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On the Analysis of Linear Probing Hashing
P. Flajolet? P. Pobleté’, and A. Viold

Dedicated to Don Knuth on the occasion of 8&h anniversary of
his first analysis of an algorithm ih962-1963.

Abstract. This paper presents moment analyses and characterizations of limit distributions for the con-
struction cost of hash tables under the linear probing strategy. Two models are considered, that of full tables
and that of sparse tables with a fixed filling ratio strictly smaller than one. For full tables, the construction
cost has expectatio®(n%?2), the standard deviation is of the same order, and a limit law of the Airy type
holds. (The Airy distribution is a semiclassical distribution that is defined in terms of the usual Airy functions
or equivalently in terms of Bessel functions of indice%, %.) For sparse tables, the construction cost has
expectationO(n), standard deviatio®(,/n), and a limit law of the Gaussian type. Combinatorial relations
with other problems leading to Airy phenomena (like graph connectivity, tree inversions, tree path length, or
area under excursions) are also briefly discussed.
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Introduction. Linear probing hashingdefined below, is certainly the simplest “in
place” hashing algorithm [14], [23], [38].

A table of lengthm, T[1..m] is set up, as well as a hash functibrthat maps
keys from some domain to the interval.[Im] of table addresses. A collection
of n elements witm < m are entered sequentially into the table according to the
following rule: Each elementis placed at the firstunoccupied location starting from
h(x) in cyclic order, namely the first df(x), h(x) +1,...,m,1,2,..., h(x) — 1.

For each element that gets placed at some locatignthe circular distance between
y andh(x) (that is,y — h(x) if h(x) < y, andm + h(x) — y otherwise) is called its
displacementDisplacement is both a measure of the cost of inseriagd of the cost of
searchin in the tableTotal displacemerntorresponding to a sequence of hashed values
is the sum of the individual displacements of elements. As it determinestistruction
costof the table, we use both terms interchangeably.

We analyze here the total displacemdpt, of a table of lengthm (the number of
table locations) and size (the number of keys), under the assumption thatrélhash
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sequences are equally likely. The problem has an equivalent formulation in terms of the
discrete version of the classigadrking problemoriginally due to Rnyi, that is of interest

in various physical problems. (Mathematical Reviewsearch with keyword “parking”

lists 58 references over the period 1956-1998, some of which point to connections
with adsorption, fracture of composite materials, dehydrochlorination, queueing systems,
packings, and so on.) The discrete parking problem s for instance described by Knuth [23,
p. 545] in the following entertaining terms:

A certain one-way street has parking spaces in a row numbered IntoA man
and his dozing wife drive by, and suddenly, she wakes up and orders him to park
immediately. He dutifully parks at the first available space]|

In this formulation, the total displacement of cars from their intended base has exactly
the same distribution as the construction cost of linear probing hashed tables as seen
by a “cycle lemma” originally due to Knuth and presented in [23]. Back to algorithmic
applications, the basic version of linear probing hashing, as described above, is based on a
first-come-first-serve (FCFS) policy; alternative priority rules exist (like last-come-first-
serve or “Robin Hood”), but total displacement remains unchanged; thus, our analysis
also applies directly to such variants of the basic algorithm.

Linear probing hashing has been the object of intense study; see the table on results
and the bibliography on pp. 51-54 of [14]. The simplicity of the algorithm goes well with
efficiency, at least when tables are not filled too much. However, despite the simplicity
of the algorithm, some of the probabilistic phenomena involved are not quite easy to
capture. In addition, there is also a special value for these problems since the first
analysis of algorithms ever performed by Knuth [20] in 1962-1963 was that of linear
probing hashing. As Knuth indicates in many of his writings, the problem has had a
strong influence on his scientific caréer.

Sparse tablegy which we mean tables with a fixed filling ratio= n/ m strictly less
than 1, tend to behave reasonably well. This has been known, in the average case at least,
since Knuth’s first analysis. We establish here that the construction cost of a sparse table
has an average that @(n), a standard deviation that 8(,/n), and we provide very
precise estimates for these quantities. The expectation estimate agrees naturally with the
known fact that a random search or insertion in a sparse table has expect®dbost
addition, we precisely characterize the distribution of construction costs and prove that
it is Gaussian in the asymptotic limit. Thus, for sparse tables, observed values of costs
are highly likely to be extremely close to what the average-case analysis predicts.

In contrastfull (m = n) oralmost full(m = n—1) tables are much less well-behaved.

