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ABSTRACT 

Consider a tree partitioning process in which n elements are split into b at the root of a tree 
( b  a design parameter), the rest going recursively into two subtrees with a binomial 
probability distribution. This extends some familiar tree data structures of computer 
science like the digital trie and the digital search tree. The exponential generating function 
for the expected size of the tree satisfies a difference-differential equation of order b,  

The solution involves going to ordinary (rather than exponential) generating functions, 
analyzing singularities by means of Mellin transforms and contour integration. The method 
is of some general interest since a large number of related problems on digital structures 
can be treated in this way via singularity analysis of ordinary generating functions. 0 1992 
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1. INTRODUCTION 

We deal with a recursive (tree) partitioning process that depends on some fixed 
integer parameter b. Given n items, with n > 6 ,  the process puts b of them aside 
in the root of a binary tree. The remaining n - b 
subgroups (subtrees), each of them flipping an unbiased 
the first subgroup (the left subtree) has size k is thus 

items separate into two 
coin. The probability that 
the binomial probability, 

The subgroups again split recursively by the same process. If a group has a 
cardinality n such that n 5 b, then its recursive splitting stops. A realization of this 
process is clearly attached to a particular binary tree in which internal nodes 
contain b items, while external nodes contain between 0 and b items. Nodes 
corresponding to groups of cardinality 0 are called empty nodes. 

When b = 1, we obtain in this way the classical digital search tree structure 
invented by Coffman and Eve in 1970 [14, p. 4891, [21, p. 2451. For b = 0, the 
process defined above determines an infinite tree; however, if we retain only a 
suitable “finite” part of the tree, we obtain the classical search ‘‘trie” [14, p. 4811, 
[21, p. 2481. For general b, the corresponding tree structure seems to have been 
the basis of a folk algorithm in the late 1970s for maintaining paged hashing 
tables: the idea there is to replace the usual chaining technique by a faster 
dichotomic access based on bits of hashed records. 

Concerning such classical random tree models, we direct the reader to 
Mahmoud’s recent book [18]. 

Let fn be the expected number of nonempty nodes of a tree constructed by the 
basic splitting probabilities (1). (In computer implementations empty nodes need 
not be represented effectively thanks to the use of “null” pointers). We propose 
to analyze fn  as a function of n ,  when the parameter b is kept fixed (we shall 
suppress the dependence upon b except where it is important). The basic 
recurrence is 

with T~ 

generating function (EGF), 

the Bernoulli probability of Eq. (1). 
We introduce the ordinary generating function (OGF) and the exponential 

n 2 0  

Lemma 1. The exponential generating 
differential equation 

function f(z) satisjies the difference- 
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( 3 )  

with initial conditions 

The model includes as subcases the usual model of tries (6 = 0) and the usual 
model of digital search trees ( b  = 1). When b = 0, 1, there is a route by now 
classical [8, 141 to such equations; it consists of an asymptotic analysis with several 
stages: (i) explicit solution of the functional equation; (ii) a Taylor expansion 
providing the coefficients; (iii) analysis of the coefficients via either Mellin 
transforms or contour integrals of the type used in the calculus of finite differ- 
ences (the so-called “Rice’s method”). We refer to [8] for a partial survey of 
these techniques. 

The itinerary we follow here is different. It starts with the observation that 
corresponding ordinary generating functions satisfy functional equations of a 
simpler form that can be solved by iteration. Mellin transforms are then used to 
determine the behavior of these OGF’s near the dominant singularity, z = 1. This 
singularity is an accumulation point of simple poles. The behavior of the OGF 
F ( z )  is determined by Mellin transforms, through an analysis that requires 
extended asymptotics in the complex plane; see e.g., [7] for other examples. 

Mellin transforms are computed here via standard techniques of contour 
integrals. They involve higher order basic hypergeometric functions, and in the 
particular case of b = 2, they lead to q-Bessel functions. 

