THE SIGSAM CHALLENGES:
SYMBOLIC ASYMPTOTICS IN PRACTICE

PHILIPPE FLAJOLET AND BRUNO SALVY

INTRODUCTION

We present answers to 5 out of 10 of the “Problems, Puzzles, Challenges” pro-
posed by G. J. Fee and M. B. Monagan in the March 1997 issue of the Sigsam
Bulletin. In all cases, the answer to a seemingly numerical problem is obtained

via series expansions and asymptotic methods. This illustrates more generally the
- crucial role played in the presence of singular behaviours by symbolic asymptotics
as a bridge between symbolic computation and numerical computations.

All our computations have been performed using MapleV.4 on a Dec Alpha
(255/233). The timings indicated correspond to executions on this machine.

PROBLEM 2

6 x
/x” dz
1

The integrand has a very fast increase, which makes it a good candidate for
an asymptotic expansion using integration by parts (see [2, 8] for a more general
treatment). We first illustrate the idea on a generic example:

F:=Int(exp(f(x)),x=a..A);
A
F = / ef(a") dm

It is assumed that f(z) has fast increase. Then the integral is concentrated in

the neighbourhood of the upper limit of integration. Now, we integrate by parts,
rewriting the integrand as f'ef /f = (ef)'/f'.

student [intparts] (F,1/diff(£(x),x));
ef(4) ef(a) A (56&,25 (z))ef ®)
& f(4)  Ffle) J (3 f(@)?
With ef(®) = 27 it is not difficult to see that the new integrand is increasing, and
therefore the integral is bounded by (A — a) times the value of the integrand at A,

which is smaller than the first term by a factor of f'(a)/f’(a). Iterating the same
process, we get:

student [intparts] (",diff(£(x),x,x)/diff (£(x),x)"3);

What is the value of

to 7 significant digits?

Date: Summer 1997.
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el (4) e/ (@) (éa_jff(A))ef(A) _ (é%f(a))ef(a)

(4 &f(a) 5
2
- A ( /) Gl @)7) g,
a \(Hf@)  (&fle)*

Again, the new integrand has fast increase and is bounded by its value at the upper
limit, which is smaller than the third term of this sum by a factor which can be
computed. The process can again be iterated to get more and more accuracy. In
the specific case of e/(#) = z7° A =6, a = 1, the terms in f(a) are so small that
they can be neglected, and the computation proceeds as follows:
st:=time(): '
f:=x"(x"x); g:=normal(1/diff(log(£f),x));

fi=z
. z
9= z%(In(z)%z + In(z)z + 1)

G:=Int(f,x);

G :=/m°’z dx
for i to 3 do

part:=normal(op(1, (=1)~(i+1)*G)*g/f);
F:=student [intparts] (G,part);
G:=(-1) "i*op(select(type,indets(F,function),
specfunc(anything,Int)));
res[i] :=F-G;
od:
res:=[seq(res[i],i=1..3)];
gz’
z%(In(z)2z + In(z)z + 1)’
(3In(z)z — 1 + In(z)322 4 21n(z)?2? + In(z)2? + 22)za®
(z%)?(In(z)%z + In(z)z + 1)3 ’
(—=21n(z)%z ~ 161n(z)z — 21n(z)?z? + 13 In(z)?2? + 21 In(z)z?
+9z% 4+ 111n(z)*2® 4 301n(z)°z® + 271n(z)?z® + 8 In(z)2®
+ 121n(z)%z* + 81n(x)3z* + 81n(z)%x* + 21n(z)%x*
+2In(z)%2* + 1 — 12z)zz°" /((z°)%In(z)%z + In(z)z + 1)°]
The numerical values given by these three terms are easy to compute:
evalf(subs(x=6.,res),10);
(1102651583 10%%3%1 1341606998 10%29¢, 3239231242 10%°%°"]

hence their sum is
evalf (convert (", ‘+¢),7);

res = [

.1102665 1036301

The error is bounded by the value of the remaining integral, itself bounded by (A—a)
times its value at A:

bound_remainder:=evalf ((6-1)*subs(x=6.,-op(1,-G)));
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bound_remainder = .1410589709 1036293

It follows that all the digits of the result obtained above are correct.
The total time required by this computation is:

time()-st;
975

Thus the result is .1102665 103%3%! up to 7 significant digits. The computation
requires 3Mb of memory and less than 1 sec.