The construction cost i©(n%?) on average, a fact also consistent with Knuth’s early
analyses demonstrating that each late insertion in a table that fills up tends to contribute
with a nonconstant cost. We provide here precise estimates for the standard deviation
which turns out to be of the same order as the mean, na@ely/?), an indication of the

fairly high dispersion of costs. In fact, the construction cost admits a limit distribution
that is of the “Airy type,” involving Airy functions, or equivalently Bessel functions of
orders that are multiples of one-third.

5 See the footnote on p. 529 of [23].
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The analysis starts with almost full tables (Section 2) that are the basic combinatorial
objects. The combinatorial principle on which this paper restdisary tree decompo-
sition of almost full tables. From this, a difference-differential equation is derived that
is the key to the analysis (Lemma 2). Moments, in either exact or asymptotic form, are
obtained by a “pumping” process akin to the analysis of other cumulative parameters
of combinatorial structures. For instance, similar methods have been used in the inves-
tigation of limit distributions for path length in trees [44], [45], the comparison cost of
quicksort [17], the area under random walks [29], [30], as well as in moment analysis of
other combinatorial structures [19].

Sparse tables (Section 3) are then treated as labeled products of (almost) full tables,
so that the corresponding generating functions involve large powers. For moments, es-
pecially for the mean and variance, the analysis results rather directly from that of full
tables. However, for the limiting distribution, a somewhat delicate perturbative analy-
sis of saddle point integrals is needed in order to derive a Gaussian law by means of
characteristic function estimates.

Globally, these results reinforce our confidence that linear probing represents an
excellent tradeoff between algorithmic simplicity and efficiency, as long as the filling
ratio is not too large, say less thapior 3/4. These conclusions also apply to linear
probing sort [13], [14, pp. 168-170], whose analysis is almost isomorphic to that of
linear probing hashing.

From the methodological standpoint, linear probing connects to a wealth of interesting
combinatorial and analytic problems. A primanjea’is played by the tree function first
studied by Eisenstein and by the Ramanujan—Ki@#unction whose major properties
we briefly recall in Section 1. Regarding limit laws, the Airy distribution that surfaces
in the case of full tables is also present in random trees (inversions and path length),
in random graphs (the complexity or excess parameter), and in random walks (area);
we discuss briefly in Section 4 some of the “reasons” for this fact. The Gaussian law
of sparse tables is an instance of a general combinatorial scheme of some generality:
our methods actually demonstrate that it should be expected in most cases where one
deals with an additive parameter on a random assembly of a large number of random
components.

1. The Tree Function and theQ-Functions. The main character in this paper is
the tree function that is defined implicitly By(z) = ze'® and appears originally in
problems related with the counting of rooted labeled trees [8], [15], [32], [39], [47]. The
Lagrange inversion theorem provides a number of series expansion like

n-1 nnfmfl

1 To=Y"-72 T@"=my

n>1 ) n>m

noz"

n! ’

whereak = a(a— 1) --- (a — k + 1). Most generating functions in this paper involve
rational fractions inT (z) with denominators that are powers @f — T)~!. Lagrange
inversion also provides

) ! —1+i‘nnZn
1-T@ ' nl’
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The asymptotic form of coefficients of any rational functionTofs also directly re-
covered by singularity analysis [7], [33]. Application of the method requires the singular
expansion of (2), itself obtained from the implicit function theorem.

LEMMA 1. The function Tz) has a dominant singularity at z 1/e, and its singular
expansion there is

3 T@=1-6@+352% - 252>+ 252" + 066(2)°),
wheres(z) = V21— ez

THE Q-FUNCTIONS. In close association with the tree function is what Knuth has pop-
ularized under the name of the “Ramanujarfunction.” This function [1], [21]-[23],

[39] and its close relatives play a centralg’in the analysis of many algorithms and
data structures—hashing with linear probing [20], [23], union-find algorithms [27], in-
terleaved memory [26], optimal caching [24], and random mappings [2], [6], [22], most
notably. TheQ-function is defined by

n=21(n-2
n2

-1
Q(n)=1+n

or, in a way that is equivalent thanks to (1),

nl
) log T —=— T(Z) nZ;Q()

Singularity analysis of the generating function yields immediately

mn
®) Q) ~ v___ 12\/; 3

An asymptotic series foR(n) was first derived by Ramanujan [1], and tight estimates
are obtained in [4].

