
THE SIGSAM CHALLENGES: 
SYMBOLIC ASYMPTOTICS IN PRACTICE 

PHILIPPE FLAJOLET AND BRUNO SALVY 

INTRODUCTION 

We present answers to 5 out of 10 of the “Problems, Puzzles, Challenges” pro- 
posed by G. J. Fee and M. B. Monagan in the March 1997 issue of the Sigsam 
Bulletin. In all cases, the answer to a seemingly numerical problem is obtained 
via series expansions and asymptotic methods. This illustrates more generally the 
crucial r6le played in the presence of singular behaviours by symbolic asymptotics 
as a bridge between symbolic computation and numerical computations. 

All our computations have been performed using MapleV.4 on a Dec Alpha 
(255/233). The timings indicated correspond to executions on this machine. 

PROBLEM 2 .. . 
What is the value of 

xxx dx 
J i  

to 7 significant digits? 
The integrand has a very fast increase, which makes it a good candidate for 

an asymptotic expansion using integration by parts (see [2, 81 for a more general 
treatment). We first illustrate the idea on a generic example: 
F : =Int (exp ( f  (x )  ) , x=a . . A )  ; 

A 
F := ef(.) dx 

It is assumed that f(z) has fast increase. Then the integral is concentrated in 
the neighbourhood of the upper limit of integration. Now, we integrate by parts, 
rewriting the integrand as f‘ef/ f’ = (ef )’/f’. 
student [ intpartsl  ( F ,  i / d i f f  ( f  (x)  , X I )  ; 

A (&f(.))ef‘”’ dx 
ef ( A )  ef (a) 

& f ( 4  - - + s, (%f(.))2 

With ef(x) = xS”, it is not difficult to see that the new integrand is increasing, and 
therefore the integral is bounded by ( A  - u )  times the value of the integrand at A ,  
which is smaller than the first term by a factor of f ” ( u ) / f ’ ( a ) .  Iterating the same 
process, we get: 
student[intparts] ( “ , d i f f ( f ( x )  , x , x ) / d i f f ( f ( x )  , x ) ^ 3 ) ;  

Date:  Summer 1997. 
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Again, the new integrand has fast increase and is bounded by its value at the upper 
limit, which is smaller than the third term of this sum by a factor which can be 
computed. The process can again be iterated to get more and more accuracy. In 
the specific case of e!(”) = zZx, A = 6, a = 1, the terms in f(a) are so small that 
they can be neglected, and the computation proceeds as follows: 
st:=time(): 
f :=x-(x-x) ; g:=normal( i/diff (log(f) ,XI) ; 

f := x X X  

2 
g := 

zx(ln(x)2x + ln(x)x + 1) 
G:=Int(f ,x); 

G := 1 xxx dx 

for i to 3 do 
part:=normal(op(l,(-i)-(i+I)*G)*g/f); 
F:=student Lintparts1 (G,part) ; 
G:=(-1)-i*op(select(type,indets(F,function), 

specf unc (anything, Int ) ) ) ; 
res [il :=F-G; 

od : 
res : = Cseq(res Cil , i=i . .3)1; 

xxX3 
zG(ln(x)2z + ln(z)z + 1) ’ res  := [ 

(3 In(z)x - 1 + l n ( ~ ) ~ x ’  + 21n(x)’x2 + ln(z)z’ + 2x)xzxz 
(xz)2(ln(z)2x + ln(x)x + 1)3 

(-2 ln(z)’x - 16 ln(x)x - 2 l n ( ~ ) ~ x ’  + 13 ln(z)’z2 + 21 ln(z)z2 

, 

+ 92’ + l l l n ( ~ ) ~ x ~  + 3 0 1 n ( ~ ) ~ x ~  +271n(x)’z3 + 81n(z)x3 

+ 1 2 1 n ( ~ ) ~ z ~  + $ l n ( ~ ) ~ x ~  + 8 1 n ( ~ ) ~ x ~  + 21n(2)’x4 

+ 21n(x)6z4 + 1 - 1.22)xx~~ /((xXl3 ln(x)’x + ln(x)z + 115] 

The numerical values given by these three terms are easy to compute: 
evalf(subs(x=6.,res),lO); 

[.1102651583 .1341606998 ,3239231242 

hence their sum is 
evalf(convert(”,‘+‘),7); 

.1102665 

The error is bounded by the value of the remaining integral, itself bounded by (A-a) 
times its value at  A: 
bound-remainder:=evalf ((6-l)*subs(x=6. ,-op(i,-G))); 
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bound-remainder := .1410589709 

It follows that all the digits of the result obtained above are correct. 
The total time required by this computation is: 

t i m e  ( ) -st ; 

.975 

Thus the result is .1102665 up to 7 significant digits. The computation 
requires 3Mb of memory and less than 1 sec. 