This example is typical of the use of asymptotic expansions in computer algebra.
In practical computations, a closed-form seldom exists. Those problems which are
challenging for a direct numerical computation can often be attacked by symbolic
asymptotics. In examples like this one, the automation of the process requires a
good handling of asymptotic scales. More and more is known in this direction (see

e.g., [6]).

PROBLEM 4
What is the coefficient of £3°°° in the expansion of the polynomial
(z + 1)2000(g2 4 g 4 1)1000(z4 4 43 4 2 4 g 4 1)500
. to 13 significant digits?

This polynomial p is of degree 6000 and the sum of all its coefficients (do z = 1 in p)
is a number of 1428 digits. Thus, on most sytems, this will induce large memory
requirements, generate heavy computation, and perhaps even entail failure to return
a result.

This problem may seem artificial; however, such questions turn up systematically
in the reversion of power series since the inversion theorem of Lagrange states that
the nth coefficient in the expansion of the inverse of a function f is expressible as
an nth coefficient in an expression that involves an nth power of f.

We use the gfun package [7]' that addresses the problem of manipulating se-
ries that satisfy linear differential equations with polynomial or rational coefficients
(these are often called “holonomic” functions). From the point of view of sym-
bolic manipulation, the importance of this package lies in the fact that: (i) a great
many special functions of analysis (rational, algebraic, trigonometric, hypergeo-
metric, etc) lie in the holonomic class; (ii) the class enjoys rich closure properties;
(iil) identities are decidable and many fast numerical algorithms apply.

We attack the challenge by first computing, with gfun, a linear differential equa-
tion satisfied by p. We then get a linear recurrence equation satisfied by the coef-
ficients of p, so that the coefficient of " in p becomes computable in a number of
arithmetic operations that is linear in the quantity n. Heavy use is made throughout
of the implementation of closure operations that are available via gfun.

First, we load the gfun package.

with(gfun):

Next, we specify each of the three factors of p by a (trivial) differential equation
that it satisfies.

1The latest version is available at the URL http://www-rocq.inria.fr/algo/libraries


http://www-rocq.inria.fr/algo/libraries
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st:=time():
b1:={diff(y1(z),z)*(1+2)~2000%y1(z)=0,y1(0)=1}:
b2:={diff(y2(z),2)*(1+z+2"2)~1000%* (1+2*z) *y2(z)=0,y2(0)=1}:
b3:={diff(y3(2),z)*(1+z+z"2+2"3+z"4)

~B00% (1+2%2+3%2"2+4*2~3) *y3(2)=0,y3(0)=1}:

Next, we appl); closure operations, here gfun[poltodiffeq]:
b123:=poltodiffeq(yi(z)*y2(z)*y3(z),[b1,b2,b3],
[y1(z),y2(2),y3(2)1,Y(2));
5123 := {(—3500—10000z~165002%—19500z° —200002* — 145002° —60002°)Y (2)
+ (1 +32z+ 522 +62° +62* + 525 + 325 + z7)—66—zY(z), Y(0) =1}
This gives rise to a simple recurrence on coefficients, by gfun[diffeqtorec]:
r123:=diffeqtorec(b123,Y(z),u(n));

r128 = {u(1l) = 3500, u(2) = 6124750, u(3) = 7144958500, u(4) = 6251073531125,
u(5) = 4375037588062700, u(6) = 2551584931812376500, u(0) = 1,
(n —6000)u(n) + (3n — 14497)u(n + 1) + (5n — 19990)u(n + 2)
+ (6n — 19482)u(n + 3) + (6n — 16476)u(n + 4) + (5n — 9975)u(n + 5)
+ (3n — 3482)u(n +6)+ (n+ TNu(n+7)}
This is then converted to a procedure by gfun[rectoproc]:
ci:=rectoproc(ri23,u(n));

