares is asymptotic to � xplog x:Ramanujan gave the (correct) approximate value � := 0:764.The general problem behind this example is to estimate sums over primesthat satisfy congruence restrictions. Here, we let p range over all primes, qrange over primes � 1 mod 4 and r range over primes � 3 mod 4. Euler'sproduct formula is�(s) = (1� 2�s)�1Yq (1� q�s)�1Yr (1� r�s)�1: (13)The function L(s) de�ned byL(s) = 1Xn=0 (�1)n(2n+ 1)s7



also admits an Eulerian decompositionL(s) =Yq (1� q�s)�1Yr (1 + r�s)�1: (14)Thus, comparison of (13) and (14) yields(1� 2�s) �(s)L(s) =Yr 1 + r�s1� r�s : (15)Taking logarithms in (15), we getlogYr 1 + r�s1� r�s = `(s) where `(s) = log�(1� 2�s) �(s)L(s)� : (16)Introduce the \base" function R(s) =Xr 1rs :A Taylor expansion of the left hand side of (16) leads to the relationR(s) + 13R(3s) + 15R(5s) + � � � = 12`(s); (17)which is easily inverted by a variant of Moebius inversionR(s) = 12 1Xn=1 b�(n)n `(ns); (18)where b�(n) = ( �(n) if n � 1 (mod 2)0 if n � 0 (mod 2):Let f(z) be any function analytic at the origin with radius of convergencelarger than 1=3: f(z) = 1Xn=2 fnzn:Then interchange of summations provides the identityXr f(1r ) = 1Xn=2 fnR(n); (19)8



which expresses a sum over primes r � 3 (mod 4) in terms of values of thebase function R(s) at the positive integers. The function R(s) is computablefrom (16,18): R(s) = 12X b�(n)n log�(1� 2�s) �(s)L(s)� :The values of L(s) themselves can be obtained either from the relation tothe Hurwitz zeta function,L(s) = 14s (�(s; 1=4)� �(s; 3=4));(this is computable directly by the Euler-Maclaurin summation formula) orby reduction to Riemann zeta values in accordance with the scheme em-ployed for Gregory's series and for Catalan's constant.In the case of the Landau-Ramanujan constant, applying the generalalgorithm leads to a wonderful formula,� = 1p2 1Yn=1 ��1� 122n� �(2n)=L(2n)�1=2n+1 ; (20)as results from elementary Moebius function identities. An alternative directproof runs as follows. Letg(s) = (1� 2�s) �(s)=L(s); f(s) =Yr 11� r�sthen it is seen that g(s) = f(s)2f(s)from which it follows thatf(s)2f(2k+1s)1=2k = g(s) g(2s)1=2g(4s)1=4 � � �g(2ks)1=2kproving the identity along with an estimate of the rate of convergence.Because of the lacunary character of the expression (20), the computa-tion is extremely fast and it takes only 6 � 108 machine cycles (6 seconds ofCPU time of 1996!) to get 200 digits of � by (20) in pari/gp, for instance,� = 0:76422365358922066299069873125009232811679054139340951472 � � � :9
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