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ABSTRACT

We informally review some of the algebraic and
analytic techniques involved ·in investigating the pro­
oerties of a combinatorial process that appears in very
,l':erse contexts in computer science including digital
sorting and searching, dynamic hashing methods, communi­
cation protocols in local networks and some polynomial
factorization algorithms.

I - INTRODUCTION

The basic combinatorial process which is studied
here is the following : one starts with a finite set of
individuals ; in the first stage each individual tosses
a coin ; individuals are then split into two groups :
the "heads" group and the "tails" group. Each subgroup
then recursively repeats the process until some termi~

nation condition is met. Various control policies are
conceivable. The simplest ones are :

- halting,the process for groups that are of size
I.

- halting the proces~ for subgroups that reach a
size l~ss than or equal to a fixed integer b.

One may also consider situations where biased or
unbiased coins are used, cases where dice of various
configurations are used, or situations where the set of
individuals varies dynamically.

The succession of splittings can easily be desc~i­

bed in the form of a tree. A group X created at some
stage of the partitionning process is represented by a
node in the tree ; if X is split into ~ (the heads
group) and XT (the tails group), then Xli is represented
as the left son-node of ~ and XT is represented as the
right-son node of X. Figure I represents a possible par­
titionning tree when the process is stopped on subgroups
of size I.

Figure I : A recursive partitionning tree on the set
{A,B,C,D,E,F}. Terminating subgroups are represented by
::·.... :.-~res.
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This process appears to underlie a large number of
computer algorithms which we now mention

(i) Collision resolution in networks : In a decentra­
lized network, several users have access to a common
channel which they use to broadcast information and on
which collisions that occur have to be resolved. Basi­
cally, when a collision occurs, colliding senders sepa­
rate themselves into two groups (using a stochastic
decision procedure). Members of the first group first
recursively resolve their conflicts and broadcast, and
members of the second group wait until the channel is
free to transmit. These protocols are considered for
instance in [Ca 79); [TV 80), [FH 81).

(ii) Digital sorting and searching : The prototype is
digital sorting (see [Kn 73J for several applications)
to sort a set of binary sequences, one first separates
them into two groups depending on the values of their
leading digit. One then recursively proceeds to recurs i­
vely sort each of the two groups on their next leading
digits. The algorithm is isomorphic to the construction
of a ..aigital search tree -9r "trie"- op. a set of binary
sequences.

(iii) Dynamic Hashing : Such algorithms are used to ma­
nage large files kept on secondary storage ([Li 78J,
[La 78], [FNPS 79]). Larson's dynamic hashing algorithms
starts like classical hashing.Fith a fixed page capacity
(or bucket size) b. When a bucket overflows, the hashing
function is refined locally on this bucket, and two new
buckets are allocated. A tree -called the index- retraces
the history of successive splittings and is used to gua­
rantee direct access to records on the secondary storage
device.

(iv) Polynomial Factorization : Some recent developments
of Berlekamp's Factorization algorithm for polynomials
over a finite field due to Cantor, Zassenhauss [CZ 81]
and Lazard [La 81 J are based on an iterative construc­
tion of primitive idempotents. The construction is a
refinement process that can be shown equivalent to the
generation of a partition tree with biased probabilities
on splittings. .

Most of the characteristic parameters of these
algorithms are expressible in terms of classical para­
meters of the corresponding partition tree, like : path
length, number of nodes, height, number of unary nodes,
left path length... We thus examine in the next sections
general methods for the analysis of these parameters.

2 - ALGEBRAIC METHODS

Developments in this section permit, in a large
number of cases, to determine in a simple, and quasi­
automatic, way generating functions associated to para­
meters of partition trees. We use the classical repre­
sentation of finite sets of (finite or infinite) binary
sequences by trees. With O's corresponding to a left
branching edges and a I's to right branching edges, the
tree of Figure I would be associated to any set of se­
quences of the form :



A=ll}' ..
D = 10 •••

B
E

011. ••
1100 .••

C 1101. •.
F 010 ...

The a operations are applied to generating poly­
nomials interpreting these polynomials as multisets.
For instance

i
I

In the sequel, we adhere to the notational con­
vtnyions of (3), (4), representing valuations on the
P s by lower case letter, corresponding multisets by
script letters and associated generating polynomials by
capital letters. Whenever convenient, we also identify
multisets and generating polynomials that encode them.

