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On the Analysis of Linear Probing Hashing1

P. Flajolet,2 P. Poblete,3 and A. Viola4

Dedicated to Don Knuth on the occasion of the35th anniversary of
his first analysis of an algorithm in1962–1963.

Abstract. This paper presents moment analyses and characterizations of limit distributions for the con-
struction cost of hash tables under the linear probing strategy. Two models are considered, that of full tables
and that of sparse tables with a fixed filling ratio strictly smaller than one. For full tables, the construction
cost has expectationO(n3/2), the standard deviation is of the same order, and a limit law of the Airy type
holds. (The Airy distribution is a semiclassical distribution that is defined in terms of the usual Airy functions
or equivalently in terms of Bessel functions of indices− 1

3 ,
2
3 .) For sparse tables, the construction cost has

expectationO(n), standard deviationO(
√

n), and a limit law of the Gaussian type. Combinatorial relations
with other problems leading to Airy phenomena (like graph connectivity, tree inversions, tree path length, or
area under excursions) are also briefly discussed.
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Introduction. Linear probing hashing, defined below, is certainly the simplest “in
place” hashing algorithm [14], [23], [38].

A table of lengthm, T [1 . .m] is set up, as well as a hash functionh that maps
keys from some domain to the interval [1. .m] of table addresses. A collection
of n elements withn ≤ m are entered sequentially into the table according to the
following rule: Each elementx is placed at the first unoccupied location starting from
h(x) in cyclic order, namely the first ofh(x), h(x)+ 1, . . . ,m,1,2, . . . , h(x)− 1.

For each elementx that gets placed at some locationy, the circular distance between
y andh(x) (that is,y − h(x) if h(x) ≤ y, andm+ h(x) − y otherwise) is called its
displacement. Displacement is both a measure of the cost of insertingx and of the cost of
searchingx in the table.Total displacementcorresponding to a sequence of hashed values
is the sum of the individual displacements of elements. As it determines theconstruction
costof the table, we use both terms interchangeably.

We analyze here the total displacementdm,n of a table of lengthm (the number of
table locations) and sizen (the number of keys), under the assumption that allmn hash

1 The work of Philippe Flajolet was supported in part by the Long Term Research ProjectAlcom-IT(# 20244)
of the European Union. The work of Patricio Poblete was supported in part by FONDECYT(Chile) under
Grant 1960881. The work of Alfredo Viola was supported in part by proyecto BID-CONICYT 140/94 and
proyecto CONICYT fondo Clemente Estable 2078/96.
2 Algorithms Project, INRIA, Rocquencourt, 78150 Le Chesnay, France. Philippe.Flajolet@inria.fr.
3 Department of Computer Science, University of Chile, Casilla 2777, Santiago, Chile. ppoblete@dcc.uchile.cl.
4 Pedeciba Informatica, Casilla de Correo 16120, Distrito 6, Montevideo, Uruguay. viola@fing.edu.uy.

Received October 5, 1997; revised January 15, 1998. Communicated by H. Prodinger and W. Szpankowski.



On the Analysis of Linear Probing Hashing 491

sequences are equally likely. The problem has an equivalent formulation in terms of the
discrete version of the classicalparking problem, originally due to R´enyi, that is of interest
in various physical problems. (AMathematical Reviewssearch with keyword “parking”
lists 58 references over the period 1956–1998, some of which point to connections
with adsorption, fracture of composite materials, dehydrochlorination, queueing systems,
packings, and so on.) The discrete parking problem is for instance described by Knuth [23,
p. 545] in the following entertaining terms:

A certain one-way street hasm parking spaces in a row numbered 1 tom. A man
and his dozing wife drive by, and suddenly, she wakes up and orders him to park
immediately. He dutifully parks at the first available space [. . .].

In this formulation, the total displacement of cars from their intended base has exactly
the same distribution as the construction cost of linear probing hashed tables as seen
by a “cycle lemma” originally due to Knuth and presented in [23]. Back to algorithmic
applications, the basic version of linear probing hashing, as described above, is based on a
first-come-first-serve (FCFS) policy; alternative priority rules exist (like last-come-first-
serve or “Robin Hood”), but total displacement remains unchanged; thus, our analysis
also applies directly to such variants of the basic algorithm.

Linear probing hashing has been the object of intense study; see the table on results
and the bibliography on pp. 51–54 of [14]. The simplicity of the algorithm goes well with
efficiency, at least when tables are not filled too much. However, despite the simplicity
of the algorithm, some of the probabilistic phenomena involved are not quite easy to
capture. In addition, there is also a special value for these problems since the first
analysis of algorithms ever performed by Knuth [20] in 1962–1963 was that of linear
probing hashing. As Knuth indicates in many of his writings, the problem has had a
strong influence on his scientific career.5

Sparse tables, by which we mean tables with a fixed filling ratioα = n/mstrictly less
than 1, tend to behave reasonably well. This has been known, in the average case at least,
since Knuth’s first analysis. We establish here that the construction cost of a sparse table
has an average that isO(n), a standard deviation that isO(

√
n), and we provide very

precise estimates for these quantities. The expectation estimate agrees naturally with the
known fact that a random search or insertion in a sparse table has expected costO(1). In
addition, we precisely characterize the distribution of construction costs and prove that
it is Gaussian in the asymptotic limit. Thus, for sparse tables, observed values of costs
are highly likely to be extremely close to what the average-case analysis predicts.

In contrast,full (m= n) oralmost full(m= n−1) tables are much less well-behaved.
The construction cost isO(n3/2) on average, a fact also consistent with Knuth’s early
analyses demonstrating that each late insertion in a table that fills up tends to contribute
with a nonconstant cost. We provide here precise estimates for the standard deviation
which turns out to be of the same order as the mean, namelyO(n3/2), an indication of the
fairly high dispersion of costs. In fact, the construction cost admits a limit distribution
that is of the “Airy type,” involving Airy functions, or equivalently Bessel functions of
orders that are multiples of one-third.

5 See the footnote on p. 529 of [23].
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The analysis starts with almost full tables (Section 2) that are the basic combinatorial
objects. The combinatorial principle on which this paper rests is abinary tree decompo-
sition of almost full tables. From this, a difference-differential equation is derived that
is the key to the analysis (Lemma 2). Moments, in either exact or asymptotic form, are
obtained by a “pumping” process akin to the analysis of other cumulative parameters
of combinatorial structures. For instance, similar methods have been used in the inves-
tigation of limit distributions for path length in trees [44], [45], the comparison cost of
quicksort [17], the area under random walks [29], [30], as well as in moment analysis of
other combinatorial structures [19].

Sparse tables (Section 3) are then treated as labeled products of (almost) full tables,
so that the corresponding generating functions involve large powers. For moments, es-
pecially for the mean and variance, the analysis results rather directly from that of full
tables. However, for the limiting distribution, a somewhat delicate perturbative analy-
sis of saddle point integrals is needed in order to derive a Gaussian law by means of
characteristic function estimates.

Globally, these results reinforce our confidence that linear probing represents an
excellent tradeoff between algorithmic simplicity and efficiency, as long as the filling
ratio is not too large, say less than 2/3 or 3/4. These conclusions also apply to linear
probing sort [13], [14, pp. 168–170], whose analysis is almost isomorphic to that of
linear probing hashing.