ci := proc(n)
locali, u0, ul, u2, ud, uf, us, ub, u7,

ul :=1;
ul = 3500;
u2 = 6124750;

u8 := 7144958500;

ud := 6251073531125;

ud := 4375037588062700;

u6b := 2551584931812376500;

forifrom7ton — 1do
u7 1= —(—6007 X u0 — 14518 x ul — 20025 x u2 — 19524 x u3

—16518 x u4 — 10010 x u5 — 3503 x u6 + (u0 + 3 x ul +
5x u2+6x u3 +6x ud +5 X u5 +3x ub) xi)/i;
u0 ;= ul;ul 1= u2;u? := ud; ud 1= ug; uf = ud; ud := ub; u6 := u7
od;

—(—6007 x u0 — 14518 x ul — 20025 x u2 — 19524 X u3 — 16518 x u4
—10010 x u5 — 3503 x u6 + (u0 +3 x ul +5 x u2 +6 X ud
46 X uf +5x u5+3x ub)xn)/n

end

time()-st;
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1.605

The whole preprocessing stage has taken 1.6 seconds. We can now use this proce-
dure to compute coefficients efficiently.

st:=time():¢i3000:=ci(3000); TIME=time()-st;

13000 := 397394226558004303969667626329928604465422787974692638585\
18664950049225709880756604161192051788856612438932455042894242261)\
9852018092258442175007218364907671406420331008363256 7767415172067\
84199963371849279707465340485145732301010641050098684274257365199\
13782237244433361269423503586591923413365267497746522612042343579\
98552079846008614827866733144744790062587645381614992065639928989\
22176213528121641266392970547509044520778863330676675756260172220\
68252735930351740052707088091527978974205542907473424016521 733709\
67513280441447278623441263759506502174241062869172206142639953166\
54389779617495772217162649241721882792749451418158467219803608574\
78720925694872908387116314847635237077788984625463989023312498435\
18557913282283565895711064751764559174802839190591521920823022518\
87174822606608880100149943700257493477167147384178225891889820353\
85585812120932235997239943295446494068091066640053838919047956769\
72660077473418112087130944475203339010828320647579087130128054770\
91837377802346759700569037464783615486742954483536573488991071068)\
71549421407031461462303719791304782018342692832882043591510023110\
31293005242531470895293067784332495064516014589005554899748197563\
49205835354064507106405231467795355575670302820389023416538631471\
81378658408088690165050227055367416831696109349032728935178047734\
77081712316841606637929084143567929373204739515372233653848975792\
80311277048572560033893354349469272337780387167907134294457934204\
76320

TIME = 13.147

The computation requires only 13 seconds of CPU time. The value of the result is
approximately 3.97 101427, ‘

Note that, by starting the computation with floating point numbers, the whole
computation is performed using the accuracy given by the Maple environment vari-
able Digits. Here, the recurrence is stable and the computation time drops to 3.6
seconds.
st:=time():Digits:=14:cf:=subs(3500=3500.0,0p(ci)):
¢£3000:=cf(3000) ; TIME=time()~st;

¢f3000 := .39739422655366 101427
TIME = 3.590

(c£3000-ci3000)/ci3000;
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—.10921145074478 10~ 1°

Such techniques are used for instance for estimating the probability of occurrence
of patterns in DNA sequences, under a simple model of randomness. In this case,
the generating function is rational and it is required to find coefficients of large

orders (often several - thousands) that are dictated by the lengths of DNA fragments
under consideration?.

ProOBLEM 5

What is the largest zero of the 1000th Laguerre polynomial to 12 sig-
nificant digits?

The asymptotics of the zeroes of the Laguerre polynomials are known and could
be used to compute the result efficiently. It is also possible to use a computer alge-
bra system to perform the computations leading to the corresponding asymptotic
expansion. We refer to Abramowitz & Stegun [1] and to Szegd [9] for details on
this approach.