We find that near 1, F ( z )  satisfies 

where s ( u )  is a periodic function of u with mean value 0. We can then apply the 
technique of singularity analysis (for a comparable situation, see Odlyzko’s 

Fig. 1. A generalized tree corresponding to b = 5 ,  with n = 31 items. The tree has eight 
nonempty nodes, and one empty node. 
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counting of 2-3 trees [20], and [6] for general theorems). This enables us to derive 
an asymptotic form off,, from the singular expansion ( 4 ) ,  

where S is also a periodic function with mean value 0, see Theorem 1 below. 
The path taken here is thus a two stage analysis based on (complex) Mellin 

asymptotics combined with singularity analysis in the style of [6].  A similar two 
level procedure where (complex) Mellin asymptotics is combined with the saddle 
point method constitutes the method of Meinardus in the asymptotic theory of 
integer partitions [2].  

Corresponding to a few values of b ,  here are values of qo = qO(b) ,  as computed 
by numerical integration. 

q0(2)  = 0.5747 

qo(3) = 0.4069 

q0(4)  = 0.3159 

q0(5)  = 0.2585 

qo( 10) = 0.1360 . 

As a byproduct of the analysis, we obtain the estimate qO(b)  =r ( b  log 2)-’, for 
large b. In the context of paging in computer applications, this means that nodes 
tend to be about 69% full (log 2 = 0.69). Interestingly enough, the same filling 
ratio is achieved by paged tries and various dynamic hashing strategies [ 5 ,  161. 
Hoshi and Flajolet [ l l ]  provide a review of page occupation in similar tree 
structures. 

2. A STREAMLINED ANALYSIS 

In this section, we present the major steps of the analysis in all detail, except for 
some more technical Mellin transform computations that are relegated to the next 
seytion in order not to obscure the proof structure too much. 

. 

Our purpose here is to prove the following result: 

Theorem 1. The expected number of nonempty nodes in a random tree built f rom 
n elements satisfies 

where 

(1 + t )b- l  
0 [(1+ t ) ( l  + t / 2 ) ( 1 +  t / 4 )  - * I b  I r  dt 7 qo = 

and S(u) is a periodic function with mean value 0 and Fourier expansion 
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with 

A. Basic Equations 

We obtain first an explicit form of the 3GF, F(z). 

Lemma 2. The ordinary generating function F(z )  is given by 

F(Z) = - 1 G( +) 
1 - z  1 z ' 

where 

and P(z )  = z(l + z)'-l. 

Proof. Like several other analysis on digital trees, we start by setting 

The induced differential equation of g(z)  i s  

or equivalently for coefficients (n  > b )  

It is now natural to solve this recurrence by the use of ordinary generating 
functions. Let G ( z )  = E gnzn. The relation between f, and g, first gives rise to 

the functional relation F(z) = (1 - z ) - 'G(z / ( l  - z ) ) .  The recurrence relation on 
the g, leads to the simple functional equation (multiply by zn+* and sum), 

nz0 

G ( z ) ( l  + z ) ~  = 2zbG( i) + P(z )  , (10) 

where P(z)  is obtained by adjusting the terms of order 0 to b, using the relations 
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Finally, the solution of the functional 
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equation (10) is obtained by iteration: 

C ( z / 2 )  
P(z )  + 2zh 

G ( z )  = 
(1  + z)b (1 + z y  

2zb * 2(z/2)b + G(zi4) ? (1 + z)b (1 + z )b  * (1 + t / 2 ) b  (1 + Z ) I ,  (1 + Z / 2 y  
c P(Z) + 2zb * P(z12) - 

and so on. 

A closely related form of G(z)  is also especially useful: 

with p ( z )  a reciprocal fu~ct ion of P(z) ,  

F(2)  = z"( 1 / z )  = (1 + Z y - l  I) 

Thus generating functions admit expansions as sums of rational €unctions. 
These rational functions can in turn be expanded into partial fractions. From 
there, expressions could be derived for the coefficients f,: these expressions 
appear to be somewhat impractical when b exceeds 2, so that we do not at temp^ 
to make them explicit; for b = 0, 1, they coincide with the forms obtained for tries 
and standard digital trees by classical methods, and we thus have a new way of 
carrying out these analyses. 

