
A N A L Y T I C V A R I A T I O N S O N T H E
C O M M O N S U B E X P R E S S I O N P R O B L E M

Philippe Flajolet Paolo Sipala
INRIA, Rocquencourt Universit~ degli Studi di Trieste

F-78150 Le Chesnay (France) Via A. Valerio, 10
34127 Trieste (Italy)

Jean-Marc Steyaert
LIX

Ecole Polytechnique
F - 92128 Palaiseau (France)

Abstract. Any tree can be represented in a max/ma//y compact form as a directed acyclic graph where
common subtrees are factored and shared, being represented only once. Such a compaction can be ef-
fected in linear time. It is used to save storage in implementations of functional programming languages,
as well as in symbolic manipulation and computer a/gebra systems. In compiling, the compaction prob-
lem is known as the "common subexpression problem" and it plays a central r61e in register allocation,
code generation and optimisation. We establish here that, under a variety of probabilistic models, a
tree of size n has a compacted form of expected size asymptotically

n
C . - -

ogWi- '

where the constant C is explicitly related to the type of trees to be compacted and to the statistical
model reflecting tree usage. In particular the savings in storage approach 100% on average for large
structures, which overperforms the commonly used form of sharing that is restmcted to leaves (atoms).

In troduc t ion . A tree can be compacted by representing occurrences of repeated subtrees only
once. In that case, several pointers will point to the representation of any common subtree,
and the original tree becomes a directed acyclic digraph also called a dag. The process itself is
diversely known as "sharing" or "common subexpression recognition". Obviously some storage
is saved in this way, and our purpose is to estimate the expected gain attained by such a
representation. (See Fig. 1.)

Trees that we consider are plane rooted trees [21] as commonly occur in a variety of contexts:
in Lisp systems or as a representation of expressions in compiling; as syntax trees in parsing and
code generation or structured programme editing; as the representation of terms in symbolic
manipulation and computer algebra systems.

In the programming language Lisp [24], all programmes and data are represented in the
form of "symbolic expressions" (S-expressions) having a binary branching tree structure. Under
the tree representation, the external nodes are labelled with primitive symbols or atoms while
the internal nodes, that are unlabelled, only reflect the hierarchical structure of the expression.

In most Lisp implementations, external nodes of (S-expression) trees are kept separately,
in a storage area called "atom space", and multiple instances of them are stored uniquely.
This is a restricted form of sharing that presents obvious storage saving advantages. Following
an original suggestion by McCarthy, this sharing scheme can also be extended to internal
nodes. Shared representations of Lisp trees introduce greater complexity in the management

221

/ \ .

Ci$ •

:i:

Figure 1. Compacted representations corresponding to: (i) an intermediate syntax tree for
the assignment statement a[i, j] :-- b[i, j]--F c[i, j] with x[i, j] being an abbreviation for x [i - 1 ÷
(j - 1) * n]; (ii) a tree representation of d sin(x 4 exp(~/1 -- x4)).

of memory, but also provide greater savings in the use of storage. Therefore, the extended
sharing scheme was adopted in some implementations of Lisp [19], [32].

The syntax structure of a programme is also described by a tree. Such a representation
is invariably used in parsers and structured editors. For instance, the syntax oriented Mentor
system [12] uses some amount of sharing to save space when storing the representation of a
programme on disk. In another context, common subexpression recognition leads to improved
register allocation efficiency, a well known fact in compiler design [1]; this in turn results in
code that is faster to execute. Alternatively, recognition of common programme fragments is
used to generate more compact compiled code by some compilers.

Unification itself, which is at the heart of logic programming systems is usually implemented
using sharing in order to avoid the combinatorial explosion that would arise from repeated
duplications of subtrees.

In a related context, a symbolic manipulation system like Maple [8, 7] manages storage using
pointers and hashing in such a way that subexpressions exist uniquely in main memory. With
this representation, the effect of applications of expansion rules that cause subtree duplications,
like distributivity or symbolic differentiation, is somewhat decreased: For instance in [18], it is
shown that symbolic differentiation has expected time and storage costs of O(n 3/2) while the
cost reduces to O(n) when sharing is used. Furthermore, in the Maple system, functions have a
"remember" option (memo functions) and in conjunction with sharing, this feature appreciably
improves time performances for many applications. This can be seen when computing, for
instance

d 3 sin(x4e 1Vi-:~_~).
dx 3

There, a large number of duplicate computations take place unless some sharing is used. The
Macsyma system also allows the user to save expressions in a shared format- this is the "Fas-
save" command [23, Chap. 10].

All these applications demonstrate the interest of sharing subexpressions or subtrees in
a diversity of contexts. It thus seems of interest to be able to quantify under well defined
statistical models of tree usage the gains to be expected from tree compaction.

Each tree has a maximally factored representation as a dag which is unique up to iso-
morphism. The size of that dag representation, measured by the number of its nodes, will
be referred to here as the compacted size of the tree. The extremal cases for the cost of this
structure are easy to characterize. In this paper, we consider trees with a fixed finite number
of node types so that node degrees are bounded by some constant. Then, the compacted size
of a tree with n nodes lies between O(logn) and O(n). Our objective is to prove under a large

222

class of statistical models, some simple and others closer to real-life applications, the following
fact.