Instead, we proceed numerically using two informations:

— the explicit form of the nth Laguerre polynomial:

La(z) = i (:) t‘%!i{’i;

k=0
— the well-known fact that the roots are positive real numbers.

A classical technique to compute the largest root of a.polynomial is the Graeffe
process [3]. It is based on the iteration P(z) ~ P(y/x)P(—+/z), which transforms
a polynomial P into a polynomial of the same degree whose roots are the squares
of the roots of P. Thus the square root of the sum of the roots of P is closer to the
largest root of P than the sum of the roots of P. Iterating this process converges
to the largest root of P when, as in the Laguerre polynomials, there is only one
root of largest modulus. When all the roots of P are positive real numbers, it is
easy to see that each of the approximations provided by this method is larger than
the actual root.

For polynomials of large degree, the mere computation of a product is very
time-consuming. In this particular example, Maple needs 44710 sec. to compute
the product used in the first iteration of the Graeffe process. However, since we are
only interested in the sum of the roots of these iterated polynomials, not all the
coefficients of these products need be computed. For instance, to compute both
leading coefficients of the product of two polynomials, it is only necessary to know
two coefficients of each of them. Thus to compute eight iterations of the Graeffe
process, we only need 28 = 256 coefficients of L1g00.

To simplify the computation, we work with the reciprocal of the polynomials:
n:=1000:
nb_iter:=8:
nb_terms:=2"nb_iter:
c[0]:=1: for i to nb_terms do c[i]:=-(n-i+1)"2/i*c[i-1] od:

This is the series expansion of £'%%°L1400{z ™) to the order 256:
S:=add(c[i]*x"1,1i=0..nb_terms):

2See the URL http://www-rocq.inria.fr/algo/libraries/autocomb.
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We now compute the Graeffe iterations and print the corresponding estimate for
the largest root:
for i to nb_iter do
S:=series(S*subs(x=-x,S),x,nb_terms+1);
nb_terms:=iquo(nb_terms,2);
for j from O to nb_terms do c[j]:=coeff(S,x,2%j) od;
S:=add(c[jl*x~j,j=0..nb_terms);
estimate:=evalf ((~coeff(S,x,1)/coeff(S,x,0))"(1/2"1));
print(i,estimate)
od:

44710.17781
10871.93993
5875.424153
4557.080810
4131.575859
3992.655417
, 3952.663782
8, 3944.199951
As mentioned above, this sequence of values provides increasingly good estimates
for the largest root, which is smaller than all of them. At this point, it is a good
idea to use the Newton-Raphson method with the last estimate as initial value.

The method will converge to the largest root since the polynomial has positive first
and second derivatives in that area by Rolle’s theorem.

The following procedure evaluates Ligoo(z) and its derivative. Also, it returns
the largest summand encountered during the computation, which makes it possible
to check a posteriori whether the precision used in the intermediate computations
was sufficient.

~N S Ot N

lag1000 := proc(z)
locale, k, d0, d1, maxc;
c:=1;d0:=1;dl :=0;mazc:=1;
for k to 1000 do
c:= (k — 1001) x ¢/k;
if mazc < (—=1)* x cthen mazc := (=1)* x cfi;

dl :=d1l +c;
c:=cXz/k;
d0 :=d0+c

od;
[do, d1, mazc)
end
Experiments show that a precision of 300 digits is sufficient.
Digits:=300:
We then just have to run the Newton iteration a few times:

for i to 7 do
r:=lag1000(estimate);
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estimate:=estimate-r[1]/r[2];
print(i,time(),evalf(estimate,40))

od:
1, 15.007, 3943.554169639569910236033441208347213568
2, 16.'913, 3943.288156587100771812724414055574813853
3, 18.903, 3943.248208728579495923271549680060251158
4, 20.960, 3943.247395176254653907520502075927102493
5, 23.011, 3943.247394845271007150933475723163321646
6, 25.103, 3943.247394845270952389728107754944655528
7, 27.212, 1 3943.247394845270952389728107753445640963

evalf(estimate, 12);
3943.24739485

43

It takes five iterations and a total of 23 sec. since the beginning of the session
to get 12 significant digits. Each new iteration then takes approximately 2.2 sec.
and roughly doubles the number of significant digits. A lot more precision can
then be attained by increasing Digits for each iteration. The computation requires
approximately 55 Mb of memory. This huge memory consumption comes from the

product of series which is not as efficient as one would like it in Maple.

