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Abstract 1 

Flajolet, P. and M. Soria, General combinatorial schemas: Gaussian limit distributions and ex- 
ponential tails, Discrete Mathematics 114 (1993) 159-180. 

Under general conditions, the number of components in combinatorial structures defined as 
sequences, cycles or sets of components admits a Gaussian limit distribution together with an 
exponential tail. The results are valid, assuming simple analytic conditions on the generating 
functions of the components. The proofs rely on the continuity theorem for characteristic functions 
and Laplace transforms as well as techniques of singularity analysis applied to algebraic and 
logarithmic singularities. Combinatorial applications are in the fields of graphs, permutations, 
random mappings, ordered partitions and polynomial factorizations. 

1. Introduction 

Vassilii Leonidovich Goncharov established in 1944 that the number of cycles in 
a random permutation of large size approaches a normal distribution; see Knuth’s 
account in [19, p. 1031. Many results of a similar type are now known for a great 
variety of classical combinatorial structures, and extensive surveys of classical results 
appear in [ 8 , 2 6 ] .  

Bender [ 13 first recognized that such limit distributions could be established for 
general combinatorial scheinas under analytic conditions of a general character. This 
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line of investigation was later pursued by Bender, Canfield, Richmond, Compton, and 
others [2,4,7, 123. 

In a way, the situation parallels that of the central limit theorem in probability 
theory. There we know that the common scheme of taking sums of many random 
variables leads, under wide sets of conditions, to a general asymptotic law, a normal 
distribution in the limit. Here we show how common combinatorial schemes that 
form sequences, sets or cycles lead, under suitable conditions, to general asymptotic 
laws for the number of components in large random structures. 

This paper adds to the already known classes a new analytic scheme that generates 
normal (Gaussian) distributions. Our results concern the ‘weak’ convergence - i.e. in 
the sense of distribution functions - of parameters related to the number of compon- 
ents in composite combinatorial structures. A corresponding statement is also often 
called a ‘central limit theorem’. (Local limit thorems deal with density functions 
instead; they are discussed at length in Bender’s paper [l].) 

We establish companion results regarding distibution tails which are found to be of 
exponential decay under a very large set of conditions. The two types of results are 
complementary: the existence of a limit distribution provides information on distribu- 
tions near the mean value, whereas exponential tail estimates entail that large 
deviations from the mean are extremely unlikely”: 

Analytically, the problem which we are confronted with here amounts to extracting 
information on coefficients of bivariate generating functions. These are analytic 
functions of two complex variables of the form’ 

P(z,u)= 1 P ” , k U k Z f l .  
n , k d O  

We are, thus, facing a ‘double’ inversion problem. In some cases, real variable methods 
may be used; see, in particular, Compton’s work [7]. The approach taken here (as well 
as in [l, 2,4, 123) relies instead on complex variable methods. It consists of a two- 
stage process. 

First, we consider u as a parameter and solve a parameterized single-variable 
inversion problem by estimating 

asymptotically for large I I  but fixed u. 
0 Next, once precise estimates for p , (u )  have been derived for enough values 

of u, we can in turn ‘invert’ p,>(u)  and derive information on the coefficient 

The second stage usually relies on the use of continuity theorems for Fourier 
transforms (Levy’s continuity theorem for characteristic functions) or for Laplace 

Pn,k = [ukl  P f l ( U ) .  

’ Depending upon the context, the generating functions may be ordinary or exponential. Thus, P , , k  
represents a number of structures of size n having k ‘components’ - up to a possible factor of n! 
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transforms (also called moment generating functions). We refer to Billingsley’s excel- 
lent treatment of these topics; see especially Sections 25, 26 and 30 of [3]. 

For the first stage, the asymptotic technology to be used depends on the profile of 
the functions under consideration, and especially on P(z ,  1). 

In the case of meromorphic functions, the contour can be extended to a circle of 
large radius, taking into account the residues of the integrand. This is the method 
used in the original study of Bender [l]. The related technique of ‘subtracted 
singularities’ [ 18, p. 4421 is used by Bender and Richmond [2]. 
If P(z ,  u )  has algebraic or logarithmic singularities then variations of the 
Darboux-Polya method can be used [18,22,28]. Our treatment in this paper relies 
on the method of singularity analysis of Flajolet and Odlyzko [lo], by which one 
can transfer on a term-by-term basis asymptotic information on a function to its 
coefficients. (Ultimately, the method relies on contour integration with a Hankel 
contour that comes close to the dominant singularity of the integrand.) 
If P ( z ,  u )  is entire with exponential growth, or has essential singularities, the saddle 
point method normally applies, the contour is a circle crossing the saddle point and 
the main contribution to the integral comes from a small neighbourhood of the 
saddle point. This is Canfield’s method [4]. 
We can now make our goals more precise. Our ’object of study is some particular 

. 

analytic functions of two complex varibles that arise from combnatorial enumer- 
ations, and are taken to be of the form 

P(z ,  u )  = E [ C(z); u ]  , 

where C(z) is generating function of the ‘components’ (thereby assumed to have 
positive coefficients), and u is a parameter. There are three major combinatorial 
constructions that form sequences, cycles and sets. Figure 1 describes the analytic 
functionals E that correspond to the three constructions in the labelled and in the 
unlabelled universe. The reader unfamiliar with this symbolic approach can consult 
[l5] as an entry point to the literature. (The generating functions are ordinary w.r.t. 