The expectation of the compacted size of a tree with n nodes is asymptotically

= (1 + o ()) (1)

where the constant C ~ is explicitly computable from a specification of the class of
trees and the associated statistical model J~4 which is used.

In the particular case of binary trees under the uniform model (all trees with n internal nodes
being taken equally likely), the value of the constant is

C = 2 ~ -~ ~ 1.3285649405.

For instance approximation (1) is within 2.5% of the exact expected value when n = 500. The
sublinear estimate (1) shows that the compaction saving asymptotically approaches 100% for
large trees, when "full sharing" is used, a fact first noticed by Casas et al. [5]. This situation is
to be contrasted with the fact that sharing limited to atoms (i.e., terminals or leaves) only leads
to an average gain factor that remains bounded away from 100~o. For practical considerations,
a closer examination is called for since expression (1), though being o(n), is only slightly
sublinear. It is precisely the object of this work to prove the basic claim (1) with its curious
growth of n / o ~ , and also to provide ways of estimating the constants involved.

P l a n of the pape r . Section 1 introduces a brief discussion of algorithmic aspects of tree
compaction, and it also serves to introduce some of the necessary concepts. Our objective is
of course to justify the very general claim presented above. To do so, we first discuss in some
detail the analysis of binary trees under the random uniform model (Sect. 2, 3). The analysis
itself decomposes into an "algebraic part" providing exact enumerations through generating
functions (Sect. 2) followed by asymptotic analysis (Sect. 3). The unusual form of the result
is obtained through singularity analysis of a generating function, and the key lemmas are also
given in Section 3.

Section 4 discusses a general class of models called "branching models" which include stan-
dard combinatorial models, probabilistic models from the theory of branching processes, and
a formalisation of some empirical models suggested by statistical evidence. The exact enu-
meration results form the contents of Section 5, and they are established by an extension of
the corresponding algebraic methods employed for binary trees. Section 6 contains some brief
indications that justify our basic asymptotic claim (1) for such general models. Final remarks
on this type of analysis are given in Section 7.

1 Algorithmic Aspects of Tree Compaction

Constructing the factored representation of a tree is often considered to be a computation-
ally inefficient process. However, procedures which dynamically maintain a global "unique
identifier" table allow the compacted form to be determined in time ranging from O(n 2) to
O(n). Such procedures have been part of the folklore since the 1970's (see the "value-number"
method in compiling, [1, Sec. 5.2], and especially the general discussion of [13]).

Proposition 1 The compacted form of a tree can be computed in expected time O(n) using a
top-down recursive procedure in conjunction with hashingj and in worst-case time O(n) using
a bottom-up iterative procedure based on pseudo-sorts.

223

function UID(T : tree) : integer;
begin

if T = nil
then return(O)
else

triple := <root(T),UID(left(T)),UID(right(T))>;
if Found(triple,Table)

then return(value_found)
else counter := counter+l;

Insert pair (triple,counter) in Table;
return(counter)

fi
fi

end;

Figure 2. The main procedure UID computes "unique identifiers" for all subtrees of a given binary tree
T. It is assumed that the global counter is initially set to 0; Table is a global list that maintains asso-
ciations between triples and UID's that have been already computed (Table is initially empty); root (T)
denotes the symbol that 'labels the root of tree T.

PROOF. Two labelled trees are isomorphic iff their planar representations coincide and nodes
at corresponding places have identical labels. Given a tree t, nodes of $ can be partitioned into
equivalence classes: Two nodes sl and s2 in t are equivalent iff the subtrees of t rooted at Sl
and s2 are isomorphic. The compacted (dag) representation of I is a graph G, such that: a
node ~ of G is an equivalence class of nodes of t; there is an edge (~1~2> in G iff there are nodes
of t, sl E ~z and s2 E ~2, that are connected by an edge in t.

Computing the partit ion of nodes of t into equivalence classes reduces to associating with
nodes (and their dangling subtrees) "unique identifiers" (uid's), two nodes being equivalent iff
they have the same uid. Figure 2 describes a top-down procedure, UID that determines uid's. I t
is specialised to labelled binary trees which we may take in a standard Lisp format, an example
b e i n g (- (* (+ x y) (+ x y)) (* (- x y) (- x y))) .

The procedure is essentially a postorder traversal that maintains a global association table.
In order to determine the uid of (f u v), determine the uid's i and j of u and v. If the triple
<f i j> already exists in the global table, then the corresponding (already allocated) unique
identifier is returned; otherwise, a new unique identifier is allocated, and the table is updated.
Atomic symbols are treated in a similar fashion.

Optimising that procedure is a data structure exercise. If the global Table is maintained
sequentially, then the basic procedure is of complexity O(n2), and the complexity would reduce
to O(n log n) if some balanced search tree structure were used. In practice, hashing will reduce
the complexity to an average of O(n). Finally, a more complex bot tom up procedure with
worst-case running time O(n) can be found, based on pseudo radix sorting techniques (see
e.g. [13]) but it seems to be mainly of theoretical interest due to larger implied constants and
an intrinsically non recursive structure. •

2 Exact Enumerat ions and Generat ing Funct ions

In this section, we analyze the expectation of the gain brought by tree compaction applied to
the class B of (unlabelled) binary trees. All such trees with n binary nodes are taken equally
likely. This constitutes one of the standard models in the analysis of random tree algorithms

1 (2n~ [21]. I t is well known that there are Bn --- ~ ~ n i binary trees with n internal binary nodes.