I (s) (s) b l' pes)Lemma. : Let v(s)' w( '+l)e two va uat10ns on . The
valuat10ns on pps defined by

a(s)(w) = v(s)(w) + W(s)(w)

b(s+I)(w) = v(s) (wIO) . w(s)(wIO)(1)

We also introduce the sets of variables

UEW

x(s) = {x /u E B(s)} . X = U x(s)
u 's

We start with trees associated to binary sequences
of a fixed-length s. For each s ~ Ot we let a l (1+2xOO+4xOlxI0) = 1+2xIOO+4xIOlxII0

B(s) = {O; I}s pes) = (P (B(s».

(p(s) is the power set of B(s».

peW) = n xu '

which are used to t~Jod~ corresponding sequences. A set
of sequences W E P w1ll be represented by the
product

and a family n of elements of pes) is represented by the
generating polynomial

L: p(W).
WEn

For insta~ce, when s
by the polynomial

(2)

2, n p(2) is represented

have corresponding generating polynomials

A(S)(X) = v(s)(X) + W(s) (X)

B(s+I)(X) = 0o(v(s) (X» • a
l

(W(s) (X»

I . I . p(s). hI'n part1cu ar S1nce 1S t e mu t1set that
corresponds to the constant valuation pew) = I, we have

whence the recurrence

peW) = p(w/O) • p(w/I)

(5)

(6)

p (s) (X) = IT (I +x )
uEB(s) u

As a consequence of Lemma 1, if

a(s+l)(w) = ,,(s) (w/O) + w(s) (wll)

p(s+I)(X) = a (p(s)(X»
o

with p(O)(X) = I + X
S

(s denoting the empty sequence). Thus by recurrence the
expected result

(3)

(4)

M = L: (s) ll(W) • W
WEP

is represented by the polynomial

M(s)(X) = L:, ) ll(w) pew).
WEP"S

l+xOO+XOI+XIO+XII+XOOXOI+XOOXIO+XOOXII+XOIXIO

+xOlxll+xIOxll+xOOxOlx10+xOOxOlxll

+xOOx10x11+xOlxIOxll+xOOxOlxIOxll

(1 +xOO ) (1 +x
O

I) (l +X
IO

) (1 +x
l1

) •

Similarly, a multiset on pes)

which appears to be equal to :

In order to express recurrences based on the size
s of binary sequences we introduce the functions

we have

a(s+I)(W)

with normal extension to sets and multisets.

For S in B(8) with s > 0, we introduce the dual
operations S/O, SI1 by

(7)

a (v(s)(x»a (p(s)(X»o I

+ ao(p(s)(X» • al(w(s)(X»

so that

A(s+ I) (X)

n (s) ""[x ] M (x) = L.J(s) l.l (w)
WEP
Iwl=n

The power of Lemma I and of (6), (7) comes from
the fact that most parameters of interest on trees are
definable as additive-multiplicative combinations of
similar or simpler parameters on subtrees, so that a
large number pf equations can be writte~ systemat'ically.
Also these equations on multivariate generating func­
tions yield more classical generating functions by
various sorts of morphisms. Starting again from (3),
(4), and denoting by M(x) the polynomial obtained from
M(X) by replacing all subscripted variables by the
variable x, we see that

a . B(s) + B(s+l)
1 •

w/l =L: S/1
SEW

. a I (u) = I u

a
O

: B(s) + B(s+l)

defined by

S/O = {u} if W Ou, S/O 0 if W = lu

S/l {u} if W lu, wll 0 if W = Ou,

with exten.s"ions to sets ; for W pes) we haveE ,

so that

W/O = L: S/O
SEW
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where Iwl is the number of sequences in wand f(x)
is the coefficient of x

n
in f(x).