The singularities of F(z) and G(z) are also apparent from these expressions: 
G ( z )  has singularities at z = -2) with accumulation point at -m; accordingly, F(z)  
is singular at z = (1 - 2- ) , for k = 1, 2 ,  . . . , and at their accumulation point 
z = 1. 

k -1 

B. Meflin Transforms 

The idea is to estimate G(z)  as z tends to a directly, for z in a neighborhood of 
+a. This asymptotic expansion provides via the mapping z t+ z / ( l  - z )  the 
behavior of F(z)  near its singularity z = 1. The analysis relies on Mellin trans- 
forms (see [4] or [23] in the context of analysis of algorithms)~ 

The convenient form is to set z = l l t  and we need to consider t-+ 0. Define 
first 

Then, from Lemma 1, we have 
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By introducing the infinite product, we have thus reduced the analysis of G(t - ’ )  
to that of the sum, 

Ocl F(2kt) 
H( t )  = z 2k 

k = o  Q”(2’t) ’ 

a particular case of a ‘‘harmonic sum” which is naturally treated by Mellin 
transforms. 

We recall that the Mellin transform of a function $(t)  is the function denoted 
$*(s) such that 

m 

$*(s) = 1 $(t)t”-’ dt . 

Lemma 3. The Mellin transform of H(t )  = G(t- ’ ) /Qh( t /2)  is defined for %(s) > 1 
and it satisfies 

Proof, Let us write h( t )  = P(t ) /Q( t ) .  Since h(at) transforms into a-Sh*(s), by 
linearity, the Mellin transform of H(t )  is found to be 

Sufficient conditions for the validity are: (i) the absolute convergence of the 
sum, which means %(s) > 1; (ii) the absolute convergence of h*(s)  which necessi- 
tates B(s) > 0. 

C. Mellin Analysis 

It is not too hard to use Mellin analysis in order to establish estimates for G(z)  
when z tends to +a along the real line, and accordingly, for F ( z )  when z tends to 
1 along the real ray [ O ,  11. Some of the difficulty of our problems comes from the 
fact that we need a continuation into the complex plane of these asymptotic 
expansions. 

As is usual in a Mellin analysis, we apply the inversion theorem in order to 
recover H ( t )  from H*(s).  We have 141 

Apart from the explicit form of H*(s) ,  we also require in passing some growth 
estimates for the Mellin transform h*(s) 

b-1 - w / x ~  h * ( c + i x ) = O ( I x (  e ) asx-+-La, forc>O 

whose proof will be deferred till the next section (see Lemma 5). 



31 2 FLAJOLET AND RICHMOND 

Lemma 4. The function F ( z )  satisfies locally around z = 1, IArg(z - 1)1 > n / 4 ,  

[qo  + 3(10g,(i - z)-')] + o( (1 -  z ) - ~ ' , )  , 1 
F ( z )  = 

(1 - z ) ,  

where s(u) is defined by the Fourier expansion 

1 2ikn 
j(,) = - h*( tk )  with t k  = 1 4- - 

log2 k€Z\O log2 * 

Proof. We apply the standard technique of Mellin analysis and in the inverse 
Mellin integral (11) we shift d to the left. If t = rei', 

Thus from the fundamental growth property (12), we can choose any d > 0 in 
order to ensure the convergence of ( l l ) ,  provided IArg(t)I < n and we avoid the 
line of poles of (1 - 2  

Recall that the standard technique is to pick a contour consisting of two 
vertical lines with real parts d and d , ,  and two horizontal lines with I 9 ( s ) I  + +a 
that pass in between the poles of H*(s) ,  at 19(s) l  = 2in(k + 1/2)/log 2. The 
smallness properties implies that the integrals along horizontal lines are neglig- 
ible. By Cauchy's residue theorem, we thus get 

1-s - 1  ) , i.e., d = 1. 

provided we take, as we may, d ,  = 1/2.  Now the singularities of H*(s)  are at the 
points 

2ikn 
& = 1 + -  log2 

k an integer. These are simple poles with residue h*( t k )  /log 2. Thus, from (13), 
and using the fact that Q(t/2) = 1 + O(t ) ,  we find our main estimate 