~~ 

Construction Labelled Unlabelled 

1 1 
Sequence( %‘) 

1 - u C ( z )  1 - u C ( z )  

1 1 
Cycle( % ) log- 

1 -uC(: )  k B 1  

Ser(%) 

Fig. 1. The three major constructions of sequence, cycle and set together with their translation into 
generating functions in both the labelled and the unlabelled cases. 



162 P. Flajolei, M. Soria 

z for the unlabelled case, while they are exponential in the labelled case. For analytic 
purposes, the distinction is, however, immaterial and it suffices to take C(z) as an 
arbitrary power series with positive coefficients.) 

The analytic study of combinatorial schemas consists in finding asymptotic laws for 
coefficients of such bivariate generating functions, given suitable conditions on the 
component generating function C. For instance, a few analytic schemas giving rise to 
asymptotically Gaussian coefficients are described succinctly in Fig. 2. Clearly, such 
analytic schemas cover sequence constructions if they imply the form 1/(1 - u C ( z ) )  
cycle constructions when logarithms appear, and set constructions wherever an 
exponential is involved. 

Plan of the paper. The basis of the method is discussed in greater detail in Section 2. 
Section 3 is principally concerned with an analytic schema, 

.( y, 
(l-UC(Z))Ol l0gI-UC(z) (3) 

which is applicable to sequences, cycles, as well as some other composite construc- 
tions. We obtain Gaussian: limits by means of a continuity theorem; here we have 
taken the option of using the method of charackistic functions, although Laplace 
transforms could have equally well been used (see e.g. [SI for simjlar problems treated 
via Laplace transforms). 

Section 4 introduces the corresponding exponential tail results that arise from 
a consideration of Laplace transforms. Section 5 exhibits about a dozen applications 
of these results to fairly classical combinatorial structures like graphs, permutations, 
mappings, ordered partitions or polynomial factorizations. 

Since the first version of this paper was written, our results have been extended by 
Gao and Richmond [13]. Following the lines of [2], they show that our approach can 

Analytic schema Method Reference 

m E N  Singularity of meromorphic functions 111 (1 -uC(i))"' 

eUC';', C(z) polynomial Saddle point method [41 

euC'r), C(z) logarithmic Singularity analysis 

1 
I 

1 

(1 -uC(z))" 
Singularity analysis 

[I21 

This paper 

Fig. 2. A summary of some analytic schemas leading to Gaussian distributions. 

I 
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be adapted to analytic functions of k +  1 complex variables; their results also com- 
plement our exponential tails by providing 

In another direction, Soria has pursued the investigation of probabilistic properties 
of general combinatorial schemas. Her work shows a wide range of distributions to 
occur under precise analytic conditions inside classical structures. A fairly complete 
typology of limit distributions in combinatorial schemas is given in [27]. 

estimates. 

2. Analytic methods 

Let Pn,k be a sequence of nonnegative numbers. By normalization, we define the 
probability distributions 

we denote by 52, a random variable with probability distribution { 71 n k  , ) k > O .  

the present context, the sequence P,, k arises from & bivariate generating function 
Our purpose here is to study the asymptotic distribution of special numbers Pn,k. In 

P ( z ,  #)= P,,kUkZ", 
n , k S O  

itself constructed from a function C(z)=C,C,z" by means of one of the functionals 
described in Fig. 1. Our only assumption at this stage is that C(z) has nonnegative 
coefficients. The problem under consideration is, thus, of a purely analytic nature, 
namely, it reduces to the study of asymptotic properties of certain analytic functionals. 

In combinatorial applications, we always consider two classes of structures: the 
class %? of components and the class B of composite structures. The composite 
structures are of the three possible types described in Fig. 1, that is to say, sequences, 
cycles or sets. If C(z)  is a generating function of structures W, the meaning of 52, is then 
the random variable giving the number of %? components in a random composite 
9' structure of size n. 

We have set P,  = P,, j, and, by a slight abuse of terminology (in the labelled case, 
generating functions are exponential, so that a normalization factor of l /n!  is needed), 
we may occasionally refer to P, as the number of composite 9 structures of size n, and 
to C,, as the number of component % structures of size n. We also define 

P ( z ) = P ( z ,  l), so that P(z )=  P,z". 

Letting p n ( u ) = x k  P,,kuk, we have the following: 
The probability generating function of SZ, is p,,(u)/p,,(l). 