This example is typical of the use of asymptotic expansions in computer algebra. 
In practical computations, a closed-form seldom exists. Those problems which are 
challenging for a direct numerical computation can often be attacked by symbolic 
asymptotics. In examples like this one, the automation of the process requires a 
good handling of asymptotic scales. More and more is known in this direction (see 
e.g., [GI). 

PROBLEM 4 

What is the coefficient of x3Ooo in the expansion of the polynomial 

(. + 1)2000(22 + + 1)1000(24 + 23 + 2 + + i)500 

. to 13 significant digits? 
This polynomialp is of degree 6000 and the sum of all its coefficients (do x = 1 in p )  
is a number of 1428 digits. Thus, on most sytems, this will induce large memory 
requirements, generate heavy computation, and perhaps even entail failure to return 
a result. 

This problem may seem artificial; however, such questions turn up systematically 
in the reversion of power series since the inversion theorem of Lagrange states that  
the nth coefficient in the expansion of the inverse of a function f is expressible as 
an nth coefficient in an expression that involves an nth power o f f .  

We use the gfun package [711 that addresses the problem of manipulating se- 
ries that  satisfy linear differential equations with polynomial or rational coefficients 
(these are often called “holonomic” functions). From the point of view of sym- 
bolic manipulation, the importance of this package lies in the fact that: (i) a great 
many special functions of analysis (rational, algebraic, trigonometric, hypergeo- 
metric, etc) lie in the holonomic class; (ii) the class enjoys rich closure properties; 
(iii) identities are decidable and many fast numerical algorithms apply. 

We attack the challenge by first computing, with gfun, a linear differential equa- 
tion satisfied by p .  We then get a linear recurrence equation satisfied by the coef- 
ficients of p ,  so that the coefficient of 2” in p becomes computable in a number of 
arithmetic operations that is linear in the quantity n. Heavy use is made throughout 
of the implementation of closure operations that are available via gf un. 

wi th(gfun) :  
Next, we specify each of the three factors of p by a (trivial) differential equation 
that it satisfies. 

First, we load the gfun package. 

‘The latest version is available at the URL http://www-rocq.inria.fr/algo/libraries 

http://www-rocq.inria.fr/algo/libraries
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st:=time(): 
bi :=(dif f (yi(z) , z )  *( i+z)-20OO*yl(z)=O ,yi(O)=l) : 
b2 :=<dif f (y2(z) , z )  * (1+2+2^2) -1OOO* (1+2*2) *y2(z)=O ,y2 ( O ) = i )  : 
b3:=(diff (y3(z) , z ) * (  1+2+zA2+zA3+zA4) 

Next, we apply closure operations, here gfun [poltodif f eql : 

b~23:=poltodiffeq(yl(z)*y2(z)*y3(z),[bi,b2,b3], 

-500*(1+2*2+3*2^2+4*z^3)*y3(z)=0,y3(0)=1): 

Cyi(z> ,y2(z) ,y3(z)l ,Y(z)>; 

b123 := { (-3500- 10000~- 1 6 5 0 0 ~ ~ -  1 9 5 0 0 ~ ~ - 2 0 0 0 0 ~ ~  - 1 4 5 0 0 ~ ~  -60O0z6)Y ( z )  

8 
4- (1 + 3.2 + 5z2+ 6z3 + 6z4 + 5z5 + 3z6 + z ~ ) - Y ( ~ ) , ~ ( o )  dz = 1) 

This gives rise to a simple recurrence on coefficients, by gf un [dif f eqtorecl : 
ri23:=diffeqtorec(bi23,Y(z),u(n)); 

r123 := ( ~ ( 1 )  = 3500, u(2) = 6124750, u(3) = 7144958500, u(4) = 6251073531125, 
~ ( 5 )  = 4375037588062700, u(6) = 2551584931812376500, u(0)  = 1, 