The residues at the nonreal poles contribute a Fourier series in log,t, 

By the growth conditions on h*(s),  this series has exponentially fast convergence. 
From these developments, the asymptotic form of F(z )  finally follows via the 

basic relation F(z )  = (1 - z)-'G(z/(l - 2)). The validity condition IArg(t)l< n 
for Mellin inversion is amply fulfilled since we have assumed IArg(z - 1)1 > n / 4 .  
We find qo = h*( l )  /log 2, and periodic fluctuations in the form of the Fourier 
series 3. 
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D. Singularity Analysis 

We now need to translate term by term an infinite number of periodic fluctua- 
tions. The situation is identical to the case of 2-3 trees treated by Odlyzko 1201 
and also to that of register allocation in [7]. 

The basic method is the one called singularity analysis and detailed in [6]. Let 
fz"]a(z) denote the coefficient of Z" in the Taylor expansion of a(z) .  We have the 
following "transfers" from functions to coefficients, 

([2"](1- z)-2 = n + l  

The last relation is applicable in the context of our problem since the singular 
expansion holds in an extended area of the complex plane, as guaranteed by 
Lemma 4. 

From these principles, we derive 

which, apart from notational details, coincides with our main estimate in the 
statement of Theorem 1. 

3. MELLfN INTEGRALS AND Q-ANALOGUES 

We now establish some of the properties of the MeIfin transform h*(s) that are 
needed in order to complete the proof of Theorem 1. The computations de- 
veloped here also provide alternative series forms for the integral representation 
of qo and reveal some connections with basic hypergeometric functions that are 
especially useable for low values of b (we work out the case b = 2). Finally, they 
show that the periodic fluctuations in the form of the function S(u) are from a 
standard set of functions encountered everywhere in this range of problems. 

It will prove convenient to operate here with the simple Mellin integral 

ts-' dt , 

on whose properties we now concentrate. Properties of I*(s) easily carry over to 
h*(s) because of the relation 

b - 1  
j = O  

Lemma 5. The fun~t ion I* ( s )  u d ~ ~ t s  the repres~nt~tion 
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7T I*(s)  = ~ [A,(2“) + (S - l ) A  , (2”) + * * * + 
sin T S  

where the A,(x)’s are entire functions. 

We observe right away that the A,(2”) are themselves entire functions of s with 
the complex period 2inllog2, and thus they stay bounded as s = c + ix when 
x+ +a. Therefore, 

This is sufficient to justify the growth estimates used in the previous section. 

Proof. We find it useful to write the Mellin transform as a loop integral, using a 
Hankel contour. Let 

where X denotes a contour that goes from +a - io, circles around 0 clockwise 
and returns to +a + io. 

Then by a standard argument [24, p. 2441 comparing the determinations in the 
upper and lower half planes, we find 

J ( s )  = 2i sin(Ts)Z*(s) . 

By another standard argument (see [24] again) we can evaluate the loop integral 
by residues, 

Each residue provides one term in the power series expansion of the A,(x) .  
We now describe a procedure to calculate a residue for any fixed b. The 

problem is to expand the integrand till order b - 1 around t = -21, j an integer. 
First, we observe that 

Thus the problem reduces to evaluating the ( b  - 1)st coefficient in the expan- 
sion of the quantity inside square brackets at t = -2’. Let X ( t )  represent the 
product 

X ( t )  = n (1 + t2- f ) -b  
l # j  

From Eq. (15), we expand separately around t = -2’ the two quantities, X ( t )  and 
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( - - t )"- ' .  We set t = -2' + w. First we have 
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(1 -s)(2-s)  (2 )2+ w e * - ] .  (16) 
2! 

We next proceed to expand X(-2' + w) around w = 0. We have 

X(-2' + w )  = n (1 - 2-/+9-b n (1 + 
l # j  1 # j  

Now, 

log(l+ &) = x (- 1)" W" 

u>l  ff (2'-2')* 

Set 

m m 

Qm = (1 -2-I) and Qm = T]I (1 - 2 - I ) .  
1 = 1  1 = 1  

From the major equations (15-18), we get at last (!) 