0 Its characteristic function $Qn( 0) is pn(eie)/p,( 1). 
0 Its Laplace transform Mn,(e)  is pn(es)/p,(l). 

n?-0  



164 P. Najoler, M .  Soria 

The mean value pn and the variance 0,’ of SZ, are readily computed by differentiation 
from the probability generating function: 

In order to establish the Gaussian limit distributions, we consider the normalized 
variables 

* - Q n - ~ n  R n  --. 
cn 

We shall prove the pointwise convergence of the characteristic functions of the a,* to 
the characteristic function of a Gaussian variable with mean 0 and variance 1: 

$Q:(~) -, e-02’2. (8) 
By the continuity theorem for characteristic functions of Paul Levy [3, Section 261, we 
can then deduce from (8) the ‘weak’ convergence2 of the distribution functions. 

Definition 2.1. Let SZ, be a’sequence of random. variables. When, for any two real 
constants a < b, we have v 

J 

we say that SZ, (or its normalized form Q?) is asymptotically Gaussian, or that its 
distribution converges weakly to a Gaussian distribution, or that it satisfies a central 
limit theorem. 

As we shall see in Section 4, a sufficient condition for the sequence of normalized 
random variables SZ,* to have (uniform) exponential tails is that the Laplace trans- 
forms be bounded by a constant K ,  for all 8 in a fixed real neighbourhood of 0, i.e. 

( W ( V n ) ,  MQ$+ K .  

Therefore, the main technical problems rest with the estimation of $Qr( e), and 
MQ.(8). In terms of SZ,, these are expressed as 

*In  the case of weak convergence to a Gaussian distribution, we also have that the Y a  distance between 
the distribution hnction of 0: and that of the standard Gaussian variate tends to 0. See, for instance, the 
remarks in [ l ,  p. 911 and Section 9 of [14]. 
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Our analysis of limit distributions relies on the convergence of characteristic 
functions. The derivation of tail bounds relies on quantitative estimates of Laplace 
transforms. 

In general, characteristic functions are a finer tool than Laplace transforms (mo- 
ment generating functions) in the derivation of limit laws, since they always exist. The 
problems under consideration in the present paper are, however, well conditioned in 
the sense that both the discrete laws and the limit law have a Laplace transform; thus, 
as pointed out earlier, either Laplace or Fourier transforms would equally do for the 
purpose of establishing Gaussian limit laws. In contrast, the use of Laplace transforms 
for tail estimates is a necessity. 

In all our problems, the standard deviation on tends to infinity. Therefore, an 
analysis based on characteristic functions needs information on p,(u)  for u in a com- 
plex neighbourhood of 1 along the unit circle @=e'@)), while an analysis via Laplace 
transforms requires a knowledge of p , (u )  for u in a real interval centred around 1. The 
computation of the value of p,(u), thus, appears for each case as a 'perturbation' of 
that of p,,(l). 

The rest of the paper is devoted to functions, C(z) or P(z), with isolated algebraic 
and logarithmic singularities on their circle of convergence. Thus, singularity analysis 
techniques [ 1 13 will be employed here. We summaiize here briefly the main results of 
this approach. 

The crucial point is the (classical) observation that there is a correspondence 
between function scales and coefficient scales: 

J 

Under conditions of analytic continuation that are spelled out in [ll], we have 

Thus, under these conditions, we are justified in translating an asymptotic expansion 
of a function near a singularity into a corresponding expansion for its coefficients. 
This fact can be systematically exploited in the case of functions given by explicit 
operations like in Fig. 1. 

3. Gaussian limit distributions 

We examine in this section two analytic schemes and obtain a Gaussian limit 
distribution. 

The first result, Theorem 3.2, provides a limiting distribution for a scheme that 
generalizes the functionals arising from the sequence and cycle constructions; it is 
found that the mean and variance are both of order O(n). Theorem 3.2 is in the line of 
related results of Bender and Richmond (see Theorems 3.2 and 3.4 or Corollary 1 of 
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[ 2 ] ) .  The proof techniques are, however, a little different since we appeal to singularity 
analysis instead of the method of subtracted singularities. Since our asymptotic engine 
is in many ways more 'powerful', we may expect this line of attack to be of wider 
applicability (see [ 131 for recent results in this direction). 

The second result is relative to the set construction which leads to an asymptotic 
distribution that is Gaussian; in that case, the mean and variance are of the form 
O(1og n). The latter result was already obtained by us in [12]; we provide here a more 
synthetic proof that also paves the way for the exponential tail results of the next 
section. 

Sequence and cycle constructions. The sequence construction and the cycle con- 
struction lead us to the two schemas, 

1 1 

P(2,  u)= 
1 

1 -uC(z) '  

which we encapsulate into 

P(z,  u )  =log 
1 

1 -uC(z) '  

The component functions are assumed to satisfy a particular cmdition. 