From the methodological standpoint, linear probing connects to a wealth of interesting
combinatorial and analytic problems. A primary rˆole is played by the tree function first
studied by Eisenstein and by the Ramanujan–KnuthQ-function whose major properties
we briefly recall in Section 1. Regarding limit laws, the Airy distribution that surfaces
in the case of full tables is also present in random trees (inversions and path length),
in random graphs (the complexity or excess parameter), and in random walks (area);
we discuss briefly in Section 4 some of the “reasons” for this fact. The Gaussian law
of sparse tables is an instance of a general combinatorial scheme of some generality:
our methods actually demonstrate that it should be expected in most cases where one
deals with an additive parameter on a random assembly of a large number of random
components.

1. The Tree Function and theQ-Functions. The main character in this paper is
the tree function that is defined implicitly byT(z) = zeT(z) and appears originally in
problems related with the counting of rooted labeled trees [8], [15], [32], [39], [47]. The
Lagrange inversion theorem provides a number of series expansion like

T(z) =
∑
n≥1

nn−1

n!
zn, T(z)m = m

∑
n≥m

nn−m−1

n!
nmzn,(1)

whereak = a(a − 1) · · · (a − k + 1). Most generating functions in this paper involve
rational fractions inT(z) with denominators that are powers of(1− T)−1. Lagrange
inversion also provides

1

1− T(z)
= 1+

∞∑
n=1

nn zn

n!
.(2)
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The asymptotic form of coefficients of any rational function ofT is also directly re-
covered by singularity analysis [7], [33]. Application of the method requires the singular
expansion ofT(z), itself obtained from the implicit function theorem.

LEMMA 1. The function T(z) has a dominant singularity at z= 1/e, and its singular
expansion there is

T(z) = 1− δ(z)+ 1
3δ(z)

2− 11
72δ(z)

3+ 43
540δ(z)

4+ O(δ(z)5),(3)

whereδ(z) = √2
√

1− ez.

THE Q-FUNCTIONS. In close association with the tree function is what Knuth has pop-
ularized under the name of the “RamanujanQ-function.” This function [1], [21]–[23],
[39] and its close relatives play a central rˆole in the analysis of many algorithms and
data structures—hashing with linear probing [20], [23], union-find algorithms [27], in-
terleaved memory [26], optimal caching [24], and random mappings [2], [6], [22], most
notably. TheQ-function is defined by

Q(n) = 1+ n− 1

n
+ (n− 1)(n− 2)

n2
+ · · · ,

or, in a way that is equivalent thanks to (1),

log
1

1− T(z)
=
∑
n≥0

Q(n)nn−1 zn

n!
.(4)

Singularity analysis of the generating function yields immediately

Q(n) ∼
√
πn

2
− 1

3
+ 1

12

√
π

2n
− 4

135n
+ · · · .(5)

An asymptotic series forQ(n) was first derived by Ramanujan [1], and tight estimates
are obtained in [4].

For the purpose of expressing the average-case analysis of sparse tables, Knuth has
extended the RamanujanQ-function as

Q0(m,n) =
∑
i≥0

ni

mi
,

so thatQ(n) = Q0(n,n− 1). From the definition, one has
∞∑

n=0

Q0(m,n)m
n tn

n!
= emt

1− t
.(6)

Basic asymptotic approximations entail

Q0(m, αm− 1) = 1

1− α −
1

(1− α)3 m−1+ 2+ α
(1− α)5 m−2− α

2+ 8α + 6

(1− α)7 m−3(7)

+ α
3+ 22α2+ 58α + 24

(1− α)9 m−4+ O(m−5).

See [35] for a general framework.
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2. Full Tables. Throughout this paper we consider tables that havem locations (m is
called the “length” of the table) and we letn denote the number of keys (the “size”).
Clearly, the number of tables (the number of hash sequences) with lengthm and size
n is mn, and such a table hasm− n empty locations. By circular symmetry [23], for
nonfull tables such thatm > n, we may freely assume that one of the empty locations
is the rightmost one.This assumption of a last empty location in nonfull tables is made
from now onwards. Whenn = m− 1, we say that such a table isalmost full. Since
there arem− n empty locations, then the probability of the rightmost cell being empty
is (m− n)/m, and therefore there aremn−1(m− n) ways of creating such tables. In
particular, the number of almost full tables ismm−2 = (n+ 1)n−1.

Inserting the last element into an almost full table yields acompletely fulltable
corresponding tom = n. Since this last element may hash to any of them locations of
the table, there aremm−1 = nn−1 ways of creating a full table in this way. In summary,
by convention, almost full and completely full tables do not “wrap around.” Clearly, the
distributions of total displacementsdn,n−1 anddn,n are not affected by such a restriction.

NOTATIONS. The analysis is carried out by means of bivariate generating functions
and moments are then recovered via a family of operators defined as follows. For any
functionG(z,q),

UG(z,q) = G(z,1), ∂qG(z,q) = ∂G(z,q)

∂q
,

ZG(z,q) = zG(z,q), ∂zG(z,q) = ∂G(z,q)

∂z
,

HG(z,q) = G(z,q)− qG(qz,q)

1− q
.

(8)

These operators act in the usual way on formal power seriesG(z,q) =∑n gn(q)zn/n!,
with eachgn(q) a polynomial; in particular,

HG(z,q) =
∑

n

gn(q)(1+ q + q2+ · · · + qn)
zn

n!
.

Mike Paterson has designed an ingenious operator framework for the “local” analysis
of displacements; see the account of the “cookie monster” in [16]. The problem of
total displacement being fully history-dependent is, however, not clearly amenable to
Paterson’s techniques.

2.1. Combinatorial Analysis. We defineFn,k as the number of ways of creating an
almost full table withn elements and total displacementk. The corresponding bivariate
generating function is then

F(z,q) =
∑

n, k≥0

Fn,kqk zn

n!
,

and it starts like

F(z,q) = 1+ z

1!
+ (2+ q)

z2

2!
+ (6+ 6q + 3q2+ q3)

z3

3!
+ · · · .
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Fig. 1.The binary tree decomposition of almost full tables.

Consider an almost full table of sizen (and lengthn+1). Immediately before the last
element is inserted, the table has two empty cells: one at some positionk+1, the other at
positionn+ 1 (see Figure 1). Then the element that is last to be inserted has an address
that is any number of the interval [1. . k+ 1], which corresponds to a displacement that
assumes any value in [0. . k]. The counting of possibilities gives rise to a recurrence on
the Fn(q) = n! [zn]F(z,q):

Fn(q) =
n−1∑
k=0

(
n− 1

k

)
Fk(q)(1+ q + · · · + qk)Fn−1−k(q).

This fundamental recurrence reflects a recursive binary decomposition of full tables. We
recognize here a product of exponential generating functions modified by the occurrence
of the H-operator defined in (8).

LEMMA 2 (Basic Functional Equation).

∂

∂z
F(z,q) = F(z,q) · F(z,q)− q F(qz,q)

1− q
.(9)

In operator notation, this reads simply as∂zF = F · HF .
Let similarly Cn,k be the number of completely full tables of sizen with total dis-

placement equal tok, and letC(z,q) =∑n,k Cn,kqkzn/n! be the corresponding bivariate
generating function. Since a completely full table of sizen + 1 is created by inserting
the last element in an almost full table of sizen, we have, from the definition of the
H-operator,

∂zC(z,q) = HF(z,q).