224

(We refer to n as the size of the tree, and generally we use]tl to denote the size of tree t.)
Each of these trees is thus taken in the model under consideration with probabi l i ty 1/Bn. The
analysis tha t follows aims at exact results, the corresponding asymptot ic est imates being the
subject of the next section.

The major technique used here is tha t of generating functions. If fn is a sequence of
numbers, then its (ordinary) generating function, gf, is by definition

E f.z-,
n>_0

and [zn]f(z) denotes the coefficient, fn, of z n in f(z). As is well known the gf of the Bn is

1 - x/1 - 4z

n>_0

Let Kit] denote the compacted size of tree t. We consider the cumulated quant i ty Kn =
~,K[t], with the sum extending to all b inary trees of size n, and seek an expression for the
expected value [(n = Kn/Bn. Observe tha t K[t] is also equal to the number of distinct subtrees
of tree t. Thus, let t ing Au,n denote the number of trees of size n tha t contain u as a subtree,
we get Kn = ~ e s An,n; accordingly for generating functions, we have K(z) = ~ueB Au(z).

T h e o r e m 1 The expected compacted size of a binary tree with n nodes has the explicit expres-
sion

6.,>1k>, k B,B°_k, w th B. =--!--1 ~ + l k n / . (z)

PROOF. We in fact determine the generating function of the Kn as

g (z) = • ~ Bp[x/1 - 4z + 4zP +1 - X/1 - 4z]. (3)
p_>0

This form of K(z) derives immediate ly from the determinat ion of Au(z), the gf of trees con-
taining the subtree u,

1 t
A~(z) = ~ h / 1 - 4~ + 4~t~j+l _ v ~ f _ 4~], (4)

which is itself based on a curious inclusion-exclusion principle.

We employ a two step argument: (i) by s tandard generating function techniques, i t is easy
to "overcount" trees containing k occurrences of a fixed tree u; (ii) from this, the exact count of
trees containing u at least once can be recovered using an inclusion-exclusion argument. Tha t
line of reasoning has the advantage of carrying over almost verbatim to much more general
random tree models.

Let Bn,l be the number of trees of size n having l external nodes. Clearly Bn,t = 0 if
l # n + 1 and Bn,n+l = Bn. The bivariate generating function of the Bn,t is thus

B(z, v) =_ y] B . , / z " = vB(zv). (5)
n,l>O

Consider now combinatorial configurations called k-marked trees which are trees with k dist inct
leaves marked. The number of such configurations of size n has generating function

1 0 t~ B ' z , c('~)(,~)=V, Fj~k (")1,,=.

225

By grafting, on marked leaves, occurrences of a fixed tree u (with size p), one obtains a second
type of combinatorial configurations called u/C-marked trees: These are trees with k nodes
marked, each of the subtrees dangling from the marked nodes being isomorphic to u. The
uk-marked trees have gf

1 0 k
D(~k)(z) = ~i. b-~k B(z, v)L=l(zP)k. (6)

We cla im--and delay the proof- - tha t the gf of trees containing pattern u as a subtree at least
once satisfies

Au(z) = ~ (- - 1) k - t D (k) (z) . (7)
k>_l

I f this is granted, then, by (6) and (7), we have

(--1) k-1 O k tv_lZPk, A~(z) = ~ k! B (z , v)
k>l

so that, by the Taylor expansion applied around v--1 to B(z, v), we get

A~(z) = B(z, 1) - B(z, 1 - zP),

a form which leads to (3) using relation (5) and the fact that K(z) = ~ ¢ ~ Au(z).
Now comes the inclusion-exclusion argument that justifies (7). It relates the enumeration

of uk-marked trees to the valuation au[t]. Let wu[t] be the number of times u occurs as a
subtree of t. Then, whether w = 0 or w > 1,

k - l (w) with w--wu[t], (8) ~ [t] = (-1) k

since in the first case the sum is empty and has value 0 and in the second case it is 1 by virtue
of the binomial theorem applied to (1 - 1)% By linearity of generating functions, we find

A~(z) = r (- 1) k - l D (k) (z) with D(k)(z) = r (w~[t]lzltl. (9)
k>_l tel3

Finally D(~k)(z) ---- D(~)(~), since a tree that has 0~ occurrences of ~ gives rise to (~) di~erent
u~-marked trees. (The binomial coefficient counts the number of ways of choosing k marked
occurrences out of a total of w.) Therefore Eq. (9) entails (7) and A,(z) has been found. •

Variations. A simple extension of the inclusion-exclusion argument that we employed also
provides the gf, written A~. (z), for trees containing exactly r occurrences of a fixed pat tern u,

A ~ ---- (2r - 2)! z lulr+r-1

(r -- 1)! (i - - 4z -t- 4zl~l+l) r-1/2"

Also, the gf A~ can be determined by top down recurrences through the relation

A,(z) = z l~t + zA~(z)B(z) + z(1 - A~(z))Au(z).