Definition 3.1. A function C ( Z ) = C , > ~ C , Z ~  that is analytic at 0 is said to be 
1-regular iff 
0 its Taylor expansion at 0 involves only nonnegative coefficients, 

B being the radius of convergence of C ( z )  at 0, one has C(a)> 1. 
Without loss of generality, we may freely assume that further that C ( z )  is aperiodic, i.e. 
not of the form r$(zd) for d 2 2  and q5 analytic at 0. 

Theorem 3.2. Consider the probability distributions dejned by the bivariate generating 
function 

1 / 

with k20 an integer, and cr>O a real number. Assume that C ( z )  is I-regular. Then the 
random variable a, associated with the Pn,k  has mean p,, and variance a: that satisfy (see 
Eqs. (14) and (16)) 

p, - c,n and ai - c2n ( n 4  + co). 
Furthermore, Q, converges weakly to a limiting Gaussian distribution: 

I ____- 
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Proof. The proof consists in evaluating in turn the number P,  of structures, the mean 
p,, the variance a: and, finally, the probability generating function p, (u) .  All estimates 
are based on singularity analysis. For convenience, we present the proof in the case 
where ci # 0; the case where ci = 0 leads to the same results with estimates (14) and (16) 
for the constants c1 and c2 still being valid via a rather similar route, so that it will not 
be detailed here. 

(1) Let p be the smallest positive real such that C ( p ) =  1 ( p  exists by assumption of 
1-regularity). Using a Taylor expansion of C ( z )  around p, we get 

We, thus, find around z = p ,  

+log - 
P " c " ( P )  (1 - 4 P ) "  1 - Z / P  PC'(P) l J  

P ( z ) = P ( z ,  l)=- 1 1 .(log- 1 

By the transfer principles of singularity analysis, w< thus, find an asymptotic form of 
the coefficients of P(z ) ,  namely, 

J 

A more detailed expansion follows from refining the singular expansion of P ( z )  at p: 

where the Qi are polynomials of degree at most k in logn. 
(2) The mean value of the distribution is ~,I[z"] P&z, l)/P,, where P:(z, 1)  

denotes the derivatives of P(z ,  u )  with respect to u, taken at u= 1. The simplest way to 
carry out computations consists in reducing the study of partial derivatives to that of 
P(z) ,P ' ( z ) ,  etc. First, we have 

Thus, using a Taylor expansion of C ( z )  around p, we get 

1 
PXZ, l)=-P'(z)(l +K(1 -z/p))+O((l -z/p)2), 

C'(P) 

where K is expressible in terms of p, C'( p ) ,  and C"(p). Hence, 
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Obviously, 

Qo(log(n + 1)) = Qo(log n)+- Qb(1ogn) 1 + 0 - 
I1 ( 

so that 

where the Ri are again polynomials of degree at most k in logn. Returning to p n ,  we 
find 

A more detailed expansion provides the constant term in p, (valid for the case afO 
only!): 

(3) The variance is of ~ S Z " ]  &(z ,  l)/Pn-pf +pn; we use the relation 

Proceeding as above, it can be shown that 

n2 
P"(z)  - - 1 C2(Z) 

-[z"]  - 
P, C'2(z)  P 2 C 2 (  P) 

The term of order nz cancels with the term coming from the square of the mean value 
(14); thus, the order of growth of the variance is subquadratic. More detailed com- 
putations reveal that 

which turns out to be valid for the two cases afO and a=O. 
(4) For the limit distribution, we have to evaluate pn(eieiUn)/P,,. The evaluation of 

p,(u), the coefficient of Z" in P(z ,  u) ,  is similar to the evaluation of ~ " ( 1 ) .  
Let p(u)  be the root of smallest modulus of the equation C ( p ( u ) ) = u - ' .  We have 

p=p( l )  and, for u close enough to 1, by the implicit function theorem, p(u )  lies in 
a neighbourhood of p and depends analytically on u: 

C"(p)-2C'Z(p)  (u-  1)2 

C'"P) 2 
+ o ( ( U - 1 ) 3 ) .  

1 
p ( u ) = p - - ( u -  1)- c ( P I  

Expanding C ( z )  around p(u) ,  and transferring to coefficients, we get 
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uniformly in u in a small neighbourhood of 1. Thus, 

where the implied constant in the o-estimate is uniform for s sufficiently close to 0. 
Moreover, since the function p(es) admits a full asymptotic expansion around s = 0, we 
have 

Instantiating with s = iO/a,, we thus have, for the characteristic function &,:(e) as 
defined in Section 2, 

(18) 
Using expansion (17), as well as estimates (14) and (16) of pn and an, we find 

&,:(e) -+ e-e2’2. 
v 

J 
Thus, the sequence (Q:} converges weakly to a Gaussian limit distribution. 0 

Set constructions. For the second theorem, we need a precise statement of the 

First, we let d o ( p ,  y, 4) ,  with p>O, y > p ,  and O < $ < x / 2 ,  denote the indented 
conditions for the generating function of components to be of logarithmic type. 