Note that the basic functional equation together with this last relation implies the addi-
tional relations

F(z,q) = eC(z,q) or C(z,q) = log F(z,q).(10)

Not surprisingly, the analyses of total displacement in full and in almost full tables are
thus closely related.

2.2. Moments. For total displacement in almost full tables, what we call the generating
function ofr th factorial moments is, by definition,

fr (z) := U ∂r
q F(z,q) = ∂r

∂qr
F(z,q)

∣∣∣∣
q=1

.(11)
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This name is justified by the fact that ther th factorial moment of total displacement is
given by

E[d (d − 1) · · · (d − r + 1)] = [zn] fr (z)

[zn] f0(z)
, where d ≡ dn,n−1.

The basic functional equation (9) implicitly contains all the information about mo-
ments. We now develop properties of the family of operators introduced in (8) that are
designed to extract such moments explicitly.

First, we rederive the enumeration of full tables. What is needed isf0(z) := UF(z,q),
whereF is determined by (9). Now, from the action of H on power series, one has

UH = ∂zZU or equivalently UHF(z,q) = ∂

∂z
(zF(z,1)).

Thus, f0(z) satisfies the nonlinear differential equation obtained by applying U to (9):

Y′(z) = Y(z)(zY(z))′.

This equation is equivalent to(logY(z))′ = (zY(z))′, and soY(z) = ezY(z). In other
words,

f0(z) ≡ F(z,1) = 1

z
T(z) = eT(z),

whereT(z) is the classical tree function. Therefore, by (1), the number of almost full
tables is(n + 1)n−1. Similarly, by (10), UC(z,q) = log( f0(z)) = T(z) so that the
number of completely full tables isnn−1. These values are in accordance with what we
know already from direct combinatorial reasoning.

A similar device produces moments upon applying U∂r
q to the fundamental equa-

tion (9). What is needed is a “commutation rule” for thelinear operators U∂r
q and H.

This is readily found forr = 1 since

U ∂qH(znqk) = U ∂q((1+ q + · · · + qn)znqk) = ((1+ 2+ · · · + n)+ (n+ 1)k)zn.

Thus, symbolically

U ∂qH = 1
2Z ∂2

z Z + U ∂zZ ∂q,

and, by similar devices,

U ∂2
qH = ∂zZU ∂2

q + Z ∂2
zZU ∂q + 1

3Z2 ∂3
zZU.

As a consequence,f1(z) and f2(z) satisfy the following linear ordinary differential
equations,

LY = 1
2z f0(z f0)

′′,(12)

LY = z f1(z f0)
′′ + 2 f1(z f1)

′ + 1
3z2 f0(z f0)

′′′ + z f0(z f1)
′′,(13)

whereL is the differential operator

LY = Y′ · (1− z f0)− Y · ((z f0)
′ + f0)(14)

= Y′ · (1− T)− Y · T(2− T)

z(1− T)
.
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The corresponding homogeneous ordinary differential equation,

LY = 0,

admits the solution

Y(z) = eT(z)

1− T(z)
.

The variation-of-constant method then applies to the inhomogeneous differential equa-
tions (12) and (13) that are both of the form

LY(z) = R(z),

and yields the solution

Y(z) = eT(z)

1− T(z)

∫ z

0
R(u)e−T(u) du.(15)

The quantities appearing in these differential equations can be expressed as functions of
T(z) alone sincez = T e−T anddz= (1− T)e−TdT. Thus the integrations needed in
the variation-of-constant method all eventually reduce to integration of elementary func-
tions for which decision procedures exist. We then obtain mechanically the generating
functions of the first two moments for an almost full table. (This is, for instance, well
within the capabilities of the computer algebra system Maple.)

LEMMA 3 (Almost Full Tables, Generating Functions for the Moments).

z f1(z) = 1

2

T3(z)

(1− T(z))2
,

z f2(z) = 1

12

T(z)4(24− 11T(z)+ 2T(z)2)

(1− T(z))5
.

Foracompletely full table, thecorrespondinggenerating functions result fromLemma3
and (10):

U ∂qC(z,q) = f1

f0
= 1

2

T2

(1− T)2
,(16)

U ∂2
qC(z,q) = f2 f0− f 2

1

f 2
0

= 1

12

T3(24− 14T + 5T2)

(1− T)5
.(17)

Explicit expressions for the coefficients of functions appearing in (16) and (17) are
then obtained from the expansions (2) and (4). SinceT(z) satisfies the differential relation

(Z ∂z)T(z) = T(z)

1− T(z)
,

the class of functions{
(Z ∂z)

r 1

1− T

}∞
r=0

,

{
(Z ∂z)

r log
1

1− T

}∞
r=1

,
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spans a linear space that contains all the rational functions of the formA(T)/(1− T)r ,
with A a polynomial of degree< r . As a consequence, for any such rational function of
T , there exists an expansion

[zn]
A(T(z))

(1− T(z))r
= nn−1

n!
(U (n)+ V(n) Q(n)) ,(18)

for some polynomialsU andV that can be mechanically determined.

THEOREM1 (Full Tables, Exact Form of Moments).

E[dn,n] = n

2
(Q(n)− 1),

E[d2
n,n] = n

12
(5n2+ 4n− 1− 8n Q(n)).

Thanks to (3), singularity analysis applies directly to the solutions (16) and (17).
(Alternatively, the explicit forms of Theorem 1 can be used in conjunction with (5).)

THEOREM2 (Full Tables, Asymptotic Form of Moments).

E[dn,n] =
√

2π

4
n3/2− 2

3n+
√

2π

48
n1/2− 2

135+ O(n−1),

Var [dn,n] = 10− 3π

24
n3+ 16− 3π

144
n2+

√
2π

135
n3/2− π + 48

576
n+ O(n1/2).

2.3. Limit Law. Our goal in this subsection is to establish the existence of a limit
distribution for the construction cost of almost full tables. As this limit distribution turns
out not to be part of the set of classical continuous distributions, we first specify it
precisely.

DEFINITION 1. TheAiry distributionis the probability distribution of a random variable
X with support on [0,+∞) that is uniquely determined by its moments,

E[Xr ] = − 0(− 1
2)

0((3r − 1)/2)
Är ,

where the basic constantsÄr are defined by the formal series expansion∑
r≥0

Är
wr

r !
= − 82/3(w)

8−1/3(w)
,

with

8ν(w) = 1− (4ν2− 1)

(
3w

8

)
+ (4ν

2− 1)(4ν2− 9)

2!

(
3w

8

)2

− (4ν
2− 1)(4ν2− 9)(4ν2− 25)

3!

(
3w

8

)3

+ · · · .
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Under various guises, the Airy distribution arises as a limit distribution in quite diverse
contexts. Examples include the area under nonnegative random walks [29], [30] or path
length in random trees [44], [45]; this limit law also relates to asymptotic estimates of
connectivity in random graphs [49], [18]. At the end of this paper, we comment briefly on
the combinatorics that underlies some of these connections. Our derivation here follows
in spirit the approach of Louchard and Tak´acs [29], [30], [44], [45], who also justified that
the Airy distribution as defined here is indeed uniquely characterized by its moments.

We now examine in detail the process that yields the moments asymptotically and
show how the Airy distribution arises from a recurrent determination of moments. A
basic process similar to the one employed for the first two moments yields a general
commutation rule for the H and∂q operators

LEMMA 4.