(n  - 6000)u(n) + (3n - 14497)~(n + 1) + (571 - 19990)u(n + 2) 
+ (6n - 19482)u(n + 3) + (6n - 16476)u(n + 4) + (572 - 9975)u(n + 5) 

+ (3n - 3482)u(n + 6) + ( n  + 7)u(n + 7)) 

This is then converted to a procedure by gf un Crectoprocl : 
ci:=rectoproc(ri23,u(n)); 

ci := proc(n) 
locali, 210, u l ,  u2 ,  US, u4,  u5 ,  u6, u7; 

uu := 1; 
u l  := 3500; 
u2 := 6124750; 
US := 7144958500; 
u4 := 6251073531125; * 

u5 := 4375037588062700; 
u6 := 2551584931812376500; 
f o r i f r o m 7 t o n - 1 d o  

217 := -(-6007 x UU - 14518 x u l  - 20025 x ~2 - 19524 X US 

-16518 x ~4 - 10010 x ~5 - 3503 x ~6 + (uU + 3 x ~l + 
5 x u2 + 6 x u3 + 6 x u4 + 5 x u 5  + 3 x u6) X i ) / i ;  

u o  := u1;  u l  := ~ 2 ;  u.2 := u3; u3 := u4; 214 := ~ 5 ;  ~5 := 216; ~6 := ~7 

o d ;  
-(-6007 x UU - 14518 x ~1 - 20025 x ~2 - 19524 x US - 16518 X ~4 

-10010 x 215 - 3503 x ~6 + ( u U  + 3 x ~l + 5 x 212 + 6 X US 
+ 6 x u 4 + 5 ~ 2 1 5 + 3 x  u 6 ) x n ) l n  

end 

time()-st; 
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1.605 
The whole preprocessing stage has taken 1.6 seconds. We can now use this proce- 
dure to compute coefficients efficiently. 
st:=time():ci3000:=ci(3OOO);TIME=time()-st; 

ci3000 := 397394226558004303969667626329928604465422787974692638585\ 
1866495004922570988075660416 11920517888566 12438932455042894242261\ 
98520 180922584421750072 1836490767140642033 10083632567767415172067\ 
841999633718492797074653404851457323010 10641050098684274257365199\ 
1378223724443336 1269423503586591923413365267497746522612042343579\ 
98552079846008614827866733144744790062587645381614992065639928989\ 
22176213528121641266392970547509044520778863330676675756260 172220\ 
6825273593035 1740052707088091527978974205542907473424016521733709\ 
67513280441447278623441263759506502174241062869 172206 142639953166\ 
54389779617495772217162649241721882792749451418158467219803608574\ 
787209256948729083871163 148476352370777889846254639890233 12498435\ 
1855791328228356589571 1064751764559174802839190591521920823022518\ 
871 74822606608880100149943700257493477167147384178225891889820353\ 
8558581212093223599723994329544649406809 1066640053838919047956769\ 
7266007747341 81 120871309444752033390 10828320647579087130 128054770\ 
91837377802346759700569037464783615486742954483536573488991071068\ 
7 154942 140703 146 14623037 1979 13047820 1834269283288204359 15 100231 10\ 
3 1293005242531470895293067784332495064516014589005554899748197563\ 
4920583535406450710640523146779535557567030282038902341653863 1471\ 
81378658408088690165050227055367416831696109349032728935178047734\ 
77081712316841606637929084143567929373204739515372233653848975792\ 
803 11277048572560033893354349469272337780387 1679071 34294457934204\ 
76320 

TIME = 13.147 

The computation requires only 13 seconds of CPU time. The value of the result is 
approximately 3.97 

Note that,  by starting the computation with floating point numbers, the whole 
computation is performed using the accuracy given by the Maple environment vari- 
able Digits. Here, the recurrence is stable and the computation time drops to 3.6 
seconds. 
st:=time():Digits:=i4:cf:=subs(3500=35OO.O,op(ci)): 
cf3000:=cf(3000);TIME=time~)-st; 

cf3000 := .39739422655366 
TIME = 3.590 

(cf3000-~i3000)/ci3000; 
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-. 10921 145074478 10-l' 
Such techniques are used for instance for estimating the probability of occurrence 

of patterns in DNA sequences, under a simple model of randomness. In this case, 
the generating function is rational and it is required to find coefficients of large 
orders (often several4housands) that are dictated by the lengths of DNA fragments 
under consideration2. 