This quadratic equation simply expresses the fact that if u occurs within t, then- -boundary
conditions apar t - - i t is either in the left or in the right root subtree of t.

226

3 Asymptot ic Analysis from Generating Functions

It is known that the asymptotic nature of coefficients]n of a function f (z) is intimately
related to the asymptotic behaviour of](z) around its dominant singularities. (Dominant
singularities are singularities of smallest modulus.) There are several methods that can be used
to accomplish the "transfer" of properties of the function to the coefficients are: (i) Tauberian
theorems, (ii) Darboux's method, (iii) the singularity analysis approach of [16]. The first two
methods do not appear to be simply applicable, Darboux's method being even excluded by the
very nature of the singularity.

T h e o r e m 2 The expectation of the compacted size of a binary tree of size n satisfies

-Kn = = 2 1 + O (l ~ g n) .

The function K(z) is analytic in a larger domain than its definition implies. Analytic
continuation is a crucial ingredient in applying singularity analysis. The method which we use
is summarized by Lemma 2. It eventually relies on Cauchy's integral formula,

Kn = K(z) zn+l ,

the contour of integration coming close enough to the singularity in order to "extract" the
necessary information from the function's behaviour.

L e m m a 1 The generating]unction K(z) = ~n Knz" is analytic in the domain D defined by
]z I < ½ and z ¢ [¼, ½]. For z in the intersection olD and a sufficiently small neighbourhood o]
¼, as z --* 1, one has

co (,j ,)
K(z) = t / (1 - 4z) log(1 - 4z) -~ + 0 (11)

(1 - 4z) loga(1 - 4z) -1

,,,ith Co = 21oVE~/~.

PROOF. The proof starts from equation (3) in Theorem 1 by factoring out ~/1 - 4Z:

K(z) ---- ~2"-----7-4z ~ Bp[~/1 + up - 1] where up = up(z) = 14zP+I- 4z" (12)
p>0

Then, problems on K(z) are reduced to studying the function,

S(z) = E Bp[(1 + u p - 1 - ~]. (13)
p>O

A simple idea consists in observing that for fixed z near the singularity 1/4, two different
approximations apply, namely

U
1 1 / 1 - ~ = l + ~ + O (u 2) and v f l + u = O (v ~) ,

depending whether lul = o(1) or 1/M = o(1). In other words, there is a threshold hmction

1
p0 - p o (~) = log I1 - 4~1 (14)

227

and two different regimes need to be taken into account depending on the conditions p < P0 or
P >P0.

The rough analysis sketched above is sufficient to establish the analytic continuation result
for . f(z), whence for K(z) . A more detailed analysis reveals that the main contribution to K (z)
is due to the terms with p _> P0 in Eq. (12,13). It leads to the stated approximation of f (z)
and K (z) inside their extended existence domain. •

The last lemma of this section is borrowed from [16]. The proof is based on Canchy's
formula and it provides us with a means of translating each of the terms appearing in the
singular expansion (11).

L e m m a 2 (i). Let a and fl be real numbers with a ~ (0 , + 1 , + 2 , . . . } , and

g("'Z)(z) = (1 - z)" log z 1
l - z "

Then, the n - th Taylor coe~cient of g(~,~)(z) satisfies

n -1 -a 1
g(J) -= [z"]g("'~)(z) = r (- .) log~(1 + O(lo-~)).

(ii). Let h(",~)(z) be a function analytic in the domain A.,o = {z / !~1 < 1 + . and [Arg (z -
1)[_>0} for some ~ > O and O < ~. ~ Assume that, as z ~ l in Amo , for some reals a, fl,

Then, we have

h (a'z) (z) = O((1 - z)" log ~ 1_~1z).

h (~ ~'~> - [zn]h (a'#) (z) = O(n -1 -a log ~ n).

From Lemma 1 the normalised function K(~) is singular at 1. The first part of Lemma 2
applies to the main term of its asymptotic expansion (11) with a = -½ and fl = - 1 . The error
term O(.) of (11) is similarly subjected to the lemma with a = _ 1 and fl = -23-. Thus,

K,, = ,~77, n-'12(l°gn)-l l2 (1 + 0(lo--~))"
4 n l"t~)

Theorem 2 is finally proved using the value of Co = 2~r-1/2Vtl-~, p(1) = x/-~, and the classical
asymptotic form Bn "~ 4n/ ~v/-~n 3. •

The analytic treatment can also be applied to the function Au(z); in this way, we find that
the probability that a tree of size n --* ~ does not contain a fixed pattern of size p decreases
exponentially like ~n where ¢ is the root close to 1 of ~P - ¢p-1 + 41-p = 0. Several results on
the occurrences of patterns in trees can be derived in this way. (The corresponding results for
strings are due to Guibas and Odlyzko, cf, e.g., [27].)