PrROBLEM 7

Define functions f and g as follows:
f(z) = tan(tanh(sin(z))) — tan(sin(tanh(z)))
+ tan(tanh(sinh(z))) — tan(sinh(tanh(z)))
+ tanh(sin(tan(z))) — tanh(tan(sin(z)))
+ sin(tan(tanh(z))) — sin(tanh(tan(z)))
+ sinh(tan(tanh(z))) — sinh(tanh(tan(x)))
+ tanh(sinh(tan(z))) — tanh(tan(sinh(z)))
g(x) = sinh(tanh(sin(z))) — sinh(sin(tanh(z)))
+ tanh(sin(sinh(z))) ~ tanh(sinh(sin(z)))
+ sin(sinh(tanh(z))) — sin(tanh(sinh(z)))
+ tan(sin(sinh(z))) — tan(sinh(sin(z)
+ sin(sinh(tan(z))) — sin(tan(sinh(z)
+ sinh(tan(sin(z))) — sinh(sin(tan(z)

)
)
))

What is
. flg(=))
lim —=——*t
20 g(f(z))
to 9 significant digits?

This is simply obtained by series expansions to a moderate order:

st:=time():
F:=tan(tanh(sin(x)))-tan(sin(tanh(x)))+
tan(tanh(sinh(x)))-tan(sinh(tanh(x)))+
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tanh(sin(tan(x)))-tanh(tan(sin(x)))+
sin(tan(tanh(x)))-sin(tanh(tan(x)))+
sinh(tan(tanh(x)))-sinh(tanh(tan(x)))+
tanh(sinh(tan(x)))~tanh(tan{sinh(x))):
num:=series(F,x,17);
m 7769
T 3274425
G:=sinh(tanh(sin(x)))-sinh(sin(tanh(x)))+
tanh(sin(sinh(x)))-tanh(sinh(sin(x)))+
sin(sinh(tanh(x)))-sin(tanh(sinh(x)))+
" tan(sin(sinh(x)))-tan(sinh(sin(x)))+
sin(sinh(tan(x)))-sin(tan(sinh(x)))+
sinh(tan(sin(x)))-sinh(sin(tan(x))):
den:=series(G,x,12);

zlS + 0(1‘17)

den := 6%—:1:11 + O(z'?)

series(subs(x=den,num)/subs(x=num,den),x,infinity);
2451447860952057740817096729600000000000000000000
801034487517232030831498951509084442801
evalf(op(1,"),10);

+ O(x)

.3060352456 101°
time()~st;
1.301

This computation requires less than 2Mb and 1.3sec.

It would be desirable to have the system compute automatically the first or-
der expansion, increasing the order of intermediate expansions if necessary. The
difficulty there consists in recognizing that the function under consideration is dif-
ferent from 0. In sufficient generality this is undecidable [4], but these functions f
and g fall into a class where this can be done modulo a zero-equivalence test for
elementary constants [5].

PROBLEM 8
What is

o
1 -
H tanh(-2- arctan(n) sinh ™' (n))
n=1
to 14 significant digits?

As the analysis below shows, this product is convergent. Its terms tend to 1
reasonably fast, so that the numerical value can be obtained from the computation
of a truncation of the product and an asymptotic analysis of the rest. By taking
a logarithm, we can work with a sum rather than a product. Then the general
principle is as follows [10, p. 163]: if f(2) = 3_ ., fa2", then formally at least

AR =Y fal(n).
k=1 n=2
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We thus start by computing an asymptotic expansion of the log of the nth term.
This is made slightly difficult by the inability of the current version of Maple to
handle non-rational exponents in the expansions.
st:=time():

Order:=20:
S:=asympt(1/2*arctan(n)*arcsinh(n),n);

~}In@) - iln(n) 1 n

§ = 37(In(2) +In(n) +

n 16 n?
L Catel@tghae) 3 7
n3 128 n4

and more terms that we do not display which follow the same pattern.
We first isolate the leading term which we shall treat specially.