(1 - s)(2 - S) * * ( k  - S) 
b-1  . c  k!2jk ' b - l - k ( j )  7 (I9) 
k=O 

where the Yo( j )  are defined by 

Finally 

2 - b'(J + 

W c (-l ) jb  
( - l ) k  1 

Ak(X) = - * - 
k !  Q: j = o  Q ;  

- l - k ) j  , (21) 

which concludes the proof of the lemma. 

The technique of using loop contours for Mellin transforms gives rise to the 
famous Hankel representation of the Gamma function [24, p. 2441. Supplemented 
by a residue calculation as done here, it is one of the ways that are used to derive 
the functional equation for the Zeta function, following Riemann. It is also the 
approach used for the computation of Mellin transforms of rational functions [22]. 

Furthermore, the forms (21) in Lemma 5 relate to the vast domain of 
q-analogues of special functions-here, basic hypergeometric series with q = 1 / 2 ;  
for this, the reader can consult [9], see especially Chapter 4, on integral 
representations. When b = 1, we have qo = 1 for obvious combinatorial reasons; 
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analytically, we are brought to q-exponentials (or q-gamma functions [3]) and to a 
classical identity going back at least to Ramanujan [lo, Chap. XI], 

1 

W j ( j - 1 ) / 2  - j ( s - l )  
9 9 

(1 - q)(1- q 2 ) - * ( 1  - 4’) 
* 2 (-1)J 

j = O  

- l r  fi 1-q“-”  -- 
s i n r s  “El  1 - q ”  e 

The forms obtained become intricate as b gets large. We cite here: 

Theorem 2. When b = 2, we have 

where A, and A ,  are q-Bessel functions, 

with 

1 
1 - 2-i + * * .  + 1 1 

and Jj(l)  = 1 +  
1 1 1 1  
1 3 7 1 5  1.-2- 1 -2-2 

a =  - + - + - + - + . . .  

the analogues of Euler’s constant and of the jth harmonic number, respectively. 

From this, we find in a matter of seconds q,(2) = 0.57470 90927 57031 98404. 

Proof. At s an integer, the representation provided by Lemma 5 has the 
indeterminate form -. We thus apply de L’HGpital’s rule, by which at an integer 
point s = 1, 2 , .  . . , we get 

0 
0 

I * ( s )  = (-1)”[2” log 2(AA (2”) + (S - 1)A;(2”)) + A ,(2”)] . 

The proof then relies on the computation of the A,’s that was detailed in Eqs. 
(19-21). 

The expression of q,(2) is thus a combination of q-analogues of the Bessel 
functions J ,  and Yo. For any given b L 2, the expressions obtained involve 
q-analogues of hypergeometrics. 

From Lemma 5 and the periodicity of the Mellin transforms h*(s) and Z*(s) 
that are implied, we also get: 
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Theorem 3. The periodic ~uctuat ion S(u) in the coeficient f, is expressible as a 
finite  ine ear c o ~ b ~ n a t i o n  of the standard functions 

Proof. This follows from the form of the Fourier coefficients of S(u),  namely 

the decomposition of I*(s )  (with its factor of vlsin vs and the periodicities of 2”)  
and the complement formula for the Gamma function. 

We conclude this section by investigating the dependency of qo = qo(6) on 5 .  
In computer applications, b normally represents a page (“bucket”) capacity, 
measured in the number of records that a disk page can contain. The value of b 
usually varies from a few tens to a few hundreds. 

We prove that for large b ,  q,(b) = 1 / ( b  log 2). Therefore, neglecting periodic 
fluctuations, the number of nodes needed to store a file of size n is about 

n 
blog2 . 

Since l / log 2 = 1.44, this represents a loss of about 44%, compared to a perfect 
packing that would require n /b  pages. Alternatively, the global storage occupa- 
tion behaves as though nodes were 69% full (log 2 = 0.69). 

Theorem 4. As b tends to 00, we have 

Proof. Take the integral representation of q,, 

and use Laplace’s method to evaluate the integral for large b. Everything rests on 
the local expansion at 0, (1 + t ) / Q ( t )  = exp(-t + O(t’)), from which there follows 
that the integral is - l ib .  