U ∂ j
q H =

j∑
s=0

(
j

s

)
1

s+ 1
Zs ∂s+1

z ZU ∂ j−s
q .(19)

PROOF. The left-hand side applied toznqk gives

U ∂ j
q H(znqk) = znU ∂ j

q

(
n∑

i=0

qi qk

)
.

Then the Leibniz rule applied to the differentiation of productsqi qk yields

znU ∂ j
q

(
n∑

i=0

qi qk

)
= zn

n∑
i=0

j∑
s=0

(
j

s

)
i s k j−s = zn

j∑
s=0

(
j

s

)
1

s+ 1
(n+ 1)s+1 k j−s

=
j∑

s=0

(
j

s

)
1

s+ 1
Zs ∂s+1

z ZU ∂ j−s
q (znqk).

From there, a differential equation for ther th factorial moment generating function
fr is directly obtained by a combination of Leibniz’s rule and of the commutation
relation (19) applied to the fundamental equation (9):

∂z fr (z) =
r∑

j=0

j∑
s=0

(
r

j

)(
j

s

)
1

s+ 1
fr− j (z) · (Zs ∂s+1

z Z f j−s(z)).(20)

The differential equation (20) that gives access to ther th moment is of the form

LY(z) = Rr (z),

whereL is the linear differential operator of (14). There,Rr (z) is exactly the right-hand
side of (20) stripped of its terms that containfr (z), f ′r (z), namely, the terms correspond-
ing to( j, s) = (0,0) and( j, s) = (r,0). By the variation-of-constant method, moments
can then be pumpedad libidinem, and we have from (15)

fr (z) = eT(z)

1− T(z)

∫ z

0
Rr (u)e

−T(u) du.(21)
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For instance, we obtain automatically

z f1 = T3

2

1

(1− T)2
,

z f2 = T4

12

24− 11T + 2T2

(1− T)5
,

z f3 = T4

8

8+ 144T − 110T2+ 63T3− 17T4+ 2T5

(1− T)8
,

z f4 = T5

240

10,800+ 64,560T − 60,072T2+ 53,760T3

−26,865T4+ 9140T5− 1750T6+ 152T7

(1− T)11
.

The success of the pumping method is obvious as regards asymptotic forms at least
since conditions of singularity analysis are preserved under multiplication by rational
functions ofT and under integration. (In fact, there always exist exact rational forms inT ,
as shown by a more sophisticated argument, but this is immaterial here.) An asymptotic
pattern clearly emerges:

z f1 ∼ 1

2

1

(1− T)2
, z f2 ∼ 5

4

1

(1− T)5
,

z f3 ∼ 45

4

1

(1− T)8
, z f4 ∼ 3315

16

1

(1− T)11
,

where the approximations hold whenz → e−1, that is to sayT → 1. The following
lemma characterizes the dominant terms offr (z) precisely.

LEMMA 5. The factorial moment generating functions satisfy, for r ≥ 1,

z fr (z) = Cr

(1− T(z))3r−1
(1+ O(1− T))(22)

= Cr

(2(1− ez))3r/2−1/2
(1+ O((1− ez)1/2)) (z→ e−1),

where the constants Cr are determined by the nonlinear recurrence

(3r − 4)rCr−1+
r∑

j=0

(
r

j

)
Cj Cr− j − δr,0 = 0, C0 = −1.(23)

PROOF. The property holds forr = 1,2 by Lemma 3. For generalr , the variation-of-
constant formula (21) entails (by induction) that the singular behaviorfr is of the form
z fr ∼ Cr (1− T)−3r+1 asz → e−1, in accordance with (22). In other words, the∂z

operator shifts a singular expansion by a factor of(1−T)−2 while the ∂q operator shifts
such an expansion by a factor of(1− T)−3.

The dominant contribution from (20) thus arises from the terms corresponding to
s= 0 and( j, s) = (r,1). As a consequence we have, asz→ e−1,

∂z fr (1− z f0)− fr ∂z(z f0) = r

2
∂2

z (z fr−1)+
r−1∑
j=1

(
r

j

)
fr− j ∂z(z fj )+ O((1− T)−3r+1).
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Integration and multiplication of both sides by 2z yields the asymptotic relation

2z fr (1− z f0) = rz ∂z(z fr−1)+
r−1∑
j=1

(
r

j

)
(z fr− j )(z fj )+ O((1− T)−3r+3).

The coefficients of the dominant terms involving(1− T)−3r+2 can then be identified,
and this provides a recursive determination of the coefficientsCr :

2Cr = (3r − 4)rCr−1+
r−1∑
j=1

(
r

j

)
Cj Cr− j , r ≥ 1.

There, by a natural convention, we takeC0 = −1 since f0 = 1 − (1 − T) and it
is singular components that count. This recurrence is equivalent to the one stated
in (23).

The constantsCr determine the dominant asymptotic form of themomentsof the law
of total displacement. Clearly, factorial moments and power moments are asymptotically
equivalent, and, by singularity analysis, one has

µ(r )n ≡ E[(dn,n−1)
r ] = 2

√
π

0((3r − 1)/2)
Cr

(
n

2

)3r/2

(1+ O(n−1/2)).(24)

In order to establish the Airy limit distribution property, it is then necessary to identify
the coefficients in (24). We show that in factCr = Är , withÄr the fundamental constants
of Definition 1.

From (23), the quantitiesγr := Cr /r ! satisfy a nonlinear recurrence

(3r − 4)γr−1+
r∑

j=0

γj γr− j − δr,0 = 0,

so that the exponential generating function of theCr , γ (z) := ∑
r≥0 Cr zr /r !, itself

satisfies a nonlinear first-order ODE of the Riccati type:

3z2γ ′(z)− zγ (z)+ γ (z)2− 1= 0.

In a way, this basic equation is a “reduced image” of the fundamental difference-
differential equation when only dominant singular parts are retained. Now, it is known that
Riccati equations are reducible to linear second-order ODEs: setγ (z) = 3z2g′(z)/g(z),
so that

9z4g′′(z)+ 15z3g′(z)− g(z) = 0.(25)

From there, the connection with Bessel functions is easy to establish and a computer
algebra system like Maple provides valuable hints. Some care is however needed due to
the multivalued character of Bessel functions of nonintegral order, so that we provide
some detail.
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The “modified” Bessel functions are defined by
Iν(z) =

( z

2

)ν ∞∑
k=0

(z2/4)k

k! 0(ν + k+ 1)

Kν(z) = π

2 sinνπ
(I−ν(z)− Iν(z)) ,

and, for nonintegralν, they form of basis of solutions to the Bessel equation

z2 d2w

dz2
+ z

dw

dz
− (z2+ ν2)w = 0.(26)

One can then simply match (25) with (26) and verify that the general solution to (25) is

g(z) = z−1/3

(
λ1K−1/3

(
1

3z

)
+ λ2I−1/3

(
1

3z

))
.