disk 

Definition 3.3. Let G(z) be a generating function which is analytic at 0 and has 
a unique dominant singularity p on its circle of convergence. We say that G(z )  is 
a logarithmicfunction (with dominant singularity p, multiplier a and constant K ) if it is 
analytic inside a domain do,  and there we have 

G(z)=alog- 1 + K + 0 ((log 2)- l )  
1 --ZIP 1 - Z I P  

Note. An oversight in our earlier work [l2] led us to pose a definition of a 
logarithmic function that is a little too loose. The definition of a logarithmic function 
in [12, p. 169, Eq. (2.2)] (with a requirement that the error term in (19) be only 
K +o( l ) )  should be changed to Eq. (19) above. With this correction, the statements of 
theorems and the examples of [ 123 remain unaffected. 

L I 

I 
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Theorem 3.4. Consider the probability distributions defined by the bivariate generating 
function 

P(z, u)=exp(uC(z)). (20) 
Assume that C(z) is a logarithmic function with multiplier a. Then the random variable 
Q, associated with the Pn,k converges weakly to a limiting Gaussian distribution. The 
mean pn and variance a: of an satisfy, as n-+ co, 

p n  - a log n and a i  - a log n. 

Proof. Let p be the dominant singularity of C(z), and set 

1 
C(z) =a  log - -+- R(z). 

1-ZIP 

Then P(z, u)  is of the form 

1 P(z ,  u)=exp(uR(z)) 
* (1 -z/p)""' 

By virtue of singularity analysis, this gives Pn=i-"na-'eK/T(a) (1 +o(l/logn)). The 
asymptotic forms of p,, and an follow through an identical argurhent. 

Considering u as a parameter, we derive in the same vein 

This estimation is uniform, for u in a sufficiently small complex neighbourhood of 1. 
Thus, we have 

Now i%/an tends to 0 when n tends to infinity; so, 

Substituting the values of pn  and ai, we get 

which implies the weak convergence of {a:} to a Gaussian limit distribution. 0 

The proof technique of [12] consisted in going back to the original Hankel contour 
that is at the basis of singularity analysis methods. The proof outlined here takes 
advantage of the uniformity of estimates provided by singularity analysis. 
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4. Exponential tails 

Weak convergence of probability distributions to a limit provides information on 
distributions near their centre (whence the denomination of ‘central limit theorems’). 
Such results are, thus, useful for characterizing relatively frequent cases. However, for 
applications to statistics, combinatorics or analysis of algorithms, it is often useful to 
characterize the rarity of extreme cases or, in other words, find information on 
possible ‘large deviations’ from the average. An important concept in this area is that 
of distributions with an exponential tail. It turns out that the distributions considered 
in this paper all have exponential tails, so that large deviations are extremely unlikely, 
and have a lower probability of occurrence than would be predicted from 
a Chebyshev moment inequality of arbitrary order. 

Definition 4.1. Let Y be a normalized random variable with mean 0 and standard 
deviation 1. We say that Y has an exponential tail with parameter a< 1 if 

3C>O, Vk>O, Pr,(lYI>k)<Cak. 

Similarly, if { Y,,},,,o is a sequence of normalizq random variables, we say that 
{ Yn}n,o has an exponential tail with parameter a i  1 if 

J 

3C>O, Vk>O,  Vn, Pr(/Y,,I>k)<Cak. 

The last part of the definition is, therefore, a uniform version of the first one. We also 
extend the definition to unnormalized variables: a sequence 52, of random variables is 
said to have an exponential tail whenever the normalized sequence a,* itself has an 
exponential tail. Variables with an exponential tail have an exponentially vanishing 
probability of large deviations from the expected values. 

Observe first that the weak convergence of a sequence { Y,,} to a limit Y with an 
exponential tail (e.g. a Gaussian distribution) does not necessarily entail that the Y, 
themselves have an exponential tail according to the definition above: It suffices to 
consider a probability distribution with mass l / n  concentrated at point x=&, and 
everywhere else with a Gaussian density normalized by a factor of 1 - l /n.  Exponen- 
tial tail estimates are, therefore, a useful complement to weak convergence results. 

For a single random variable Y, it is well known (see e.g. Sections 9 and 22 of [3]) 
that there are relations between tail distributions and inequalities satisfied by the 
moment generating function. For a completeness of exposition, we state the following 
proposition. 

Proposition 4.2. (i)  Let Y be a random variable whose Laplace transform M ( O ) E  E(eey) 
i s  defned for e in an interval I = [eo, e , ]  enclosing 0. Then Y has an exponential tail, 
with 

C = sup M (  0) and a =e-min(-eo,el). 
&I 
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(ii) Similarly, for a sequence { Y n }  with Laplace transforms Mn(8) ,  i fwe have 

3C>O, Qn, M n ( 8 ) < C ,  

for all 8 in some finite interval [e,, e , ]  around 0, then the sequence { Y n >  admits an 
exponential tail in the sense of our definition. 