For the purpose of expressing the average-case analysis of sparse tables, Knuth has
extended the Ramanuj&-function as

Qo(m, n) = Z —

|>O

so thatQ(n) = Qu(n, n — 1). From the definition, one has

kel tn emt
6 "— = .
(6) ; Qo(m. mm" - = ——
Basic asymptotic approximations entail
1 1 24+« o’ +8x+6
7 m,am—1) = - m~! 2 -3
(1) Qom.am—1) = 7= = =5+ T 58 1—a)
2202 + 58x + 24
o+ + +24 +om).
(1—a)®

See [35] for a general framework.
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2. Full Tables. Throughout this paper we consider tables that havecations (n is
called the “length” of the table) and we Ietdenote the number of keys (the “size”).
Clearly, the number of tables (the number of hash sequences) with lengtid size
nis m", and such a table has — n empty locations. By circular symmetry [23], for
nonfull tables such thah > n, we may freely assume that one of the empty locations
is the rightmost on€elhis assumption of a last empty location in nonfull tables is made
from now onwardsWhenn = m — 1, we say that such a table amost full Since
there aran — n empty locations, then the probability of the rightmost cell being empty
is (m — n)/m, and therefore there are"~(m — n) ways of creating such tables. In
particular, the number of almost full tablesé'~2 = (n + 1)"1.

Inserting the last element into an almost full table yieldsoapletely fulltable
corresponding tan = n. Since this last element may hash to any ofrinkcations of
the table, there ama™ ! = n"~! ways of creating a full table in this way. In summary,
by convention, almost full and completely full tables do not “wrap around.” Clearly, the
distributions of total displacemends ,_; andd, , are not affected by such a restriction.

NOTATIONS. The analysis is carried out by means of bivariate generating functions
and moments are then recovered via a family of operators defined as follows. For any
functionG(z, q),

UG(z.q) = G(z 1), 9G(2.9) = %ZQ)
(8) ZG(z.q) = zG(z, q), 9.G(z,q) = %’
HG@ §) — G(z, q)l—_q;S(qz q).

These operators act in the usual way on formal power s&riesq) = >, gn(q)Z"/n!,
with eachg,(q) a polynomial; in particular,

. 2 n 2"
HG(z,q)—Xn:gn(q)(l+q+q +oan

Mike Paterson has designed an ingenious operator framework for the “local” analysis
of displacements; see the account of the “cookie monster” in [16]. The problem of
total displacement being fully history-dependent is, however, not clearly amenable to
Paterson’s techniques.

2.1. Combinatorial Analysis We defineF, x as the number of ways of creating an
almost full table withn elements and total displaceméniThe corresponding bivariate
generating function is then

n

A
Fza) =Y Fud“ .

n, k>0
and it starts like

z 2 2, 32
Fza) =1+ 7+ @+d5 +6+69+30° + )5+
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n—1
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Fig. 1. The binary tree decomposition of almost full tables.

Consider an almost full table of singand lengtm + 1). Immediately before the last
element is inserted, the table has two empty cells: one at some pdsitibnthe other at
positionn + 1 (see Figure 1). Then the element that is last to be inserted has an address
that is any number of the interval [1k 4 1], which corresponds to a displacement that
assumes any value in [0k]. The counting of possibilities gives rise to a recurrence on
the Fh(q) = n!' [2"]F (2, q):

n-1 -1
FM®=§:C )ﬂmu+q+~ﬁwﬁalkm>

k=0 k

This fundamental recurrence reflects a recursive binary decomposition of full tables. We
recognize here a product of exponential generating functions modified by the occurrence
of the H-operator defined in (8).

LEMMA 2 (Basic Functional Equation).

F(z.a) —qF(z )
1—q '

a
(9) 8_ZF(Z, q) = F(21 q) :

In operator notation, this reads simply & = F - HF.

Let similarly C, x be the number of completely full tables of siaewith total dis-
placementequal o, andletC(z,q) =, Cn.kG*z"/n! be the corresponding bivariate
generating function. Since a completely full table of size 1 is created by inserting
the last element in an almost full table of sizewe have, from the definition of the
H-operator,

0.C(z,q) = HF(z, ).

Note that the basic functional equation together with this last relation implies the addi-
tional relations

(10) F(z,q) =€®% or C(z,q) =logF(z Q).

Not surprisingly, the analyses of total displacement in full and in almost full tables are
thus closely related.