Equations obtained in this way are much simpler
and can usually be solved by iterating the recurrence
on s. We give below a few examples :

(lLCE (s)
n

5. Path length is another parameter of interest
since it is related to the time necessary for sorting
a set of sequences by constructing the associated tree.
From the classical inductive definition of path length,
we find equations similar to those of part (4) above,
and solving one has for the cumulated path length of
trees constructed on n binary sequences :

(8)
ZS

(I+x)

1. The univariate generating polynomial of pes) is
from (5)

p(s)(x)

(s) (s) .
For a parameter 1T on P ,we def~ne the cumu-

lative values

For a fixed cardinal~ty n, letting s tend to
infinity, one notices that average values of most prac'­
tical parameters on trees tend to well defined limits.
These limiting values coincide with the average values
of the corresponding parameters on trees constructed
from infinite sequences, under the usual statistic on
{O;lt) (The trees are finite with probability 1).
They are also useful as they constitute good approxi­
mations to the finite case when n«2

s
and are them­

selves easier to estimate by the methods of section 3.
I + .E (s) x

uEB u

P (s+ 1) (X)
k+l

.and accordingly the number of n-subsets of B(s) is

2s (2 S

)[xnJ (l+x) = n

2. Let p~s) be the family of sets whose associated
tree has he~ght ~ k. Clearly

P (s)
o

so that

(9)

I: 1T (s) (w)

lwl=n
(15)

and we are interested in computing the quantities (of
which we assume the existence) :

Lemma 2 : The average values of parameters correspon­
ding to infinite sequences have exponentiel generating
function given by :

(16)lim
s-tro

Cl 0)

3. Similarly if the tree growth is stopped when
groups have size ~ b, the probability that the height
is ~ k for a tree for)lled with n sequences is

1 (2
S

-
k») Zk

s Bb (x)

(~ )

and the probability that a set of n sequences of length
8 gives rise to a tree of height ~ k is :

where

B (m) (x)
b

1 + + •••
b-

x .(11) n!
lim n(s) (~s) •
s-tro 2

4. The previous examples showed the use of the pro-
duct rule of Lemma 1. A large number of parameters of
interest in applications are defined as additive and
multiplicative combinations. The simplest example is the
statistics of the total number of nodes in the tree cons­
tructed from binary sequences of fixed length. This para­
meter no(w) is defined by the recurrences

no(O) (w) = Iwl

n~(s+l) (w) noes) (w\O) + noes) (w\!)

in accordance with Lemma 2.

one has for the associated exponential generating
functions

v(w/O) . w(w!O), (17)

exponent}al generating function
I is eX and one has

In particular the
of the parameter pew)

eX ::::: lim (1~)2S
s-tro 2

Lemma 2 used in conjunction with Lemma 1 permits
a direct calculation 6f generating functions associated

ill (00)
to parameters defined on ':J (B ) (£1 nite se,ts of
infinite sequences). So that, if :

a(w) = v(w/O) + w(w!l) ; b(w)

• (12)

+ 1 -.olwl,O - 0lwl,1 '

whence the equations

NO(s+l)(x) = 2P(s) (x) NO(s)(x) + p(s+I)(x)

The equation can be solved by iteration, and we.
find

A(00) (x)

(I8)

For defined parameters, the trans-
lation schemes (17), 18) lead to functional difference
equations of the form

<flex) ::::: a(x) <p(~) + b(x) • (19)
\L./
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that
These can normally be solved by iteration, so

whose Taylor coefficient have an explicit form. Some
examples follow :

(25)

cS' + 0 <5
Iw'I,O Iwl,O Iw'I,O

cS Iwl,O

I(w\O, w'\O) + I(w\l, w'\I)

+ 1

with the corresponding computation time

ICw,w')

w () w'

(ii) Extension to functions of several sets of binary
sequences n applications, these occur for instance in
algorithms for performing set-theoretic operations (see
[TP ] for several examples). Thus using trees to
compute the intersection of two sets w, w' by the
relation :

(20)

Aecx , (ZO) further

k-1
<flex) :c :E b(x2-k) n a(xZ- j ) .

k~O j=O

<flex) = :E Ak b(xZ-k) exp(c(I-Z-k)x)
k~O

In tge frequent case a(x)
simplifies to

~his equation can be solved by techniques described
above.

1. The ,cumulative distribution of height in trees
corresponding to Example 3 of the finite case, becomes
in the infinite case :

[=~] ~:l<)2k
where

we find for the bivariate exponential generating
fonction :

I(W) (x,y) (26)

which agrees with the classical result on occupancy
problems in probability theory.

~(x)

b
x+-
b!

(21) (iii) Variances and higher moments can also be derived.
With q a formal variable, we have for external path
length :

e(w) e(w/O) e(w/l) Iwl -olwI,l
q =q q q q

whence for the bivariate generating function of proba­
bilities the recurrence

2.