Proof. For a single variable, we consider the upper tail estimate Pr( Y >  k)  for k > O .  
We have, for any 8 > 0, 

Pr( Y >  k ) =  Pr(eel’ > eek) 

The first upper bound follows by Markov’s inequality [3, p. 2831 applied to the 
moment generating function E(ee’). The other two result from the definition of C and 
the ‘best’ choice of 8= el .  : 

The lower tail estimate and the extension to sequences of random variables follow 
from identical arguments. 0 

I 

A nice consequence of analytic estimates derived in Section 3 is that we get, with 
a little additional work, exponential tail results for combinatorial distributions that 
admit a Gaussian limiting law. 

Theorem 4.3. Let pn(u) be dejined by 

n (1 --uC(z))e ( log 1 -uC(z )  l ) ”  ’ P n ( U ) Z ”  = 

where k is an integer and Q is a real number >O. Assume that C(z) is 1-regular. Let Q, be 
the random variable with probability generating function pn(u) /p , (  1).  Then the sequence 
of random variables 52, admits an exponential tail. 

Proof. Let M,:(8) denote the Laplace transform of Q,*: 

Using the same estimate as in the proof of Theorem 3.2, we find 

the estimation being uniform for 8 lying in a fixed (that may be arbitrarily chosen!) real 
neighbourhood I of 0. Expanding function p around 1, we get a formula analogous to 
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Eq. (18): 

173 

Since a: is of order n, and pn= -np’( l ) /p( l )+O(l) ,  we conclude that M,:(0)  
is uniformly exp(O(l)), which means uniformly bounded for 0 staying in the fixed 
interval 1. 0 

Along the same principle of proof, we can add an exponential tail result to 
Theorem 3.4. 

Theorem 4.4. Let p,(u) be dejined by 

Pn ( u )  zn = exp(uC ( z ) ) ,  
n 

where C(z) is a logarithmic function. Then the sequence of random variables Q,, with 
generating function p,(u)/p,( l), admits an exponential tail. 

Proof. We have the counterpart of Eq. (21), 

The proof now relies on the fact that the error terms of p, - a log n are much smaller 
than on and on the fact that a: is of order log n. Thus, for 8 in a fixed interval I ,  M,;( e )  
remains uniformly bounded. ci 

As a conclusion, note that it is also possible to derive superexponential bounds3 
with the same methods. An alternative approach to the problem could be to consider 
asymptotic estimates for densities (‘local limit theorems’), in the style of Bender [l]. 
This may involve, however, rather delicate estimates away from the centre. 

Exponential tail results should prove sufficient for many practical applications. For 
instance, the first nontrivial upper bound on the height of binary search trees was 
obtained by Robson [24] using exponential tail properties of Stirling numbers of the 
first kind (in that case, explicit generating functions are available and the analysis is, 
therefore, easier). 

5. Examples and extensions 

There are many cases of applications of the techniques reviewed here, owing to the 
generality of the combinatorial schemas under consideration. A small sample is given 
below and we also indicate a few directions into which our results could be extended. 

’ From the proofs of Theorems 4.3 and 4.4 it would be possible to optimize on the bounds that one 
derives by adequately selecting the interval I .  
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Example 5.1 (Ordered partitions and cyclic partitions). The ordered partitions of an 
n-set are described by the bivariate generating function 

1 
1 - u(ez - 1) ’ 

where u marks the number of blocks. The corresponding distribution is P , , & = k !  Sn,&, 
with Sn,k a Stirling number of the second kind, and P, is sometimes referred to as 
‘preferential arrangement’ or ‘surjection’ number. From Theorem 3.2, the Pn,k are 
asymptotically normal, with exponential tails (Theorem 4.3). This example is well 
known and asymptotic normality already follows from Bender’s results [ 13. 

If we consider, instead, cyclic partitions of an n-set, we are led to a generating 
function 

1 
log 1 -u(ei- 1) 9 

which does not fall into Bender’s class. The enumeration sequence becomes 
Pn,k  = ( k  - l)! Sn,k .  From the logarithmic case of Theorem 3.2 (a = 0, k = I), the 
distribution of the number: of blocks is again asymptotically Gaussian and, from 
Theorem 4.3, it has exponential tails. \ 

The mean and the variance of the number of blocks in an n- artition satisfy P 
1 1 1 

P n  - 2 log 2 n, a i  - (---) 410g22 4log2 n 

in both the sequence and the cycle cases. 

Example 5.2 (Permutations and 2-regular graphs). Several examples of the applica- 
tion of Theorem 3.4 have been given in [123, and will not be duplicated here. Let us 
just say that prototypes of application are the functions 

exp(ulog&) and exp(:(log-- 1-z .-f)), 
corresponding to the distribution of cycles in permutations and of connected compo- 
nents in 2-regular graphs. Another interesting example, which goes back to early work 
on random mappings, is the distribution of connected components in random map- 
pings. The bivariate generating function is 

exp ( ulog- I-:(.))> 

where a(z) = zea(z) is the generating function of Cayley trees. 