2.2. Moments For total displacement in almost full tables, what we call the generating
function ofr th factorial moments is, by definition,
r

ad
(11) f(@=Uj{F@Eza=_—F@zaq .
aq gq=1
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This name is justified by the fact that thth factorial moment of total displacement is
given by

[2"] fr (2)
[z fo(2)’

The basic functional equation (9) implicitly contains all the information about mo-
ments. We now develop properties of the family of operators introduced in (8) that are
designed to extract such moments explicitly.

First, we rederive the enumeration of full tables. What is need&d := UF (z, ),
whereF is determined by (9). Now, from the action of H on power series, one has

E[dd—1)---(d—r +1] = where d =dnn-1.

. bl
UH = 9;ZU orequivalently UH-(z,q) = E(z F(z, 1)).

Thus, fp(2) satisfies the nonlinear differential equation obtained by applying U to (9):
Y'(2) =Y (@)(2zY(2)"
This equation is equivalent tdogY (2)) = (zY(2)), and soY(z) = €Y@, In other
words,
fo =F(z 1) = %T(z) =e'?,

whereT (2) is the classical tree function. Therefore, by (1), the number of almost full
tables is(n + 1)"~1. Similarly, by (10), WC(z, q) = log(fo(2)) = T(2) so that the
number of completely full tables is"~. These values are in accordance with what we
know already from direct combinatorial reasoning.

A similar device produces moments upon applying;Uo the fundamental equa-
tion (9). What is needed is a “commutation rule” for tiveear operators Wy and H.
This is readily found for = 1 since

UdgH(Z"q) = Udq((L+q+---4+9M2"g) = (L +24--- +n) + (n + Dk)Z".
Thus, symbolically
UdgH = 22027 + U 93,2 dq,
and, by similar devices,
UdgH = 0,ZU 07 + Z 072U dq + 3Z°0;ZU.

As a consequencdy (z) and f,(z) satisfy the following linear ordinary differential
equations,

(12) LY = izfy(zty)",
(13) LY = zfy(zf0)" + 2f1(zf) + 322 fo(zf0)” + 2To(z ),
where/ is the differential operator
14) LY =Y -A-zfp) =Y -((zfp) + fo)
/ T(2 - T)
=Y -1-T)-Y

z1-T)
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The corresponding homogeneous ordinary differential equation,
LY =0,
admits the solution
eT@
1-T(@

The variation-of-constant method then applies to the inhomogeneous differential equa-
tions (12) and (13) that are both of the form

Y(2) =

LY (2) = R(2),
and yields the solution
T (2) z T
— — 1 (u
(15) Y(2) = 1T T2 s R(u)e du.

The quantities appearing in these differential equations can be expressed as functions of
T(z) alone since = Te " anddz= (1 — T)e "dT. Thus the integrations needed in

the variation-of-constant method all eventually reduce to integration of elementary func-
tions for which decision procedures exist. We then obtain mechanically the generating
functions of the first two moments for an almost full table. (This is, for instance, well
within the capabilities of the computer algebra system Maple.)

LEMMA 3 (Almost Full Tables, Generating Functions for the Moments).

1 T2
2@ =5 A TR

1 T@%24—-11T (9 + 2T (29
2R® = 1 A-T@F

Foracompletely fulltable, the corresponding generating functions resultfrom Lemma 3
and (10):

f, 1 T?
1 = — = = —
(16) UdyC(z, q) 21T
fofo — f2 1 T3(24— 14T + 5T2)
2 _ 1 _
a7 U 8qC(Z, q) = f02 =0 1_Tp

Explicit expressions for the coefficients of functions appearing in (16) and (17) are
then obtained from the expansions (2) and (4). Sin@ satisfies the differential relation

T@

(Z3)T (2 = 1_7.'_(2),

the class of functions

{(Zaz)ri} , {(Zaz)r|09 : } ,
1-T r=0 1-T r=1
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spans a linear space that contains all the rational functions of theA¢iyy/ (1 — T)",
with A a polynomial of degree: r. As a consequence, for any such rational function of
T, there exists an expansion

m AT@)  nt
(18) [Z](l—T(z))r =7 Um+Vm Q).

for some polynomialt) andV that can be mechanically determined.

THEOREM1 (Full Tables, Exact Form of Moments).

ElGnn] = g(Q(n) ~ ),

E[dZ,] = 112(5n2 +4n —1—8n Q(n)).

Thanks to (3), singularity analysis applies directly to the solutions (16) and (17).
(Alternatively, the explicit forms of Theorem 1 can be used in conjunction with (5).)