Finally, we tabulate below the exact value of -Kn and its asymptotic approximation K*
given by the main term of Theorem 2. The agreement is quite good. The compaction ratio
K n / n crosses the value 50% for n somewhere near 800.

n 10 20 50 100 200 500 1000

7.745
8.755

14.232 32.080 59.781 112.098 259.757 493.495
15.351 33.585 61.909 115.436 266.468 505.492

228

4 G e n e r a l R a n d o m Tree M o d e l s

The previous sections have demonstrated in a simple case the techniques employed to analyse
the expected gain brought by compacting random binary trees. The model considered was
that of "pure" (i.e. unlabelled) binary trees under the uniform distribution over all trees of
the same size n.

Trees in actual programming practice axe not always binary and unlabelled, and constraints
implied by our previous model can be relaxed in several ways:

1. A natural extension consists in allowing a fixed set of node degrees. (Binary trees are
restricted to node degrees {0, 2}.)

2. One may further allow nodes to contain labels (symbols): the framework becomes then
that of the algebra of terms built over a fixed set .T" of functional symbols.

3. One may finally a t tempt to model tree usage under which certain symbols are more
frequent than others: for many applications in symbolic manipulations,, an exponential
or a sine function will occur more frequently than a Bessel or hypergeometric function,
say.

All three extensions can be covered by the following probabilistic model, called the weighted
model or the branching model:

Let ~ be a set of functional symbols, each with an arity. The corresponding set of
term trees 7" is defined in the usual way. Let w be a weight function that assigns to
each symbol f E ~" a non negative real number will. Then that weight is extended
multiplicatively to trees: If t is a tree, its weight wit] is defined as

w[t]= H will,
where the product is extended to all node labels of t.

In the model induced by the pair (gr; w), trees are taken with a probability proportional to
their weight. Formally, under this model, a tree of size n will be taken with probability

7r[t] = w[t] where W, = ~ w[t]. (15)
W~ M=n

Thus if we assign to symbols sin and log weights that are respectively I and 3, and to symbols
+ and x weights 5 and 7, the probabilities of the two terms (x + sin(x)) x (y + log(y)) and
(x x log(x)) + (y x log(y)) are in the ratio 5 / (7- 3). Furthermore, by adjusting the coeffi-
cients between symbols of different arities, one can model asymptotically any predetermined
probability distribution over symbols that respects the obvious "conservation law" of trees. In
this way, we can thus design a model in which ternary symbols are, e.g., twice less likely than
binary symbols etc.

The weighted models are of interest for several reasons. By construction, they are likely to
represent real-life situations better than the uniform models (that only combine points 1 and
2 above). In effect, Clark [10, 1t] has shown, from statistics on actual large data structures
created by a number of Lisp programmes that, rather independently of particular applications:

(i) There is a fairly constant probability, in the interval [~, ¼], that a left son of a cons node
be an atom, and similarly for right nodes, the range being then [1 1].

229

(ii) The (non-nil) a tom symbols tend to have a frequency distribution obeying the Zipf Law
(where the i - th i tem has probability c 7)"

Those models are also natural from a mathemat ical point of view since they are equivalent to
assuming tha t the trees are generated by a branching process with a conditioning by the size
n of the result.

Our objective is now to extend our previous approach to this whole class of weighted
models. First, we shall show tha t expected values of the compaction ratio are still accessible
via generating functions. This leads to exact expressions tha t generalise Theorem i above, and
our approach follows rather directly the lines of Eq. (5-9). Next, we shall discuss how the
analytic approach can be progressively extended to cover the case of general branching models.
In all cases, a tree of size n is found to have an expected compacted size (1) asymptot ic to

n
C ~

5 General Models: Algebraic Enumerat ions

Let us fix from now on a set 9 r of functional symbols, where each f 6 ~c has an arit T (or degree)
deg(f) and a weight w[f]. We first define the structure polynomial associated with (gV;w) by

¢(y) = (16)

For instance if ~" ---- {x, z, ~ - , +, x } with corresponding set of weights {1, 2, 4, 8,16}, then
¢(y) = 3 + 4y ÷ 24y 2. We let T(z) denote the generating function of the cumulated weights
(15):

T(z) --- ~ W,z '~ ---- ~ w[t]zl'l.
n~_O SET

I t is convenient to think of the weighted set of trees T as a multiset each tree being counted with
a multiplicity equal to its weight, and refer to W, as the "number" of trees in the multiset. Our
tools relie on standard techniques of tree enumerations via generating functions [25, 31, 20].

L e m m a 3 (i). The generating function T(z) for the number of trees is defined implicitly by

T(z) ---- z¢(T(z)) (17)

where ¢(y) is defined in Eq (16).
(ii). The generating function Au(z) for the number (i.e., total weight) of trees containing

a fixed tree u is
Au(z) = T(z, ¢(0)) - T(z, ¢(0) - w[u]z f=l-1)

where T(z, v) is defined implicitly by

T(z, v) --. zv + z¢ + (T(z, v)) and ¢+ (y) - ¢(y) - ¢(0).

The first result (17) is classical in combinatorial theory (and also in branching processes)
and it relates T(z) to the structure polynomial ¢. The second result regarding A~,(z) also
involves ¢ in a more intricate manner. The argument used is then a generahsation of the
inclusion-exclusion proof of Theorem 1.