Example 5.3 (Trees of cycles and cycles of trees). More generally, Theorem 3.2 
and its companion Theorem 4.3 express asymptotic properties for objects obtained 
by ‘composing’ a class of structures having a generating function with an 
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algebraico-logarithmic singularity (e.g. cycles, trees) and a suitably regular generating 
function for the class of components. As typical instances, Gaussian distributions and 
exponential tails will be present in the two bivariate schemas 

i ( u P ( z ) )  and P ( u i ( z ) ) ,  
where 

1 
I.( z )  = log - 

1 - z  and 

corresponding to cycles of trees and trees of cycles. Here, trees are binary, labelled and 
nonplane: 

The case of i.( P ( z ) )  is an application of Theorems 3.2 and 4.3 with P(z )  being 1-regular 
( P (  1 /f i) = f i> 1). The case of P ( l ( z ) )  illustrates an extension to negative exponents 
( M =  - 1/2) of Theorems 3.2 apd 4.3. 

Variations on analytic conditions. The methods developed v” in the previous sections 
are applicable to a variety of analytic schemes.. We may allow various types of 
modifications in the basic schemes considered so far - a typicalexample being the 
functionals attached to unlabelled constructions in the next subsection - as well as 
allowing for ‘error terms’ of various sorts. 

An easy qualitative analysis of generating functions provides, in a large number of 
cases, direct proofs of Gaussian approximations and exponential tails estimates for 
combinatorial enumerations. The general methodology appears to be quite robust 
and we proceed to indicate a few direct extensions whose proofs follow the same path. 

One class of applications concerns composite structures with structural definitions 
of the type 

9 = 9 x Sequence( W) 

as well as their set or cycle counterparts. The generating function form becomes 

If the generating functionf(z) of 9 is regular at the dominant singularity of P ( z ,  1) or 
if it has there only a dominant algebraico-logarithmic singularity, it plays the role of 
a small perturbation, and distributions remain Gaussian in the limit, with exponential 
tails. 

Situations where multiple dominant singularities (of the proper type) appear can 
also be treated by our methods, just using composite Hankel contours. The net result, 
valid for Theorems 3.2, 3.4, 4.3 and 4.4 is still the occurrence of Gaussian limit 
distributions and exponential tails. 
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Example 5.4 (Semipermutations). We define a semipermutation as a set of undirected 
cycles. The class of semipermutations of a component class has generating function 

where C ( z )  is the components generating function, and u marks the number of 
components. The asymptotic distribution of the number of components remains 
Gaussian provided that C ( z )  is a 1-regular function. For example, we can take for C ( z )  
the generating function P ( Z )  of (24). We find that the number of components in 
a semipermutation has a distribution which is asymptotically Gaussian, with mean 
p,, - n/3 and variance a,’ - 0 . 8 8 ~  

Example 5.5 (Cycles in restricted permutations). The decomposition of permutations 
into cycles corresponds to the generating function equation 

p ( z ,  u)=exp( ulog+-). 

Goncharov’s well-known result states that the &ociated a, (the distribution of 
Stirling numbers of the first kind) is asymptotically normal, with yean and variance 
asymptotic to log n. 

Consider the distribution of the number of cycles in permutation where all cycles 
are restricted to have odd length. The analytic form is 

We now have two dominant singularities at z = & 1, but, combining local expansions 
at k 1, one still derives the Gaussian property, with mean and variance asymptotic to 
3 log n. 

Similarly, these asymptotic properties of the distribution are preserved for the 
number of cycles of odd length in general permutations, which corresponds to the 
generating function 

Example 5.6 (Unary nodes in 1-2 trees). The bivariate generating function of 1-2 trees, 
with u marking the number of unary nodes, satisfies 

T(u, z ) = z ( l  +uT(u, z ) +  T2(u ,  z ) ) ,  

whose solution is 

Jm. 1 -zu J 1  - z (u-2)  
T(u,Z)=-- 

22 22 

, 
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For u close to 1, T(u ,  z )  has dominant singularity at p(u)= l / (u  +2). The conjugate 
root at z = l / (u  - 2)  introduces only a small perturbation. Using a natural extension of 
the proof of Theorem 3.2 adapted to a= - 1/2, we can derive a Gaussian limit 
distribution for this ~ a r a m e t e r . ~  

Unlabelled structures. Unlabelled constructions like set, multiset or cycle lead to 
schemes that involve the component generating function taken at points of the form Z I  

(see Fig. 1) .  Under frequently satisfied conditions, the terms C(z') ,  with 122, only tend 
to modify (additive or multiplicative) constants in singular expansions of generating 
functions. This situation is well known in graphical enumerations [16]. 