A simple computation then shows that the general solution of the original Riccati equation
is

γ 〈λ〉(z) = − I2/3(1/3z)− λK2/3(1/3z)

I−1/3(1/3z)+ λK−1/3(1/3z)
.(27)

For determinacy, we restrict (27) to the complexz-plane slit along(−∞,0).
We note at this stage that Bessel functions of order a multiple of one-third are related

to the classical Airy functions that are defined as solutions to the linear differential
equationw′′ − zw = 0. In particular, one has

Ai(z) = 1

π

∫ ∞
0

cos( 1
3t3+ zt)dt

= 1

π

(
z

3

)1/2

K1/3

(
2z3/2

3

)
.

This (and other connections) justify our choice of naming the distribution of Definition 1
the Airy distribution.

Obviously, theγ 〈λ〉(z) as obtained in (27) are nonanalytic at zero. Then (27) is to be
taken in the sense that the divergent (formal) seriesγ 〈λ〉(z) represents asymptotically
the right-hand side asz→ 0+. However, asymptotic expansions of Bessel functions are
well known: withµ = 4ν2, we have, as the variabley tends to+∞,

(28)
Iν(y) ∼ ey

√
2πy

(
1− µ− 1

8y
+ (µ− 1)(µ− 9)

2! (8y)2
− (µ− 1)(µ− 9)(µ− 25)

3! (8y)3
+ · · ·

)
,

while eachKν(y) = O(e−y) is exponentially small. Thus, the asymptotic expansions of
all theγ 〈λ〉(z) in the scale{zm} coincide, and we may as well takeγ (z) = γ 〈0〉(z). In
other words, theCr are generated as coefficients in the asymptotic expansion,

− I2/3(1/3z)

I−1/3(1/3z)
∼
∞∑

r=0

Cr
zr

r !
(z→ 0+).(29)
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Table 1. The Airy constantsÄr and their various normalizations:ωr = Är /r !, ω?r = 22r−1Är /r !, µ(r ) =
−Är0(− 1

2)/0((3r − 1)/2). (Theµ(r ) are the moments of the Airy distribution.)

r 0 1 2 3 4 5 6 7 8

Är −1 1
2

5
4

45
4

3315
16

25,425
4

18,635,625
64

18,592,875
1

403,839,930,375
256

ωr −1 1
2

5
8

15
8

1105
128

1695
32

414,125
1024

59,025
16

1,282,031,525
32,768

ω?r − 1
2 1 5 60 1105 27,120 828,250 30,220,800 1,282,031,525

µ(r ) 1
√
π 10

3
15
4

√
π 884

63
565
32

√
π 662,600

9009
19,675

192

√
π 4,102,500,880

8,729,721

From (28) and (29), we thus obtain a purely algebraic and explicit specification of
γ (z) as a quotient of two divergent hypergeometric series (of the2F0 type) that matches
exactly the definition of the Airy distribution, withCr = Är . This characterizes the
distribution of construction cost in almost full hash tables.

THEOREM3 (Limit Law for Full Tables). For almost full tables, the distribution of the
random variable dn,n−1/(n/2)3/2 converges to the Airy distribution, in the sense that,
pointwise for each x,

Pr

{
dn,n−1

(n/2)3/2
≤ x

}
→ Pr{X ≤ x} (n→∞),

where X is Airy distributed in the sense of Definition1. The same property holds for
completely full tables and the random variable dn,n/(n/2)3/2.

(The property for full tables results from the fact thatdn,n has the same distribution as
dn,n−1+ Un, whereUn is uniform over [0. .n− 1].)

Initial values of the Airy constants are given in Table 1. The normalized constants
ω?r = 22r−1Är /r ! turn out to be integers forr ≥ 1. This interesting sequence starts like

1, 5, 60, 1105, 27120, 828250, 30220800, 1282031525, 61999046400, 3366961243750,
202903221120000, 13437880555850250, 970217083619328000, 75849500508999712500,
6383483988812390400000, 575440151532675686278125, 55318762960656722780160000,

and we propose calling it the Wright–Louchard–Tak´acs sequence (see the remarks above
and our conclusion). It is howevernot to be found in Sloane and Plouffe’sEncyclopedia
of Integer Sequences[41]. The variance of the Airy distribution is

10
3 − π = 0.19174 06797 43540. . .

and the appearance of this magic value in a variance expression may be taken as a good
indication of the possible occurrence of the Airy distribution.

3. Sparse Tables. In this section we analyze sparse tables, where the filling ratio
defined asα = n/m is fixed and bounded away from one. The behavior of such tables
turns out to be much more tame than that of full tables discussed in the previous section.
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3.1. Combinatorial Analysis. As seen at the beginning of Section 2, a simple circular
symmetry argument enables us to restrict attention to tables whose last location is empty.
Such a table then decomposes as a labeled product ofm− n clusters (sometimes also
figuratively called “islands”) that are, up to relabeling, almost full tables. Note that a
cluster may well have size 0, in which case it comprises only one unoccupied cell. For
instance, the table

3 9 4 7 5 2 8 1 6

is, up to relabeling, a sequence of six almost full tables of respective sizes 0, 4, 0, 2, 1, 2.
Define the generating functionHm,n(q) that counts the number of ways of creating

a nonfull table of lengthm and sizen (the rightmost location is empty) withq marking
the total displacement. The construction cost (or total displacement) of partial tables is
inherited additively from component clusters. Therefore, the total displacement in partial
tables of parameter(m,n) has generating function

Hm,n(q) = n! [zn]F(z,q)m−n.

The number of tables of lengthm, sizen, with the last location empty is then

Hm,n(1) = n! [zn] f0(z)
m−n = n! [zm]T(z)m−n,

a quantity that, by virtue of (1), equals(m− n)mn−1, in agreement with the circular
symmetry argument. The probability generating function of the total displacementdm,n

is then

Hm,n(q)

Hm,n(1)
= n!

(m− n)mn−1
[zn]F(z,q)m−n.

3.2. Moments. The generating functions for sparse tables admit power forms that lend
themselves nicely to differentiation. In this way, moment generating functions are ob-
tained immediately from the corresponding computation for full tables.

The analysis still relies on the functionsfr = U ∂q
r F introduced in (11). We have

U ∂q F(z,q)m−n = (m− n) f m−n−1
0 f1,

U ∂q
2F(z,q)m−n = (m− n)(m− n− 1) f m−n−2

0 f 2
1 + (m− n) f m−n−1

0 f2.

The values ofz f0, z f1, z f2 are known from Section 2, and are expressible in terms of
T = T(z) alone; this gives for instance,

n!

(m− n)mn−1
[zn]U ∂q F(z,q)m−n = n!

mn−1
[zm]

1

2

T(z)m−n+2

(1− T(z))2
.

What is required at this point in order to obtain explicit forms is a method for coefficient
extraction,

[zm] T(z)m−n A(T(z))

(1− T(z))r
,(30)
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whereA is a polynomial of degree< r . For computational purposes, it is convenient to
introduce the change of variables in Cauchy coefficient integrals that underlies Lagrange
inversion:

[zm]λ(T(z)) = 1

2iπ

∫
λ(T(z))

dz

zm+1
(31)

= 1

2iπ

∫
λ(T)(1− T)e−T dT

(T e−T )m+1

= [tm]emt(1− t)λ(t).

(Small contours around zero are understood in this derivation, and this shortcut is of
course logically equivalent to Lagrange–B¨urmann inversion.)

Then the application of (32) to (30) yields

[zm]Tm−n A(T)

(1− T)r
= [tn]emt A(t)

(1− t)r−1
.