PROBLEM 5 
W h a t  is the largest zero of  the 1000th Laguerre polynomial to  12 sig- 
nifican t digits? 

The asymptotics of the zeroes of the Laguerre polynomials are known and could 
be used to compute the result efficiently. It is also possible to use a computer alge- 
bra system to perform the computations leading to the corresponding asymptotic 
expansion. We refer to Abramowitz & Stegun [l] and to Szego [9] for details on 
this approach. 

Instead, we proceed numerically using two informations: 
- the explicit form of the nth Laguerre polynomial: 

- the well-known fact that the roots are positive real numbers. 
A classical technique to compute the largest root of a.polynomia1 is the Graeffe 

process 1131. It is based on the iteration P ( x )  I-+ P ( a P ( - & ) ,  which transforms 
a polynomial P into a polynomial of the same degree whose roots are the squares 
of the roots of P .  Thus the square root of the sum of the roots of P is closer to the 
largest root of P than the sum of the roots of P .  Iterating this process converges 
to the largest root of P when, as in the Laguerre polynomials, there is only one 
root of largest modulus. When all the roots of P are positive real numbers, it is 
easy to see that each of the approximations provided by this method is larger than 
the actual root. 

For polynomials of large degree, the mere computation of a product is very 
time-consuming. In this particular example, Maple needs 44710 sec. to compute 
the product used in the first iteration of the Graeffe process. However, since we are 
only interested in the sum of the roots of these iterated polynomials, not all the 
coefficients of these products need be computed. For instance, to compute both 
leading coefficients of the product of two polynomials, it is only necessary to know 
two coefficients of each of them. Thus to compute eight iterations of the Graeffe 
process, we only need 2' = 256 coefficients of L ~ O O O .  

To simplify the computation, we work with the reciprocal of the polynomials: 
n : =IO00 : 
nb_iter:=8: 
nb-terms:=2^nbViter: 
c[O] :=I: for i to nb-terms do c[i] :=-(n-i+l)^2/i*c[i-l1 od: 
This is the series expansion of xloaoLlooo(z-l) to the order 256: 
S:=add(c[i]*x^i,i=O..nb,terms): 

2See the URL http://www-rocq. inria.fr/dlgo/libraries/autocomb. 

http://www-rocq
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We now compute the Graeffe iterations and print the corresponding estimate for 
the largest root: 
for i to nb-iter do 

S:=series(S*subs(x=-x,S),x,nb-terms+l); 
nb-terms :=iquo(nb,terms ,2) ; 
for j from 0 to nb-terms do cCjl :=coeff(S,x,2*j) od; 
S : =add(c Cjl *XI j , j=O . . nb-terms) ; 
estimate:=evalf((-coeff(s,x,i)/coeff(s,x,o))-(i/2-i)); 
print(i,estimate) 

od : 

1, 44710.17781 
2, 10871.93993 
3, 5875.424153 
4, 4557.080810 
5,  4131.575859 
6, 3992.655417 
7, 3952.663782 
8, 3944.199951 

As mentioned above, this sequence of values provides increasingly good estimates 
for the largest root, which is smaller than all of them. At this point, it is a good 
idea to use the Newton-Raphson method with the last estimate as initial value. 
The method will converge to the largest root since the polynomial has positive first 
and second derivatives in that area by Rolle’s theorem. 

The following procedure evaluates Ll,-,oo(z) and its derivative. Also, it returns 
the largest summand encountered during the computation, which makes it possible 
to check a posteriori whether the precision used in the intermediate computations 
was sufficient. 

luglOOO := proc (x )  
loca lc ,  IC, do, d l ,  muxc; 

c := 1 ; dU := 1 ; d l  := 0 ; mum := 1 ; 
for IC to  1000 do 

c := (IC - 1001) x C/k ; 

if maxc < (-l)k x c then maxc := (-l)k x cfi  ; 
d l  := d l  + c ;  
c : = c  x x / k ;  
dU := do + c 

od; 
[ d o ,  d l ,  masc] 

end 

Experiments show that a precision of 300 digits is sufficient. 
Digits : =300 : 
We then just have to run the Newton iteration a few times: 
for i to 7 do 

r:=lagi000(estimate); 



SIGSAM CHALLENGES 43 

estimate:=estimate-r Cil /rC21; 
print(i,time(),evalf(estirnate,40)) 

od : 