THEOREM 2 (Full Tables, Asymptotic Form of Moments).

V2T 3o o0 N2 ap 5

E[dyn] = 2 n 3N+ Kn 135 T O(n_l)y
10-37 . 16-37 , «2x 7 +48
Var(dna] = 57—+ = n® + eV - —gggn+ oM.

2.3. Limit Law. Our goal in this subsection is to establish the existence of a limit
distribution for the construction cost of almost full tables. As this limit distribution turns
out not to be part of the set of classical continuous distributions, we first specify it
precisely.

DerINITION 1. TheAiry distributionis the probability distribution of arandom variable
X with support on [0+o00) that is uniquely determined by its moments,

1
r-

X =@ -2

rs
where the basic constarn®s are defined by the formal series expansion

w' D3/3(w)
Z Qr - =T
= ! D_q/3(w)

with

o (3w | @P-D@?-09) (3w)?
O, (w) = 1— (dv 1)(8>+ o1 (8)
(A2 = D2 - 9)(4? - 25) (3w>3+

3! )
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Under various guises, the Airy distribution arises as a limit distribution in quite diverse
contexts. Examples include the area under nonnegative random walks [29], [30] or path
length in random trees [44], [45]; this limit law also relates to asymptotic estimates of
connectivity in random graphs [49], [18]. At the end of this paper, we comment briefly on
the combinatorics that underlies some of these connections. Our derivation here follows
in spiritthe approach of Louchard and Bails [29], [30], [44], [45], who also justified that
the Airy distribution as defined here is indeed uniquely characterized by its moments.

We now examine in detail the process that yields the moments asymptotically and
show how the Airy distribution arises from a recurrent determination of moments. A
basic process similar to the one employed for the first two moments yields a general
commutation rule for the H and, operators

LEMMA 4.

(19) UaiH = Z( ) ZSBS+1ZU3' s,

ProOOF The left-hand side applied @gk gives

n
UaJH(EZ"q") = 2"U ) <Z q'qk) :
i=0

Then the Leibniz rule applied to the differentiation of produgts< yields

2'U ) (i;qq) = z”ii( ) iSki=S = ”Z]:( )—(n+1)5+1k' s

i=0 s=0

] .
J S as+1 j—s/onHk
= E Z Z O
(s>s+1 9% Ua (9D

S=

From there, a differential equation for thth factorial moment generating function
f, is directly obtained by a combination of Leibniz’s rule and of the commutation
relation (19) applied to the fundamental equation (9):

(20) 3.t (2) = ZZ( )( >S+1 f_(2) - (Z°0571Z 1 _(2)).

j=0 s=0

The differential equation (20) that gives access tarthenoment is of the form
LY (2) = R (2),

where/ is the linear differential operator of (14). Thef®,(z) is exactly the right-hand
side of (20) stripped of its terms that contdij(z), f/(z), namely, the terms correspond-
ingto(j,s) = (0,0) and(j, s) = (r, 0). By the variation-of-constant method, moments
can then be pumpeat libidinem and we have from (15)

el®@

—T(U)
(21) fi(2 = - T(Z)/ R (we ' du.
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For instance, we obtain automatically

g1
2 1-T)%
T4 24— 11T +2T2
iy = — —————,
12 a-T1)°
24 — T4 8+ 144T — 110T? +63T° - 17T% 4 2T°
8 (1-T)8 ’
10,800+ 64,560T — 60,072T2 + 53,760T 3
TS —26,865T4 + 9140T° — 1750T8 + 152T7
2l = 520 1-T)i '

The success of the pumping method is obvious as regards asymptotic forms at least
since conditions of singularity analysis are preserved under multiplication by rational
functions ofT and under integration. (In fact, there always exist exact rational forfs in
as shown by a more sophisticated argument, but this is immaterial here.) An asymptotic
pattern clearly emerges:

ol 15 1
2(1-12 41-T)®
Zf3’\'4—571 Z4"\'£1571

4 (1-T)® 16 1-T)’

where the approximations hold when— e, that is to sayT — 1. The following
lemma characterizes the dominant termd,@k) precisely.