This is close to the form (6) of the generating function ofQ0(m,n). Now, an argument
similar to the one used in (18) for full tables applies. The linear space spanned by{(

t
d

dt

)r emt

1− t

}∞
r=0

∪ {emt}

contains all the rational functions of the formemt A(t)/(1 − t)r−1. Thus, there exist
polynomialsU andV such that

[zm]Tm−n A(T)

(1− T)r
= mn

n!
(U (m,n)+ V(m,n) Q0(m,n)).

The computation is again purely mechanical. It can be recast in terms ofQ0(m,n−1)
sinceQ0(m,n) = 1+ (m/n)Q0(m,n − 1), and the forms so obtained are consistent
with those for full tables (Theorem 1).

THEOREM4 (Sparse Tables, Exact Form of Moments).

E[dm,n] = n

2
(Q0(m,n− 1)− 1),

E[d2
m,n] = n

12
((m− n)3+ (n+ 3)(m− n)2+ (8n+ 1)(m− n)+ 5n2+ 4n− 1

− ((m− n)3+ 4(m− n)2+ (6n+ 3)(m− n)+ 8n)Q0(m,n− 1)).

The approximation formula (7) then produces the asymptotic form of the first moment
and of the variance of anα-sparse table.

THEOREM5 (Sparse Tables, Asymptotic Form of Moments).

E[dm,n] = α

2(1− α)n−
α

2(1− α)3 + O(n−1),

Var [dm,n] = 6α − 6α2+ 4α3− α4

12(1− α)4 n− 6α3+ 24α2+ 6α

12(1− α)6 + O(n−1).
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3.3. Limit Law. In this subsection we estimate the distribution of total displacement
in sparse tables, whenm,n tend to infinity in such a way that the filling ratioα = n/m
remains constant. We thus fixα throughout and assume 0< α < 1. The meanµn and
the varianceσ 2

n of the distribution are in this case bothO(n) and their precise form has
been given by the last two theorems.

The limit law is approached here by characteristic functions rather than by moments
as was done in the case of full tables. Indeed, cancellations already present in the vari-
ance preclude a moment approach. On the other hand, the power form of the involved
generating functions suggests an appeal to the saddle point method applied to Cauchy
coefficient integrals, this in order to estimate characteristic functions. Some care is how-
ever needed sinceF(z,q) is sharply nonanalytic atq = 1. The analysis proceeds by a
(delicate) perturbation of the (easy) saddle point estimates of the univariate problem of
counting sparse tables, namely [zn]F(z,1)m−n.

THEOREM6 (Limit Law for Sparse Tables).The limit law of total displacement dm,n in
tables with filling ratioα = n/m that satisfiesα < 1 is asymptotically Gaussian, as
n→∞,

Pr

{
dm,n − µn

σn
≤ x

}
→ 1√

2π

∫ x

−∞
e−s2/2 ds,

whereµn = E[dm,n] is the mean of the distribution andσn defined byσ 2
n = Var [dm,n]

is the standard deviation, as given by Theorems4 and5.

PROOF. By Lévy’s continuity theorem, it is sufficient to consider the characteristic
function of the standardized distribution (centered around its mean and scaled by its
standard deviation), that is,

ϕ?n(t) =
1

[zn]F(z,1)m−n
(e−i tµn/σn [zn]F(z,eit /σn)m−n),

and prove that it converges pointwise for any fixedt to the characteristic function of a
standard normal variate,

ϕ?n(t)→ e−t2/2.(32)

Sinceσn = O(
√

n), we analyze instead the closely related quantity

hn(t) := [zn]F(z,eit /
√

n)m−n so that
hn(t)

hn(0)
= eitµn/

√
nϕ?

(
σnt√

n

)
.(33)

The analysis of large coefficients in large powers of generating functions is known, in
the univariate case at least, to be amenable to the saddle point method; see [3], [8]–[10],
and [33]. We start by briefly reviewing the caset = 0 that corresponds to a univariate
problem expressed by the “unperturbed” integral,

[zn]F(z,1) = 1

2iπ

∫
F(z,1)m−n dz

zn+1
.(34)
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By a standard argument, such an integral (34) involving large powers is precisely of the
type amenable to saddle point analysis. Here, we haveF(z,1) = f0(z) = T(z)/z, and
the saddle point equation is

d

dz
((m− n) f0(z)− n logz) = 0,

which has a unique positive root between 0 ande−1 at ζ = αe−α. At that point, one has
additionallyT(ζ ) = α and f0(ζ ) = eα.

The classical saddle point analysis is based on integration on the circle|z| = ζ together
with the fact that only a small sector of amplitudeδ aroundζ dictates the asymptotic
contribution of the integral in (34). One should takenδ2 → ∞ and nδ3 → 0, for
instance,δ = n−0.4 is suitable, a choice that we fix here. Then a local expansion reduces
asymptotically and up to normalization the integral to be evaluated to a complete integral
of e−w

2/2.
Now, the strategy for evaluating the integral in (33) consists in adopting the same

integration contour|z| = ζ as in the unperturbed case (34). The perturbation introduced
in (33) byq = eit /

√
n must then be quantified precisely. It turns out that concentration in

a sector of amplitudeδ = n−0.4 still holds as the maximum of the integrand’s modulus
on the contour only gets displaced by a much smaller amount, namelyO(n−0.5). Local
expansions near the real axis then provide the asymptotic form ofhn(t), from which the
Gaussian law eventually results.

First, we establish globally that the geometry ofF(z,q) on |z| = ζ does not differ
much from that ofF(z,1)whenq = ei θ andθ lies in a suitably restricted interval around
zero. The derivatives

fr (z) = ∂r

∂qr
F(z,q)

∣∣∣∣
q=1

exist as formal power series inz that are furthermore analytic in|z| < e−1. Also, since
the total displacement parameter on an object of sizen is always at mostn2, we have(

q
∂

∂q

)r

F(z,q)

∣∣∣∣
q=1

¿
(

z
∂

∂z

)2r

F(z,1),

where¿ indicates here coefficientwise dominance between power series with nonneg-
ative coefficients. It results thatF(z,ei θ ) is in fact an infinitely differentiable function
of θ for all fixed z inside the disk|z| < e−1. (Construct formal derivatives whose ana-
lytic existence is guaranteed by the domination property and then recoverF(z,ei θ ) by
repeated integration.) In particular, Taylor’s formula with remainder, when applied to
F(z,ei θ ), with z treated as a parameter, yields

F(z,ei θ ) = f0(z)+ i θ f1(z)− θ
2

2
( f2(z)+ f1(z))(35)

+ 1

3!

∫ θ

0
(θ − u)2

∂3

∂u3
F(z,eiu)du.

The last term isO(θ3) and this estimate holds uniformly with respect toz, for z in any
subdisk of|z| < e−1, since, by coefficient dominance again, the third partial derivative
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is dominated coefficientwise by(z(d/dz))6 f0(z). Theuniformestimate (35) precisely
quantifies the wayF(z,ei θ ) approximatesF(z,1).