S1:=Pi/4*1n(n);

SI .= iﬂ-ln(n)
S2:=5-S1:
convert (tanh(x),exp);
(e®)2 —1
e

We use n%/%/T(n) to denote e5* = n™/4, which implies that T'(n) is of asymptotic
order n~-93%, Besides, we set n = N? in order to work with polynomials later. We
start by computing the expansion of e~2%:

uu:=asympt (exp(-2*subs(n=N~2,52))*T"2/N"3,N):
Then we substitute this in the expansion of In(tanh(z)):
res:=asympt (subs(x=uu,1n((1-x)/(1+x))),N):

We are now in a position to sum these terms for n from M to infinity, for some M
that we’ll choose later. There we use the property that

> (DFlog"(n) _ gy § (=1) log* (n)

of which Maple’s sum function is only aware when k = 0. We change the variable to
a variable tending to 0 in order to work with polynomial coefficients. The notation ¢
below denotes the truncated sum on the left.

res:=subs(1n(N)=-U/2,N=1/nn, convert(res,polynom)):

for i from 3 by 2 to Order do
p:=expand(coeff(res,nn,i));
lco:=[coeffs(p, [T,U], lexp’)];lexp:=[lexpl;
Res[i] :=add(lcol[jl*Zetabar(degree(lexp[jl,U),

degree(lexpl[jl,T)*(Pi/4-3/4)+i/2),j=1. .nops(1co))
od:
Res:=[seq(Res[1+2%i],i=1..iquo(Order,2)-1)1;
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_Res;::[..25(0’”/2),2C(1’1*‘”/2) ,1n(2){(0,1 +7/2)

us n e ™ T 2
LRSS LR R T T O

where the dots indicate several pages of the same kind of output.
The terms of this list are the successive contributions of the asymptotic expan-

sion. We now evaluate them for M = 100 and then multiply by the first terms of
the product to obtain the desired approximation.

‘evalf/Zetabar‘ := proc(k, s)
local:, M;
global Log, ims;
M :=100;
if not assigned(ims[M — 1, s]) then
forito M — 1doims[i, s] := evalf (")) od fi;
ifk # Othen
if not assigned(Log[l, M — 1]) then
forito M — 1do Log[l, 1] := evalf (log(¢)) od i ;
if not assigned(Log{k, M — 1]) then
forito M — 1do Loglk, 1] := Log[1, 1}* od fi;
evalf (¢(k, 8)) — (=1)* x add(Loglk, i] x imsl[i, s], i = 1..M ~ 1)
else evalf({(s)) — add(émsli, s], i = 1.M — 1)
fi
end

The symbolic part of the computation has taken the following time:
time()-s%t;
1.811

We now turn to the numerical computation:
Digits:=30:
res:=evalf(Res);
res ;= [ — .0853768838817694213477267592802,
—.00184894169929780869723978287630,
—.0000303039644558945161195070130797,

— .350526064332901053341251097304 10 ¢,
~ .268080484811869025819048283146 1078,
— .110204653888531983348874288239 1071,
— .470151160346022439444595984011 10~ *3
— .271482094920976202629908971233 10~
~.909829054007018877303913867423 10

These are the successive terms of the approximation of the truncated sum. Here 1s
the end result:



SIGSAM CHALLENGES 47

exp(‘+‘(op(res)))*mul(evalf(tanh(arctan(i)*arcsinh(i)/2)),i=1..99):
evalf(",14);

.084439684030189
The total time required for this computation is
time()-st; '
30.381

The same method applies to Problem 3, but is rendered more delicate by the
non-rational exponents that have to be dealt with, like /4 in the present example.

Acknowledgement. This work was supported in part by the Long Term Research
Project Alcom-IT (#20244) of the European Union.
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