1, 15.007, 3943.554169639569910236033441208347213568 
2, 16.913, 3943.288156587100771812724414055574813853 
3, 18.903, 3943.248208728579495923271549680060251158 
4, 20 360, 3943.247395 1762546539075205020759271 02493 
5 ,  23 .O 11, 3943.247394845271007 150933475723163321 646 
6 ,  25.103, 3943.247394845270952389728 107754944655528 
7, 27.2 12, 3943.247394845270952389728 107753445640963 

evalf (estimate, 12) ; 
3943.24739485 

It takes five iterations and a total of 23 sec. since the beginning of the session 
to get 12 significant digits. Each new iteration then takes approximately 2.2 sec. 
and roughly doubles the number of significant digits. A lot more precision can 
then be attained by increasing Digits for each iteration. The computation requires 
approximately 55 Mb of memory. This huge memory consumption comes from the 
product of series which is not as efficient as one would like it in Maple. 

PROBLEM 7 

Define functions f and g czs follows: 

f (z)  = tan(tanh(sin(z))) - tan(sin(tanh(z))) 
+ tan (t anh (sin h ( E  ) ) ) - tan (sinh (t anh ( z) ) ) 
+ tanh( sin( tan( z))) - tanh (t an( sin (z)) ) 
+ sin( tan( tanh( x))) - sin (t anh( tan (z))) 
+ sinh (t an (t  anh( x) ) ) - sinh (t  anh (tan ( E )  ) ) 
+ t anh (sinh (t  an (z) ) ) - t anh (tan (sinh ( E  ) ) 

+ tanh(sin(sinh( z))) - tanh(sinh(sin( z))) 
+ sin(sinh(tanh(x))) - sin(tanh(s~nh(x))) 
+ tan( sin(sinh( z))) - tan(sinh(sin( z))) 
+ sin(sinh( tan( z))) - sin( tan(sinh( z)) ) 
+ sinh (t an( sin( x) ) ) - sinh( sin( t an( E ) ) )  

g (z) = sinh( tanh (sin( z))) - sinh(sin( t anh( z))) 

What is 

to 9 significant digits? 
This is simply obtained by series expansions to a moderate order: 
st :=time() : 
F : =tan (tanh (s in (x) ) ) -tan ( sin (tanh (x) ) + 

tan(tanh(sinh(x)))-t~(slnh~tan~(x)))+ 
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tanh(sin(tan(x)))-tanh(tan(sin(x)))+ 
sin(tan(tanh(x)))-sin(tanh(tan(x)))+ 
sinh(tan(tanh(x)))-sinh(tanh(tan(x)))+ 
tanh(sinh(tan(x)))-tanh(tan(sinh(x))): 

num:=series(F,x,l7)'; 

215 + O ( P )  7769 
3274425 

num := 

G:=sinh(tanh(sin(x)))-sinh(sin(tanh(x)))+ 
tanh(sin(sinh(x)))-tanh(sinh(sin(x)))+ 
sin(sinh(tanh(x)))-sin(tanh(sinh(x)))+ 
tan(sin(sinh(x1) 1-tan(sinh(sin(x) ) )+ 
sin(sinh(tan(x)))-sin(tan(sinh(x)))+ 
sinh(tan(sin(x)))-sinh(sin(tan(x))): 

den : =series (G, x, 12) ; 
4 
63 

den := -zl' + 0(zl2)  

series(subs(x=den,num)/subs(x=num,den),x,infinity); 
245 14478609520577408 17096729600000000000000000000 

8010344875 1723203083 149895 150908444280 1 + O(X)  

evalf (op(i,"), i o )  ; 
.3060352456 lo1' 

time ( ) -st ; 

1.301 

This computation requires less than 2Mb and 1.3sec. 
It would be desirable to have the system compute automatically the first or- 

der expansion, increasing the order of intermediate expansions if necessary. The 
difficulty there consists in recognizing that the function under consideration is dif- 
ferent from 0. In sufficient generality this is undecidable [4], but these functions f 
and g fall into a class where this can be done modulo a zero-equivalence test for 
elementary constants [5]. 