Next, along the circle|z| = ζ , the quantity|F(z,1)| has a unique maximum on the
real axis at the saddle pointz = ζ . Also, |F(ζeiϕ,1)| is an upward concave function
of the argumentϕ in a fixed neighborhood ofϕ = 0. By the uniform approximation
property (35) and the continuity that it implies, upwardϕ-concavity, that is expressed by
a sign condition on second derivatives, must persist forF(ζeiϕ,ei θ ) providedθ stays in
a sufficiently small neighborhood of zero. Also, for values ofϕ outside the guaranteed
concavity interval and againθ suitably small, the approximation relation (35) entails that
|F(ζeiϕ,ei θ )| < F(ζ,1)− ε, for some fixedε > 0.

The preceding discussion thus provides a clear picture of|F(z,ei θ )| on the circle
|z| = ζ . Whenθ , now a parameter, is such that|θ | remains less than a small fixed
nonzero thresholdθ0, the quantity|F(ζeiϕ,ei θ )| is upward concave nearϕ = 0 (that
is, for z near the real axis) while its values at least remain boundedly smaller than the
absolute maximumf0(ζ ), outside the concavity interval.

Now takeθ = t/
√

n, which is needed for estimatinghn(t). The value oft is fixed andn
is assumed to be large enough so that the local concavity and majorization properties hold.
A local expansion shows that the maximum of|F(ζeiϕ,eit /

√
n)| occurs atϕ = ϕ0(n),

where

ϕ0(n) = −c1
t√
n
(1+ O(n−1)), c1 = f1(ζ )

ζ f ′0(ζ )
.

This is well within the range of the unperturbed saddle point integral which is given by
the boundary pointsζe±i δ, whereδ = n−0.4. Therefore, we can conclude in the usual
way that

hn(t) = 1

2π

∫ +δ
−δ

F(ζeiϕ,eit /
√

n)m−ne−niϕ dϕ(1+ O(n−1/2)).

(The error term could in fact be made exponentially small.)
Now, the analysis can be performed in the small interval [−δ,+δ] by means of local

expansions of the integrand, themselves attainable from the main approximation (35).
For estimates up to relativeO(n−1/2) error terms, it suffices to use the quadratic approx-
imation part of (35), so that

hn(t) = 1

2π

∫ +δ
−δ

f0(ζeiϕ)m−n A(ζeiϕ)m−ne−niϕ dϕ(1+ O(n−1/2)),

where

A(z) = 1+ i
t√
n

f1(z)

f0(z)
− t2

2

f2(z)+ f1(z)

f0(z)
.

From this point on, the computations are routine but particularly tedious, so that
we only sketch them. It suffices to expand(m − n) log A(ζeiϕ) with respect toϕ up
to quadratic terms again, then setϕ = w/

√
n, and extend the integration bounds to

(−∞,+∞). The integral is thereby reduced asymptotically to a form∫ +∞
−∞

exp(a0+ ia1w − a2w
2/2)dw =

√
2π

a2
exp

(
a0− a2

1

2a2

)
,(36)
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that is evaluated by completing the square. Once more the support of a computer algebra
system like Maple is especially welcome, and one finds (some details omitted)

a0 = β log
f0(ζ )

ζ
n+ iβt f1(ζ )

f0(ζ )
n1/2− βt2

2

(
f2(ζ )+ f1(ζ )

f0(ζ )
− f1(ζ )

2

f0(ζ )2

)
+O(n−1/2),

a1 =
(
β f ′0(ζ )
f0(ζ )

− 1

)
n+ i tβζ

f0(ζ )2
( f0(ζ ) f ′1(ζ )− f ′0(ζ ) f1(ζ ))n

1/2+ O(1),(37)

a2 = βζ

2

ζ f ′0(ζ )
2− ζ f ′′0 (ζ ) f0(ζ )− f0(ζ ) f ′0(ζ )

f0(ζ )2
n+ O(n1/2),

with β = α−1− 1.
All reductions done (!), we obtain from (36) and (37) the asymptotic estimate

hn(t)

hn(0)
= exp

(
iµn

tσn√
n
− t2σ 2

n

2n

)
(1+ O(n−1/2)),(38)

where use is made of the asymptotic forms ofµn andσn.
We observe in passing (see also the comments below) that the asymptotic form of

moments derives systematically from the basic saddle point method and that the expres-
sions can all be obtained directly in terms offr and their derivatives evaluated atζ . For
instance,

µn = (m− n)

∫
f0(z)m−n−1 f1(z)z−n−1 dz∫

f0(z)m−nz−n−1 dz
∼ βn

f1(ζ )

f0(ζ )
,(39)

and so on.
The final estimate (38) after renormalization according to (33) then yields the con-

vergence of characteristic functions (32). This completes the proof of the Gaussian limit
law.

The saddle point method has been used in a technically different context by Pittel [34]
who showed that the size of the largest cluster (hence, also the maximum displacement)
in a sparse linear probing table only grows logarithmically, on average and in probability.

The process used in the proof of the last theorem is in fact very general and we
encapsulate it into a general statement.

COROLLARY 1. A Gaussian limit law holds for the coefficients of any “large power,”

[zn]G(z,q)βn, β > 0,

(β fixed, n→∞) provided the following conditions hold:

(C1) G(z,q) = ∑n gn(q)zn has nonnegative coefficients anddeggn(q) = O(nκ) for
some integerκ.

(C2) There exists some r with0 < r ≤ +∞, such that G(z,1) is analytic in|z| < r ,
and G(0,1) 6= 0, G′z(0,1) 6= 0.

(C3) limz→r− zG′z(z,1)/G(z,1) = +∞.
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(C4) There exists n1,n2, k1, k2 with k1 6= k2 such that the coefficients[zn1qk1]G(z,q)
and[zn2qk2]G(z,q) are nonzero.

PROOF. (Sketch) Condition(C1) ensures analyticity of partial derivatives and smooth
perturbation;(C3) ensures existence of the basic saddle point;(C2) ensures unicity of
this saddle point;(C4) ensures a nonzero variance. It can be recognized that these are
the only conditions used in the proof of Theorem 6, when one defines abstractly the
functions fr by U∂r

qG and the saddle pointζ by the equationβζ f ′0(ζ )− f0(ζ ) = 0. The
moments are then all expressible in terms ofζ and thefr ; for instance, the mean of the
distribution is asymptotic toβn f1(ζ )/ f0(ζ ), in accordance with (39).

Given its mild analytic conditions, Corollary 1 applies to a diversity of situations where
large random assemblies of labeled or unlabeled combinatorial objects are involved. In
the case of linear probing hashing, it implies that the number of clusters of some fixed
sizep has a distribution that is asymptotically Gaussian with mean and variance that are
both O(n).

4. Conclusion. The analysis of sparse tables (Section 3) is a by-product of the treat-
ment of full tables (Section 2) that do constitute the primary combinatorial objects, so
that we discuss them in more depth here. The Airy distribution and its companion mo-
ment formulæ turn out to be part of a ring of problems treated often independently by a
variety of methods and authors. A brief census of “Airy phenomena” in combinatorial
applications then reveals five main ranges of problems that we now list (see Figure 2).

(P1) Construction cost in linear probing hashing. This is the context of Section 2 and
the analysis applies verbatim to total displacement in parking sequences as well.

(P2) Number of inversions in trees. An inversion in a rooted labeled tree is a pair(i, j )
such thati is on the path from the root toj andi > j . Exact generating functions
have been first found by Mallows and Riordan [31] in the case of “Cayley” trees
and other families of trees are considered in [11].