Proceeding further requires expanding T(z, v), a task made relatively easy by the Lagrange
inversion theorem (see e.g. [20]): I~ function h(z) is defined implicitly from function ¢(y) by
the equation

h(z) = z ¢ (h (z))

230

then, the Taylor coefficients of h(z) and its powers are expressible in terms of coefficients of
powers o r e by

[znlhk(z) = k[yn- t]¢n(y) .

This theorem provides a means of expanding the implici t ly defined function T(z , v) as well
as determining the (unweighted) number 1 Urnl,m2,..,m, of trees with mj nodes of type j ,

_ 1 (:) _ = - - 1 (m) w i t h m = ~ m i .
Vrnl~Ir~2~'"~mr - - m m m l ~ m 2 : , , , , m r

This last result serves to count the possible "patterns" u of Lemma 3. Proceeding similarly
with the generating functions of Lemma 3 leads to the main result for algebraic enumerat ions
in the general branching model.

T h e o r e m 3 The expected compacted size of a tree with N nodes under a general branching
model is

~ N = K N
W N '

where WN is the total weight of trees of size N (Eq (15)) given by

w,, : E E o +d, (ls
n o + , . . + n d = N

and

the sums being extended to all vectors 2 m , n, and scalar k > 1 such that

d r

n + k (m - 1) = g ~ n j (j - 1) = - 1 ~-~mi(ai - 1) -- - 1 ,
j=0 i=l

with n = no + ' " + ha, m = ml + " . -t- mr , ¢ --- (¢0, Cd), and w ---- (w l , . . . , wr).

This theorem vastly generalises Theorem 1 by providing combinatorial expressions for any
branching model: If ~" has r symbols with 6 different degrees, quant i ty K/v is expressed by a
mult iple sum of order r + 5 - 2. In the case of "pure" binary trees, we obtain, in agreement wi th
Theorem 1, a double sum (5 ---- r = 2). Double sums also arise if one considers "pure" t e rnary
trees. Binary trees with two types of leaves (6 = 2, r = 3) lead to tr iple sums; unlabel led
unary-binary trees or (unbalanced!) 2-3- t rees lead to fourfold summations (6 = r --- 3) etc.

6 General Models: Asympto t i c Analysis

Our objective here is to give some background to support the claim made in the introduct ion,
Eq. (1). In Section 2, we considered the special model AA of uniform binary trees, and we showed
how singulari ty a~alysis could lead to the result. The same strategy, based on singulari ty
analysis of generating functions, is employed here. However, two serious types of difficulties
await us in the more general case.

1We use here standard multi-index conventions for multinomial coefficients. For vectors a and b, we
~bl ~b~ ~b8 also let a b denote ~1 ~2 us ""'.

2The maximum node degree under the model is d, there axe r different node types, and al is the
axity associated with node type i; Cj represents the coefficient of yJ in the structure polynomial ¢(y).

231

1.

2.

For families with high node degrees, generating functions of interest are algebraic func-
tions tha t need not have closed form solutions. In contrast, for binary trees, all generating
functions were expressible with square roots.

Each

1.

If several types of nodes with the same degree (e.g. × and -) are present with different
weights, we know from Section 3.1 that both generating functions and combinatorial
enumerations involve multinomial coefficients. The presence of these multinomials rather
complicates the singularity analysis of function K(z).

of the corresponding problems can be overcome as follows.

Singularities of algebraic functions arising in enumeration problems are still analytically
of a square-root type [25, 26]. This is well illustrated by combinatorial families of trees
simply defined by restrictions on node degrees.

2. Multinomial (discrete) distributions are well approximated in the asymptotic limit by
multivariate (continuous) Gaussian distributions. The multinomial expressions involved
in the gf K(z) can be analyzed in this way, and a singularity analysis can be performed.
This technique is needed already when considering binary trees with several types of
leaves.

In the most general case, we sha~ find that the model-dependent constant C,~ is expressible
in terms of certain numbers (characteristic of model A,t) as well as the entropy of the asymptotic
distribution of node labels in the second case. We first need to describe the "composition" of
a large random tree.

P r o p o s i t i o n 2 Under a branching model with structure polynomial ¢(y), a node type i with
weight wi and arity al occurs in a large random tree with asymptotic frequency given by

TC~i
r i ---- Wi ¢(~.), (19)

where r is the smallest positive root of the equation ¢(T) -- r¢l(~ ") = 0.

The dominant singularity of T(z) and K(z) is at p = r / ¢ (r) . By standard arguments, T(z)
has an algebraic singularity at p that is of a ~/" type, and many important parameters are
expressible as functions of r [25, 31].

T h e o r e m 4 Given any branching model AA, the expectation of the compacted size of a tree
with n nodes 3 satisfies asymptotically, as n -~ c~,

 ith v (20)

There F is a fine structure constant defined below; H is the entropy function

1
H = log (21)

i

where lrl is the asymptotic frequency of node type i.

3This statement is to be understood for all n such that the number of trees of size n in the model is
non zero.