Theorem 5.7. Consider the probability distributions dejined by the bivariate generating 
function 

which corresponds to an unlabelled cycle construction. Assume that C ( z )  is 1-regular, 
and also that the smallest posithe root p of the equation C ( x ) =  1 satisfies p < 1. Then the 
random variable 52, associated with the Pn,k has me& pn  and variance G: that satisfy 

pn - c ln  and 0,' - czn (n + +a). J 

Furthermore, 52, converges weakly to a limiting Gaussian distribution, and it admits 
exponential tails. 

Proof. The condition p< 1 implies that P(z,  u )  is driven by its first term, namely 
log(1 -uC(z ) ) - ' .  From this same condition, we see that each of the remaining terms 
in expansion (25) is analytic in a polydisc IuI < 1 + E  and IzI d p + E  for some fixed E > 0, 
where we can also impose the conditions ( p + ~ ) ( l  + E ) <  1 - E .  Moreover, for 122, 
JC(z ' ) l< K .  lzl' when IzI < p  + E  for some constant K .  Then we have 

Actually, stronger multivariate normal distribution results are known for simple families of trees, as can 
be seen through Lagrange inversion and reduction to multinomial distributions. The present example is 
only meant to illustrate a simple application to certain generating functions with algebraic singularities 
when the variables u and z need not be 'separated'. 

In this formula, d(n)  represents Euler's totient function, i.e. the number of integers in the interval 
[ I ,  n -  I ]  that are coprime to n. 
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Thus, analytically, P ( z ,  u )  behaves in the vicinity of u= 1 like its first term, to which 
Theorems 3.2 and 4.3 can be applied. 0 

Example 5.8 (Cyclic compositions of integers). Positive integers have generating 
function A(z)=z/(l  -z) ,  which is 1-regular, and reaches 1 for p = 1/2, so that the 
conditions of the theorem are satisfied. In accordance with (25), the bivariate generat- 
ing function for cyclic compositions, with variable u marking the number of sum- 
mands, is 

Thus, the distribution of summands is asymptotically Gaussian, and it admits ex- 
ponential tails. The mean and variance of R, are 

p,, - i n ,  a: - i n .  (26) 

Note the similarity with the distribution of summands in linear compositions of 
integers, with generating function 1/(1 -uA(z)) ,  which leads to mean and variance of 
the same asymptotic form ('26). 

\ 

The analytic schemes corresponding to the unlabelled set and multiset construc- 
tions are, respectively, 

exp( (- l ) l i  UI C(z')) and exp( C(zl)). 

131 121 

Both formulae combine the exponential exp(u(C(z))) that we find in the labelled case 
and factors involving the { C ( Z ~ ) } ~ ~ ~ .  If C(z) is of logarithmic type, the Gaussian limit 
still holds true, as shown in [12]. A modification of the proof of Theorem 4.4 also 
permits us to extend the exponential tail result to this schema. 

Theorem 5.9. Consider the probability distributions corresponding to the set and the 
multiset schemas: 

If C ( z )  is logarithmic and has a radius of convergence strictly less than 1, then the 
random variable R, with generating function p,(u) is asymptotically normal and it admits 
exponential tails. 

Example 5.10 (Polynomial factorization). It is well known that the distribution of the 
number of prime factors in a random integer from the interval [l, n] is asymptotically 
normal. This is classically known as the Erdos-Kac theorem. As a consequence of 
Theorem 5.9, the authors derived in [12] an 'Erdos-Kac theorem' for polynomial over 
finite fields: The number of irreducible factors in a random monk polynomial of large 
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degree over GF(q) tends to a limiting Gaussian distribution. An exponential tail 
property also holds in such a case. 

6. Conclusion 

Many combinatorial schemes are now known to be at the origin of limit distribu- 
tions, with the simplest cases leading to Gaussian, Poisson geometric or other classical 
distributions. The nature of laws arising in nonrecursive structures generated by 
sequence, cycle and set construction is, at present, better understood and we can 
foresee a typology emerging from the discussion of [9,27]. 

At the same time, results about counting and mean values are even decidable for 
suitable classes of combinatorial problems, as shown in [ll]. In a related context, that 
of the so-called zero-one laws and asymptotic laws, large classes of enumerative 
problems in logic are known to have asymptotic distributions in the limit (the limits 
are often from the set (0, l}, whence the name). We refer the reader to the works of 
Lynch [21], regarding random-mappings, or Compton [ 6 ] ,  regarding general logical 

The classification of distributions that arise in recursive structures represents an 
appreciably more difficult problem. For instance, path lengths in plbnar trees and in 
binary search trees are described by the two functional equations 

frameworks. < 

aP(z ,  u ) - ( P ( z u ,  u) )2 .  
Z 

P(2,  u)=  and -- 
1 - P ( z u ,  u)  aZ 

It is only for the first equation that we have an expression for the limit law since 
Louchard [20] derived a representation involving the Airy function. The second 
problem - which is identical to that of the distribution of costs for Quicksort - still 
represents an intriguing and (partly) open problem [17,23,25]. 
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