(Q) Connectivity in graphs. A major problem in graphical enumeration and random
graph theory [5], [18] is the determination of the numberγ (n,n+ k) of connected
graphs withn vertices andn+ k edges. (The quantityγ (n,n− 1) is for instance
the number of labeled trees,Tn = nn−1, discussed in Section 1.) The basic problem
was first solved by Wright in a famous series of papers [49]–[51]. Wright’s solution
involves a quadratic recurrent sequence that, after normalization, is the same as
that of Section 2, so that the Airy constants make an appearance.

(R1) Area of excursions. By an excursion is meant a random walk that is never negative,
and has initial and final altitudes both equal to zero; area is defined as the sum of
altitudes of all nodes. The simplest type is the Bernoulli excursion defined by±1
steps (also called gambler’s ruin sequence); Louchard [29], [30] established that
the area of the Bernoulli excursion is asymptotically Airy distributed. Louchards
results are also related to other contemporary works from the early 1980s dealing
with Brownian motion [37], [40] where Airy functions also crop up explicitly.
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Fig. 2.Five problems resorting to the “Airy phenomenon”:(P1, P2, R1, R2) lead to the Airy distribution while
(Q) involves the Airy constants.

(R2) Path length in trees. The path length of a tree is the sum of the distances of all
nodes to the root of the tree. In a series of papers, Tak´acs [44], [46] has established
limit Airy distribution results for various families of trees including Cayley trees
and Catalan trees as special cases, while rederiving independently in [43] and [45]
some of the results of Louchard.

Regarding methods, our Theorem 3 establishes directly the Airy law for(P1) by a
recursive determination of moments. A similar process has been employed by Louchard
and Takács for(R1)and(R2). The underlying combinatorial decompositions are however
quite different. For(P1), one may regard the Airy law—via the quadratic recurrence or
the Riccati equation—as a reflection of the basic binary tree-like decomposition of linear
probing tables, while other decompositions prevail for(R1)and(R2). Problem(P2), as far
as we know, has not been previously considered under the angle of asymptotics and limit
distributions, but it appears eventually to be an essential element in the combinatorial
picture (see below).

The enumeration of connected graphs(Q) has a different status, since combinatorial
enumerations rather than limit distributions are involved. Wright’s major result states
that

γ (n,n+ k) ∼
√
π2(1−3k)/2σk

0((3k/2)+ 1)
nn+(3k−1)/2,

for a family of constantsσk. A direct comparison between our basic recurrence of (23)
and [49] shows that

σk = 1

2(k+ 1)!
Äk+1,

where theÄr are the Airy constants of Section 2.
Thus, three limit distribution problems, namely(P1, R1, R2), have been found previ-

ously to lead to Airy laws, while structural constants of the Airy type are seen to appear
in the graph connectivity problem(Q). This suggests a closer look at combinatorial
relations between these problems.

(P1–P2) The fundamental recurrence of Section 2 in relation to(P1) is indeedidentical
to the recurrence of [31] that models(P2). Thus, the two problems must be
combinatorially isomorphic. This fact has been noted by Knuth [25], following
Kreweras [28]. Knuth also evokes in [25] the alternative of a direct and exact
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combinatorial correspondence based on Exercise 6.4-31 of [23]. An immedi-
ate consequence of the present work in conjunction with the observations of
Kreweras and Knuth is then:the number of inversions in a random Cayley tree
is asymptotically Airy distributed.

(P2–Q) An exact correspondence between inversions in trees and connectivity in
graphs seems to have been first detected around the turn of the 1980s by several
authors. Gessel and Wang [12] have an especially elegant formulation in terms
of depth-first search, where this mode of graph traversal leads precisely to a
tree augmented by return edges that form inversions.

(Q–R1) This thread is due to Spencer [42] who noted thatbreadth-first search of a
random connected graph has a “trace” that is a random excursion of the so-
called Poisson type. (Depth-first search in the style of [12] is an alternative for
this correspondence.) Under Spencer’s correspondence, area under the Poisson
excursion relates inexactterms to “excess” of the original graph.

(R1–R2) There are many known similarities between random walks and random trees.
One of the most classical combinatorial correspondences relates bijectively
Bernoulli excursions and general Catalan trees (see, e.g., [21] and [39]). Under
this correspondence, area of an excursion transforms into path length of the
associated tree.

These various relations6 in a way “explain” the common occurrence of the Airy dis-
tribution in (P1, P2, R1, R2) as well as the rˆole of the Airy constants in problem(Q).
They also point to an alternative and more combinatorial deduction of the Airy law that
would be based on the following steps: (i) the exact equivalence between linear probing
and inversions in trees by(P1–P2); (ii) the exact equivalence between tree inversions
and graph connectivity (P2–Q) by depth-first search; (iii) the exact reduction to Poisson
walks (Q–R1) by Spencer’s principle; (iv) the reduction to Louchard’s derivation of
the Airy law through an appeal to universality of Brownian motion. Our derivation of
Section 2 offers instead a self-contained approach to the problem.

POSTSCRIPT. Apart from this conclusion section, the technical developments of our
paper are otherwise independent of the recent preprint of Knuth [25]. Knuth has been
kind enough to share numerous informations regarding [25], and this sheds additional
light on the structure of the generating functions that appear in Sections 2 and 3. A major
consequence of [25] is that the fundamental difference-differential equation admits a
closed form solution. This can be checked by direct comparison with [31] or [25].
(Alternatively, the combinatorial correspondences mentioned above could be used.) As
a result, the bivariate generating functionF(z,q) happens to have an explicit expression:

F(z,q) = (q − 1)
∂

∂z
log

(
1+

∞∑
n=1

qn(n−1)/2 zn(q − 1)−n

n!

)
(40)

6 Exchanges with Joel Spencer in 1995, while [42] was being developed, have been at the origin of our interest
in Airy phenomena. Private communications with Knuth have then greatly helped us to complete the picture
offered in this section. See [25] for an insightful perspective.
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=

∞∑
n=0

qn(n+1)/2(zn(q − 1)−n/n!)

∞∑
n=0

qn(n−1)/2(zn(q − 1)−n/n!)

These forms are recognizable variants of the bivariate generating functions of graphs,

F(z,q + 1) =
∑
n,t

γ (n,n+ t − 1)qt zn−1

(n− 1)!
,

and Knuth’s analysis starts precisely from this relation.
Notice that (40) does not trivialize our moment computations, since it is already far

from clear, given (40), that the tree functions should be involved. The manipulation of
q-series expansions like (40) is in fact particularly delicate, as attested by the “Giant
component” paper [18] on which [25] relies.

The exact correspondence with graph connectivity is at any rate neatly exposed by
(40). Preliminary work by Flajolet and Salvy (1995) inspired by Prellberg [36] indicates
that distributions can in fact be extracted from such aq-series by a method of coalescent
saddle points [48] that provides uniform asymptotic expansions and is well known to
lead to Airy functions. Such an approach should allow us to characterize the “phase
transition” between sparse and full tables, thanks to uniform asymptotics. In addition,
it provides an analytical “reason” for the Airy phenomena observed here: a law of the
Airy type may be generally expected whenever a coalescence of two neighboring saddle
points (a so-called “monkey saddle”) occurs in a Cauchy coefficient integral.

Acknowledgments. The authors are thankful to Don Knuth, to whom this paper is
dedicated, for his constant support and his openness in sharing his thoughts on the
subject.
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