232

We briefly explain how the fine structure constant is computed. We have r node types,
with cq being the arity of node type i. Introduce wl = log(1/Tri). Define the Jacobian of the
family of trees in terms of a determinant as

Then F is given by

---~ HI ot r- 1 ~dr -I

I OLr_ 1 -- 1 ~dr_ 1 "

F = L Jr
(A II[=l ~,)t/2,

where A is the determinant of the quadratic form,

i = 1 7f i

this form being taken in the r - 2 variables (AI , . . . , At-2), with At-1 and Ar defined from the
other variables by the two linear relations,

r r

= o a n d = o.

i----i i = 1

As a check, Theorem 4 gives back the estimates for binary trees, using either ¢(y) = 1 + y2
or ¢(y) = (1 + 2y + y2). For unary-b inary trees, it provides

n

For unbalanced 2-3 trees (¢(y) = 1 + y 2 + y3), the constant c ~ ~ 0.97206 has the exact value

V/6T2"4"53"r+431og32T 2~6 V ~ "1/3 2~6 ~ 1/3
26~r + ~-2 where r = (+ ~ -) + (6V~) - 1/6.

In general these constants are best estimated using computer algebra systems!

7 Conclusions

Analysis of algorithms classically concerns itself with search trees (related to order properties)
or digital trees (based on digital properties of records) [22]. The corresponding tools are re-
currence equations, and differential or difference equations over generating functions for more
advanced applications [14]. There is by now a well-established tradition on these models.

The branching models considered here are in comparison new-comers in the area of analysis
of algorithms. They arise naturally as combinatorial models (see [21, Sect 2.3.4] for introductory
material), but also as a specialisation of branching processes or as a way of making precise
empirical observations on large structures created by symbolic systems [11, 10], as we have
discussed in Section 4.

Meir and Moon's seminal paper [25], itself inspired by P61ya's works [29, 30], showed the
possibility of counting trees in models that are essentially equivalent to our general branching
model. What is interesting is a situation not unlike what we witness in statistical physics:
many characteristic parameters exhibit a qualitative behaviour which is model-independent.
For instance, it was first shown by Meir and Moon that random trees in model A4 have a profile

233

which, after normalisation, exhibits a "rain drop" shape (Rayleigh distribution) and appears
to be independent of AA.

We now know more. Under any branching model, trees tend to have depth O(y ~ [15]
rather than O(logn) in other models. The frequency of occurrences of patterns is discussed in
[31], where it is shown to be geometrically decreasing in the size of the pattern. (By analogy, in
a random binary string, a pattern of size k occurs at a given place with probability 2-k). Such
a result entails that even naive pattern matching algorithms have linear, O(n), rather than
quadratic, O(n2), complexity. A valuable analysis of multiple pattern matching along these
lines has been carried out by Albert and Fages [3]. Pedersen [28] has several interesting results
on the counting of trees containing patterns of various types. In particular, he has obtained
independently the form of our Au(z) for binary trees, Eq. (4).

In the realm of symbolic manipulation algorithms, we have mentioned already that sym-
bolic differentiation is greatly improved by sharing which causes its complexity to decrease
from O(n 3/2) to O(n), on average. Casas et al. [6] present difficult analyses of bottom up
simplification algorithms for algebraic and logical expressions. The effect of mixed expanding-
contracting rules in term rewriting systems is precisely quantified in [9]. Very recently, symbolic
combinatorial methods and singularity analysis have been combined in order to analyze in de-
tail unification algorithms [4, 2]. More generally, a whole class of algorithms in the area of
symbolic manipulations is now known to be amenable to automated analysis [18, 17].

The present paper has similar objectives. However, contrary to pattern matching prob-
lems, the parameter under study is not simply recursively defined, so that the mathematical
problems involved are somewhat different. Perhaps what distinguishes it is the combinatorial
and analytic techniques needed to solve the original problem. With an unusual compaction
ratio that involves 1/ox/] '~, with multiplicative constants whose expression mixes the entropy
of asymptotic probability distributions as well as certain algebraic numbers, it is unlikely that
elementary derivations could easily be found for our most general results.

A c k n o w l e d g e m e n t . This research was supported in part by the ESPRIT II Basic Research
Actions Program of the EC under contract No. 3075 (Project ALCOM).

R e f e r e n c e s

[1] AHO, A. V., SETHI, R., AND ULLMAN, J. D.
Addison-Wesley, 1986.

[2]

[3]

Compilers: Principles, Techniques and Tools.

ALBERT~ L., CASAS, R., FAGES, F., AND ZIMMERMANN, P. Average case analysis of unification
algorithms, 1990. Technical report, INRIA, in preparation.

ALBERT, L., AND FAGES~ F. Average case analysis of the Rete pattern-matching algorithm.
In Automata, Languages and Programming (1988), T. Lepist5 and A. Salomaa, Eds., vol. 317 of
Lecture Notes in Computer Science, Springer Verlag. Proceedings of 15th ICALP Colloquium,
Tempere, Finland, July 1988.

[4] CASAS, R., DIAL, J., AND STEYAERT, J.-M. Average case analysis of Robinson's unification
algorithm with two different variables. Inf. Process. Left. 31 (June 1989), 227-232.

[5] CASAS, R., DIAZ, J., STEYAER.T, J.-M., AND VERGES, M. On compact representation of trees. In
Proceedings of the Colloquium on Algebra, Combinatorics and Logic for Computer Science (1984),
Janos Bolyai Mathematical Society, North Holland Publishing Company.