<fl (x)

External path length leads to the equation

x/2 x x
2e <fl 2 + x(~ -1), (s) s-I) 2

L (z;q) = (L (qz,q» + q(l-q)z •••

Example 1 above appears in the analysis 6f exten­
dible hashing [FS 82J ; Example Z is a cla~sical result
[Kn 73J.

3.1 - Multiplicative valuations

Purely multiplicative valuations on trees lead to
generating functions that have product forms. A typical
example is tree height with (9), (11), (Zl),
(Z4)., The saddle po~nt method well suited to the
derivation of limit distributions (whence averages and
variances). The starting point is Cauchy's integral
form of coefficients of analytic functions :

(22)

which when solved by (20) (21) leads to the two equiva­
lent forms

n L (l-(l-Z,-k) n-1)
k;::::O

t (n) l:~iPp
p=2 p 2P -1

LCE (00)
n

For instance if h (w) is I if the height of the
tree associated to w isms m and 0 otherwise, we have

(27)f fez)
2irr r

which can be put under the form

I f eh(z) dz
Zirr

r

The saddle point heuristic (see [He 78J)
consists in selecting for r a contour that crosses some
saddle point of h(~), i-e a point s such that h'es) °

In the case of integrals of the form (27) with f
an entire function depending on a parameter, a circle
centered around the origin and crossing the saddle
point of smallest modulus leads to good localization
properties of the integral (27) : the main contribution
is shown to come from a small fraction of the contour
around the saddle-point ; there local expansions are
used to approximate the integral.

One proves in this way [FS 82J that the probabi­
lity rr: of having a tree of height s m with n keys when
sub trees of size s b are grouped in a single leaf (page)
satisfies :

(23)

(24)

extensions of these

(m)

(I k m-k )k+p q x

V(ro)Cpx) + ePx W(OO) (qx)

(00) (00) (00)
B (x) = V (px) W (x)

m

n
k=O

Amongst the several
algebraic methods, we u.~a~~va

A(OO)(x) =

(i) Translation schemes corresponding to a biased
distribution on bits of sequences. For instance, in the
infinite case, if p. and q a~e the probabilities of zeros
and 1 respectively, then (17) translates into:

H(OO) (x)
m

whence

H(OO) (x)
m

This result is used in [FS 82J to analyze a poly­
nomial factorization algorithm. The methods extend to
alphabets of cardinality larger than 2.
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m
'IT

n

with

In the case of

-xl-k
T(x) e - 1,

k~O

(28) one finds

This function has a double pole at s
poles at

and S(n) a bounded fluctuating function of n. This for­

mula shows in particular that has a strong peak

around (1~) 10g2n, with periodicities (in n) appearing
in the prooability distribution.

T*(s) := - I < Re(s) < 0

o and simple

s = k E: Z/{O} .

(I-a)n ~ e-na

The classical way of dealing with such sums is
first to introduce an exponential approximation, using

1)

L r (2ik'IT) e -2ik'IT(10g2n ) + 0 (x-M)
k;>::O 10g2

+

-k -1
L(e-xlog (I-2 )

Hence,

T(x)

sex)

Let us last mention that the results of the expo­
nential approximations (30) coincides in a large number
of cases with expressions derived by assuming the se­
quences to be generated by a Poisson process.

the sum being a Fourier series in logzn.

Such periodicities are of frequent occurrence in
the analysis of algorithms and they have here a clear
origin in regularly spaced singularities of functions

of the type (1_2 S )-I. An alternative derivation, which
avoids the exponential approximation is based on the
observation that is itself a harmonic sum :

which can be dealt with by the preceding techniques,
l~ading sometimes to simpler derivations.

(29)

(30)

(31)

An expression like (30)belongs to the category of
of the general form

L: [(1-2- k) n - 1]

k~O

S
n

T
n

valid for small a. Thus one first approximates S by:
~ n

L: (e-n2 -1)

k~O

F(x)

Examples of additive valuations have been given
when discussing statistics on the number of nodes and
external p~th length. The algebraic paradigm is summa­
rized by equations (19), (20) ; results appear as sums
of which (22) is typical. Using thus path length as an
illustration, the problem is to approximate sums like

To determine the asymptotic behaviour of (31) for
large values of x, following [Kn 73J, one computes the
Mellin transform of F :

necessary to resolve n
network

The first application concerns the stack protocol
for resolving collisions in networks sharing a single
communication channel :

We have made an attempt at summarizing the main
techniques that can be used to-analyze a general parti­
tionning process of computer science. We now conclude
by informally mentionning some typical applications.

