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Many mathematical constants are expressed as slowly convergent sums

of the form |
C = Z f(_)v (1)
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for some well-behaved analytic function f and some “reasonable” subset A
of the integers. The convergence of such sums can be accelerated easily once
values at the integers of the zeta function
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are known: we have, formally at least,
C = meCA(m) where f(z) = mezm (3)

is the Taylor expansion of f at 0. This scheme is especially effective in the
context of high-precision evaluation of mathematical constants as it often
exhibits geometric convergence. It is also very easy to implement in current
symbolic manipulation systems that have built in many mechanisms for the
fast computation of zeta values.

In this note, we show the application of the rearrangement summarized
by (1-3) in the case where A is either the whole set of integers, the prime
numbers, or a congruence subset of the primes. This yields fast numerical
schemes for the evaluation of many constants like: the number 7, Euler’s
constant v, Khinchin’s constant K, the Hafner-Sarnak-McCurley constant o,
Hardy-Littlewood’s twin prime constant H, or the Landau-Ramanujan con-
stant A\. The reader is directed to Finch’s beautiful pages [4] for background
information on these and other classical constants.



§1. The number © and Gregory’s formula. Many classical constants can
be defined by a series of the form

S=3 400 (0

where f(z) is analytic at 0 and f(z) = O(z?) there. If f(z) is analytic the
closed unit disk, then rearranging the series gives
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is the Taylor expansion of f and ((s) = > ,-,n~° is the Riemann zeta

function. While the original series (4) is slowly convergent, the transformed
series (5) exhibits geometric convergence.
Similarly, if f(z) is analytic in |z| < 1/ng for some positive integer ng,
then
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a formula that again converges geometrically: let r > 1/n, be such that
f(2) is analytic in |z| < r, then the “speed” of convergence is O((rng)~™).
In addition, formula (6) may be used to accelerate the convergence of
series like (4,5) by choosing an ny that is suitably large. This gives a whole
range of formule that are intermediate between the original (4) and the
transformed (5).
Vardi’s book [9, p. 156] gives as an example Gregory’s series for 7,
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whose rearrangement is found to be
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The same technique applies to Catalan’s constant,
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Given the formulz (5,6), a sum like (4) is “easily” computable, once
values of the zeta function at the integers have been tabulated, assuming
that the Taylor expansion of f is itself easily computable. The table of zeta
values can be built from the Euler-Maclaurin formula [3] while zetas of even
argument are computable directly from Bernoulli numbers. In this way,
Stieltjes [8, vol. II, p. 100] determined in 1887 the values ((2),...,{(70) to
30 digits of accuracy.

§2. Fuler’s constant. By definition, Fuler’s constant is
v := lim (H, —logn).

The limit definition transforms into a sum,

n
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whose general term converges like O(n~?). The series rearrangement now
applies upon taking ng = 2,
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This is one of the many ways to find a geometrically convergent scheme for
the computation of Euler’s constant. An equivalent formula was already
known to Fuler and Stieltjes used precisely the formula corresponding to
ng = 3 to check his computation of zeta values.



§3. Khinchin’s constant. By taking logarithms, infinite products can
also be computed. For instance, Vardi’s book [9, p. 163] discusses the com-
putation of Khinchin’s constant

53] 1 logn/log?2
P
711;[1 n(n + 2)
along these lines. There, the general scheme applies with minor adjustments:
because of the logarithms in the exponent, the rearranged series of log K
involves the values (’(m). Other rearrangements, like
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(due to Shanks and Wrench, 1959) are known that do not require a special
computation of the derivatives. However, Vardi’s method has the advantage
of complete generality as it applies to sums and products of the form

S (ogm)f(1), T (1 + h(%))bgn,
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of which Khinchin’s constant is a particular instance.

§4. Sums over primes and the Hafner-Sarnak-McCurley constant. A
sum of the form

TzZﬂ?, (7)
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where by usual conventions an index p ranges over the prime numbers, can
be rearranged into

T = i me(m)v (8)

provided f is analytic in |z| < 1. There,
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If f(z)is analytic in |z| < 1/ng, one has
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again with geometric convergence.
This technique makes it possible to evaluate T efficiently. In effect, II(s)
is related to the zeta function, as results from the Eulerian product,
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by taking logarithms,

log ((s) > T Z
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The last formula is a clear case of application of Moebius inversion and one

finds
=y B R 1o Cs). (11)
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In summary, T is efficiently computable from the formula (8) (or its
variant (10)) with II(s) given by (11) which permits to build a table of
values of II(m). Alternatively, one can compute 7" directly from the zeta
values by combining the Moebius formula for II(/m) and the expansion of f:

T = Zg,,log{(l/), Z’u Josn- (12)

v>2

Hafner, Sarnak, and McCurley [5] have shown that the probability that
two m X m and nxn matrices, m, n large, have relatively prime determinants
is
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(it is well-known that this is 6/7% when m = n = 1). An application of the
method to log o [9, p. 174] gives an equivalent form

o =[] ¢(m)=~

m>2
and, upon taking 100 factors, we get

o~ 0.35323637185499598454 . . .,



The speed of convergence is determined by singularity analysis [9, p. 258-
261] and is here roughly 0.57".

§5. The Twin-primes constant. Hardy and Littlewood [7, p. 371] devel-
oped in 1923 a heuristic model for the distribution of prime pairs according
to which the number of prime pairs p, p+ 2 with p < z must be asymptotic

to 1
x
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The same constant also occurs in heuristic models of the Goldbach prob-
lem [4].

The twin prime constant is a direct case of application of the method
of (12). It is amusing to note that the coefficients g, that appear there are
related to finite fields. Let I, be the number of monic irreducible polynomials
over the coefficient field GF(2) with degree n. We have [1, sec. 3.3]
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On the other hand,
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which converges like (2)". Using a cutpoint ng like in (6,10) gives a whole

collection of formulae of which
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has rate of convergence &~ (4)7", thus giving approximately 3/4 of a digit
per iteration.
A closely related example is Mertens’s constant [7, p. 351],
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that intervenes in the formula

1
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By the same device, we have
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§6. The Landau Ramanujan constant. This constant is defined by
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in which [], indicates a product where r ranges over the prime numbers
that are congruent to 3 modulo 4. It is known from work by Landau in
1908 rediscovered later by Ramanujan and mentioned in his first letter to
Hardy [2, Ch. 23], [6] that the number of integers less than z that are sums
of two squares is asymptotic to

x
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Ramanujan gave the (correct) approximate value A = 0.764.
The general problem behind this example is to estimate sums over primes

A

that satisfy congruence restrictions. Here, we let p range over all primes, ¢
range over primes = 1 mod 4 and r range over primes = 3 mod 4. Euler’s
product formula is

()= (1 =27 [T == TI0 =) (13)

The function L(s) defined by
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also admits an FEulerian decomposition
L(s) = Hl—q 1H1—|—7‘_s )~h
q

Thus, comparison of (13) and (14) yields

a-rgg =it

Taking logarithms in (15), we get

10gH 1 i_ ::: = {(s) where ((s) = log ((1 _ 2_8)2((85))) ‘

Introduce the “base” function

R(s) = i

r /rs
A Taylor expansion of the left hand side of (16) leads to the relation
1 1 1
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which is easily inverted by a variant of Moebius inversion
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where

. { p(n) ifn=1 (mod 2)
0 ifn=0 (mod 2).
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Let f(z) be any function analytic at the origin with radius of convergence

larger than 1/3:
=D fu"
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Then interchange of summations provides the identity

S =3 fRn

(19)



which expresses a sum over primes 7 =3 (mod 4) in terms of values of the
base function R(s) at the positive integers. The function R(s)is computable
from (16,18):

R(s) = %Z @bg ((1 _ 2—8)2((?)) .

The values of L(s) themselves can be obtained either from the relation to
the Hurwitz zeta function,

1(s) = (s 1/4) = C(s,3/4),
(this is computable directly by the Euler-Maclaurin summation formula) or
by reduction to Riemann zeta values in accordance with the scheme em-
ployed for Gregory’s series and for Catalan’s constant.
In the case of the Landau-Ramanujan constant, applying the general
algorithm leads to a wonderful formula,

]1/2"+1
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as results from elementary Moebius function identities. An alternative direct
proof runs as follows. Let

g(s) = (1=27°)¢(s)/L(s),  f(s)=]]

then it is seen that

from which it follows that

f(g%ss);/zk = g(s) g(25) /% g(4s)/* - g(28 )/

proving the identity along with an estimate of the rate of convergence.
Because of the lacunary character of the expression (20), the computa-

tion is extremely fast and it takes only 6 - 10® machine cycles (6 seconds of

CPU time of 1996!) to get 200 digits of A by (20) in pari/gp, for instance,

A =0.76422365358922066299069873125009232811679054139340951472 - - - .
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