[6] CASAS, R., FEP~NANDEZ CAMACHO, M.-I., AND STEYAERT, J.-M. Algebraic simplification in
computer algebra: an analysis of bottom-up algorithms. Tech. Rep. LIX-RR-89.04, Ecole Poly-
technique, Palaiseau, France, 1989. To appear in Theoretical Computer Science, 1990.

[7] CHAR, B., GEDDES, g . , GONNET, G., MONAGAN, M., AND WATT, S. MAPLE: Reference
Manual. University of Waterloo, 1988. 5th edition.

[8] CHAR, B. W., FEE, G. J., GEDDES, K. O., GONNET, G. H., AND MONAGAN, M. M. A tutorial
introduction to Maple. Journal of Symbolic Computation 2, 2 (1986), 179-200.

234

[9] CHOPPY, C., KAPLAN, S., AND SORIA, M. Complexity analysis of term rewriting systems.
Theoretical Computer Science 67 (1989), 261-282.

[10] CLARK, D. W. Measurements of dynamic list structure use in Lisp. IEEE Trans. Software Eng.
sE-~, 1 (1979), 51-59.

[11] CLARK, D. W., AND GREEN, C. C. An empirical study of list structure in Lisp. Commun. ACM
P0, 2 (1977), 78-87.

[12] DONZEAU-GOUGE, V., HUET, G., KAHN, G., AND LANG, B. Programming environments based
on structured editors: the MENTOR experience. In Interactive Programming Environments (1984),
D. Baxstow, E. Sandewall, and H. Shrobe, Eds., McGraw-Hill, pp. 128-140.

[13] DOWNEY, P. J., SETHI, R., AND TARJAN, R. E. Variations on the common subexpression
problem. J. A.C.M. 27 (1980), 758-771.

[14] FLAJOLET, P. Mathematical methods in the analysis of algorithms and data structures. In Trends
in Theoretical Computer Science, E. BSrger, Ed. Computer Science Press, Rockville, Maxyland,
1988, ch. 6, pp. 225-304. (Lecture Notes for A Graduate Course in Computation Theory, Udine,
1984).

[15] FLAJOLET, P., AND ODLYZKO, A. The average height of binary trees and other simple trees.
J. Comput. Syst. Sci. 25 (1982), 171-213.

[16] FLAJOLET, P., AND ODLYZKO, A. M. Singularity analysis of generating functions. SIAM Journal
on Discrete Mathematics 3, 1 (February 1990). To appear. (Also available as INRIA Research
Report 826, 1987, 25 pages).

[17] FLAJOLET, P., SALVY, B., AND ZIMMERMANN, P. Lambda-Upsilon-Omega: The 1989 Cook-
book. Research Report 1073, Institut National de Recherche en Informatique et en Automatique,
August 1989. 116 pages.

[18] FLAJOLET, P., AND STEYAERT, J.-M. A complexity calculus for recursive tree algorithms. Math-
ematical Systems Theory 19 (1987), 301-331.

[19] GOTO, E. Monocopy and associative algorithms in an extended LISP. Tech. Rep. 74-03, Informa-
tion Sciences Lab., University of Tokyo, April 1974.

[20] GOULDEN, I. P., AND JACKSON, D. M. Combinatorial Enumeration. John Wiley, New York,
1983.

[21] KNUTH, D. E. The Art of Computer Programming, vol. 1: Fundamental Algorithms. Addison-
Wesley, 1968.

[22] KNUTH, D. E. The Art of Computer Programming, vol. 3: Sorting and Searching. Addison-Wesley,
1973.

[23] MACSYMA. VAX UNIX MACSYMA Reference manual, 1985.

[24] McCARTHY, J. LISP 1.5 Programmer's Manual. M.I.T. Press, Cambridge, Mass., 1962.

[25] MEIP~, A., AND MOON, J. W. On the altitude of nodes in random trees. Canadian Journal of
Mathematics 30 (1978), 997-1015.

[26] MEIR, A., AND MOON, J. W. On an asymptotic method in enumeration. Journal of Combinatorial
Theory, Series A 51 (1989), 77-89.

[27] ODLYZKO, A. M. Enumeration of strings. In Combinatorial Algorithms on Words (1985), A. Apos-
tolico and Z. Galil, Eds., vol. 12 of NATO Advance Science Institute Series. Series F: Computer
and Systems Sciences, Springer Verlag, pp. 205-228.

[28] PEDERSEN, J. Enumeration of trees containing variable patterns, 1988. Manuscript.

[29] P6LYA, G. Kombinatorische Anzahlbestimmungen fiir Gruppen, Graphen und chemische
Verbindungen. A cta Mathematiea 68 (1937), 145-254.

[30] POLYA, G., AND READ, R. C. Combinatorial Enumeration of Groups, Graphs and Chemical
Compond~. Springer Verlag, New York, 1987.

[31] STEYAERT, J.-M., AND FLAJOLET, P. Patterns and pattern-matching in trees: an analysis.
Information and Control 58, 1-3 (July 1983), 19-58.

[32] TERASHIMA~ M. Algorithms used in an implementation of HLISP. Tech. Rep. 75-03, Information
Sciences Lab., University of Tokyo, January 1975.