4 - APPLICATIONS

Theorem 1 [FFH 82J : The time
collisions in an open stack

an = An + n~(n) + O(~)
logn

(32)

(33)

dx

which in this case factorizes as

i-e as the product of the Mellin transform of the fun­
damental function and of a Dirichlet series related to
the amplitudes and phases of the harmonics. As is known
the singularities of F*(s) -which are easy to determine
using the factor form (33)- are related to the terms in
the asymptotic behaviour of F(x) at 0 and at 00 : a com­
bination of the Mellin inversion theorem with Cauchy's
residue theorem shows that

F(x) = L: Res
where ~ is a fluctuating function of small amplitude
arid mean value o.

+ remainder of smaller order (34)

(36)

The exponential generating function of the a
satisfies a functional equation of the form n

a(z)

where A is the Poisson anival rate on the channel. The
interest of this non-local difference equation is the
non-commutative character of its iteration group.

(35)

where the summation is extended to poles of F (s) in a
stripe. 'Equation (34) is based on the inversion theorem
for the Mellin transform

f ~+i;* (s) x- s ds

C-l.OO

F(x)
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Theorem 2 [Kn 73] : The total nwnber of bit inspec­
t~ons ~n radix-exchange sort applied to n uniformly
distributed binary keys satisfies

E nlog2n + (.-::L- - l) nn 10g2 2

l: r(2ik~) e-2ikrr 10g2 n + o(n)
k;tO 10g2

Theorem 2 and companion results show that radix
exchange sort is in the class of quasi-optimal sorting
algorithms.

[FFH 82J Fayolle G., Flajolet P., Hofri M.
"An Evaluation of a Stack Based CSMA protocol",
in preparation (1982).

[FH 81] Fayolle G., Hofri M.
"On the Capacity of a CSMA Channel under Stack­
Based Collision Resolution Algorithms"
Manuscript (1981).

[FNSP 79JFagin R., Nievergelt J., Pippenger N.,
Strong H.R.
"Extendible Hashing - A Fast Access Method for
Dynamic Files",
ACM Trans. on Database System, 4 (1979),
pp. 289-344.

Theorem 3 [FS 82] : The expected size of the directory
of an extendible hashing file of n elements satisfies :

_. I 1+lib I + lib
Sn = Q«(1 +t;)log2n) n + 0 (n )

[FS 82] Flajolet P., Steyaert J.M.
!lA Branching Process Arising in Dynamic
Hashing, Trie Searching and Polynomial
Factorization",
in 9th ICALP, Aarhus (1982).

blog2

where Q is a periodic function with Fourier coeffi·­
cients

[La 78J Larson P.A.
"Dynamic Hashing",
BIT, 18 (1978), pp. 184-201.

[He 78] Henrici P.
"Applied and Computational Complex Analysis",
Vol. 2, J. Wiley, New York (]978).

[L~ 81] Lazard D.
"Factorisation des Polynomes",
in 4eme Journees Algorithmiques, Poitiers
(]98!), also submitted for publication.

[Li 78] Litwin W.
"Virtual Hashing : A Dynamically Changing
Hashing",
in Proe. Very Large Data Bases conf., Berlin
(1978), pp. 517-523.

(b+ 1) !-1and

with

S1/b r (--b1)qo == -
blog2

This result shows a,nop-linearity of the growth
of the index which is very perceptible for small b, in
which case compromise chaining solutions should be used.

The last result is relative to the "idempotent
algorithm" [CZ 81], [La 8I] for factoring a polynomial
over a finite field.

Theorem 4 [FS 82J : The iderrrpotent algorithm factorizes
, apolynofnidl with n irreducib le factors in

[TV 80] Tsybakov B.S., Vvedenskaya N.D.
"Network Theory and Large Systems",
in Problemy Peredachi Informatsii, ]6 (1980),
pp. 80-94.

H
n

21og
2

n

2 2 -I + 0(1)
10g2 (a +(3 )

I I
-+­2 2p

s = l +-1.­
2 2p

"main" steps.

This result is a refinement of bounds given in the
original papers. The interest of the algorithm when
used on polynomials over GFp is to avoid an exhaustive
scan over the field elementp which leads to conside­
rable improvements over Berlekamp's algorithm for
large q.
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