PROBLEM 8 

What is 

I n tanh(- arctan(n) sinh-'(n)) 
2 

n = l  

to 14 significant digits? 
As the analysis below shows, this product is convergent. Its terms tend to 1 

reasonably fast, so that the numerical value can be obtained from the computation 
of a truncation of the product and an asymptotic analysis of the rest. By taking 
a logarithm, we can work with a sum rather than a product. Then the general 
principle is as follows [lo, p. 1631: if f ( x )  = fnz", then formally at least 

a3 03 

k = l  n=2 
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We thus start by computing an asymptotic expansion of the log of the nth term. 
This is made slightly difficult by the inability of the current version of Maple to 
handle non-rational exponents in the expansions. 

st:=time(): 
Order:=20: 
S:=asympt (1/2*arctan(n)*arcsinh(n) ,n) ; 

1 -$ln(2) - $ln(n)  1 n +-- 4 n 16 n2 
S := -n(ln(2) + ln(n)) + 

-i + ln(2) + ln(n) 3 n 
n3 128 n4 + . '  - -- + 

and more terms that we do not display which follow the same pattern, 

S I  :=Pi/4*ln(n) ; 

We first isolate the leading term which we shall treat specially. 

1 SI := -nln(n) 4 
s2 : =s-si : 
convert(tanh(x),exp); 

(ex)2 - 1 
1 (ex)2 + 1 

We use n3i4/T(n) to denote es l  = n?r/4, which implies that T (n )  is of asymptotic 
order n-.035. Besides, we set n = N 2  in order to work with polynomials later. We 
start by computing the expansion of e-2s: 

uu:=asympt(exp(-2*subs(n=N*2,S2))*T*2/N^3,N): 

Then we substitute this in the expansion of ln(tanh(z)): 

res:=asympt(subs(x=uu,ln((i-x)/(l+x))),N): 

We are now in a position to sum these terms for n from M to infinity, for some M 
that we'll choose later. There we use the property that 

.- n=M n = l  

of which Maple's sum function is only aware when IC = 0. We change the variable to 
a variable tending to 0 in order to work with polynomial coefficients. The notation 
below denotes the truncated sum on the left. 
res:=subs(ln(N)=-U/2,N=i/nn,convert(res,polynom~~: 
for i from 3 by 2 to Order do 

p:=expand(coeff(res,nn,i)); 
lco:=[coeffs(p, [T,UI , '1exp')l ;lexp:=[lexpl; 
Res [i] :=add(lco[j] *Zetabar(degree(lexp[jl ,VI, 

degree(lexp[j],T)*(Pi/4-3/4)+i/2),j=i..nops(lco)) 
od : 
Res : = [seq(Res [i+2*i] , i=i . . iquo (Order, 2) -111 ; 
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where the dots indicate several pages of the same kind of output. 
The terms of this list are the successive contributions of the asymptotic expan- 

sion. We now evaluate them for M = 100 and then multiply by the first terms of 
the product to obtain the desired approximation. 

'evalf/Zetabar' := proc(k, s) 

locali, M ;  
global Log, ims; 

M := 100; 
if not assigned(ims[M - 1, 33) then 

fori  to  M - 1 do ims[i, s] := evalf(i(-")) od fi ; 

if not assigned(log[l, M - 11) then 
for i  to  M - 1 do Log[l, i] := evalf(log(i)) od fi ; 
if not assigned(log[k, M - 13) then 
for i  t o  M - 1 do Log[lc, i] := Log[l, ilk od fi ; 
evalf(C(k, 9)) - (-l)k x add(log[k, 23 x ims[i, s], i = 1. .M - 1) 

if IC # 0 then 

else evalf(C(s)) - add(ims[i, SI, i = 1..M - 1) 
fi 

end 

The symbolic part of the computation has taken the following time: 
time()-st; 

1.811 

We now turn to the numerical computation: 
Digits:=30: 
res:=evalf(Res); 

res := [ - .0853768838817694213477267592802, 
- .00184894169929780869723978287630, 
- .0000303039644558945161195070130797, 
- .350526064332901053341251097304 

- .268080484811869025819048283146 
- .110204653888531983348874288239 lo-'', 
- .470151160346022439444595984011 

- .271482094920976202629908971233 

- .909829054007018877303913867423 

These are the successive terms of the approximation of the truncated sum. Here is 
the end result: 
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exp('+'(op(res>)>*mul(evalf (tanh(arctan(i)*arcsinh(i)/2)) ,i=l. .99) 
evalf  (I' ,14) ; 

.084439684030189 
The total time required for this computation is 
time()-st; 

30.381 
The same method applies to Problem 3, but is rendered more delicate by the 

non-rational exponents that have to be dealt with, like n/4 in the present example. 
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