4, OTHER ANALYSES 

It should be clear from the way that our discussion was’organized that any 
suitable additive parameter of generalized digital trees will also yield to these 
techniques. We can solve recurrences of the general form 

n - h  
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I> 

where e, is the sum of a polynomial in n and of terms of the type h,6,,, that 
may be adjusted to any specific initial conditions. The resulting e4u;tion is the 
one corresponding to Lemma 2, with P(z)  being in general a rational function 
that fully characterizes the problem. This opens a new perspective on the analysis 
of digital tree structures by means of ordinary generating functions since we can 
proceed in an almost automatic fashion from a problem specification to its 
asymptotic estimates. In this way, several analyses of standard tries, b-tries, 
quadtries, or digital search trees can be cast into a unified framework. 

In order to keep our statements simple, let us say that a sequence f, fluctuates 
around ( qo - n)  if f,/n = qo + S(log, n)  + o(n) for some S(u) having period 1 and 

mean value 0. Our argument shows that if the generating function E(u)  = e,$ 
has at most a simple pole at 1 ,  then the sequence f ,  fluctuates around"(=:,, * n)  
where 

M 

p(t' dt with p ( t )  = t ( l  + t)'-'E(-) 1 . 
l + t  

For instance, taking the number of internal-external nodes in standard digital 
trees ( b  = 1 )  [SI, we find immediately from the problem specification that 

E(u)  = u and I'(t) = t / ( l  + t ) .  

Thus (!), we have: 

Theorem 5 (Flajolet-Sedgewick [SI). The average number of internal-external 
nodes in a digital search tree fluctuates around ( 4 ;  * n) ,  with 

dt . t ( l  + t)-' 
(1 + t ) ( l +  t /2 ) (1+  t / 4 ) *  * 

This is a new integral representation for the old constant 0.37204 that was found 
in [S, Thm. 21 and derived there under a sum form. 

Similarly, we can count directly the total number of nodes of various types in a 
randomly grown tree. Considering all nodes including empty nodes, we have 
E(u)  = 1 /( 1 - u);  considering nodes containing j items for 0 5 j 5 6, we have 
E(u)  = u! 

Theorem 6. ( i ) .  The average numbe~ of nodes including empty nodes in a random 
generalized digital tree  fluctuate^ around ( q * n) ,  where 

d t  . 1 ( 1  + t y  
':* == I], Q'(t) 

(ii).  The average number of nodes containing j items, 0 5  j < b,  fluctuates 
around (q;,; - n) ,  where 
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This theorem provides 
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a characterization of node occupancy in such trees that 
may be useful for paging strategies (see 1111 for a discussion). 

Finally, still in the same vein, the trees under consideration are fairly well 
balanced since their path length, computed by these methods, is found to be 
n fog, n + O(n). 

Another tree model (based on order statistics rather than random bits) is 
discussed by Mahmoud and Pittel in [19]; their model also has internal nodes that 
contain b elements and external nodes that can contain from 0 to b elements. 
They show that, under certain conditions, the model leads to an asymptotically 
Gaussian distribution for the size of the tree. A similar limit law holds for the 
number of nodes in random tries as shown by Jacquet and R6gnier [12]. In view 
of these facts, we expect the number of nodes in a generalized digital tree of size 
PI to  be asymptotically normally distributed for large n. 

Distributions of other parameters on digital search trees, corresponding to 
b = 1, are discussed by Louchard in 1171, who obtained the expected “profile” 
(i.e., the proportion of nodes at each level in the tree) of standard digital trees. 
Louchard’s result (see also [IS]) can be extended to generalized digital trees via 
our approach, and the profile is again non-Gaussian. Precise height estimates 
might yield to the probabilistic techniques of Aldous and Shields [l]. It could also 
be of some interest to investigate the variance of node levels, after Kirschenhofer 
and Prodinger revealed surprising connections between some of the correspond- 
ing asymptotic analysis and certain identities that belong to the elementary theory 
of modular forms [13]. Again, the recent book by Mahmoud [18] provides a clear 
perspective on such questions. 

We are indebted to Prof. Hosam M. Mahrnoud for rekindling our interest in this 
problem. 
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