LEMMA 5. The factorial moment generating functions satifdyr > 1,

G
(22) zf (2 = W(l +01-T))
G

T (2(1—e)¥/2172 (1+0((1-e2Y?) (z—eh,

where the constants,Gre determined by the nonlinear recurrence

Lo/r
(23) (3r —4)rcrl+z<j>c,-crj —8.,0=0, Co= -1
j=0

PrROOF The property holds for = 1, 2 by Lemma 3. For genera| the variation-of-
constant formula (21) entails (by induction) that the singular behdyi of the form
zf ~ C,(1-T) ¥+l asz — e, in accordance with (22). In other words, tldg
operator shifts a singular expansion by a factolof T)~2 while the 9, operator shifts
such an expansion by a factor @ — T) 3.

The dominant contribution from (20) thus arises from the terms corresponding to
s=0and(j,s) = (r, 1). As a consequence we havezs- e,

r = /r
0 fr (1= 2fo) — fr 0.(2f0) = 5 072h D+ ) (J) froj 92(2f) + O((L - T)~¥*H.
=1
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Integration and multiplication of both sides by gields the asymptotic relation

r—1

22%(1—zf) =123,z 1) + ) (;)(zfr_o(zf,-) +O0((L-T) ),
j=1

The coefficients of the dominant terms involviay— T)~¥*2 can then be identified,
and this provides a recursive determination of the coeffici€nts

r—1
r
2C =@ —HrCry+ Yy <J.)Cjcr,-, r>1
i=1
There, by a natural convention, we takg = —1 sincefo = 1 — (1 —T) and it
is singular components that count. This recurrence is equivalent to the one stated
in (23). O

The constant€,; determine the dominant asymptotic form of thement®f the law
of total displacement. Clearly, factorial moments and power moments are asymptotically
equivalent, and, by singularity analysis, one has
2T n\¥/?
—C| = 1+ 0O(n?)).
M@ -1/2) ( > rom)

@4 uf) = Eldn] = :

In order to establish the Airy limit distribution property, it is then necessary to identify
the coefficientsin (24). We show that in f&&t = Q,, with ©, the fundamental constants
of Definition 1.

From (23), the quantitieg := C, /r! satisfy a nonlinear recurrence

r
Gr—Ay1+Y ¥ir-j—8o=0,
j=0

so that the exponential generating function of @e y(2) = > ,.,C/Z'/r!, itself
satisfies a nonlinear first-order ODE of the Riccati type:

322y (2 —zy(@ +y@?>—-1=0.

In a way, this basic equation is a “reduced image” of the fundamental difference-
differential equation when only dominant singular parts are retained. Now, itis known that
Riccati equations are reducible to linear second-order ODEg:(ggt= 37°g'(2)/9(2),

so that

(25) 97*q"(z) + 152°9'(2) — g(2) = 0.

From there, the connection with Bessel functions is easy to establish and a computer
algebra system like Maple provides valuable hints. Some care is however needed due to
the multivalued character of Bessel functions of nonintegral order, so that we provide
some detail.
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The “modified” Bessel functions are defined by

22/4)k
L@ =( ) Zkll“(v+k+1)

KV(Z) = ( —v(z) - Iv(z)) s

2sinvm

and, for nonintegrab, they form of basis of solutions to the Bessel equation

(26) z—+z—z—(z

One can then simply match (25) with (26) and verify that the general solution to (25) is

1 1
92 =2z"3 (MK 1/3 <3 ) + A2l 13 (32))’

A simple computation then shows that the general solution of the original Riccati equation
is

12/3(1/32) — AK2/3(1/3

(27) }/(M(Z) _ 2/3( / Z) 2/3( / Z) .
I_1/3(1/32) + AK_1/3(1/32)

For determinacy, we restrict (27) to the compkeglane slit along —oo, 0).

We note at this stage that Bessel functions of order a multiple of one-third are related
to the classical Airy functions that are defined as solutions to the linear differential
equationw” — zw = 0. In particular, one has

1 [09]
Ai(z) = = / cog(3t° + zt)dt
T Jo

1/z 1/2K 273/2
()

This (and other connections) justify our choice of naming the distribution of Definition 1
the Airy distribution.

Obviously, they *'(z) as obtained in (27) are nonanalytic at zero. Then (27) is to be
taken in the sense that the divergent (formal) sepiéz) represents asymptotically
the right-hand side as— 0*. However, asymptotic expansions of Bessel functions are
well known: with . = 412, we have, as the variabletends to+oo,

o e RS INCES TR NRTEL LR S
! J2ry 8y 21 (8y)? 31 (8y)3 ’

while eachK, (y) = O(e™Y) is exponentially small. Thus, the asymptotic expansions of
all the y*)(2) in the scalg{z™} coincide, and we may as well takgz) = y©(2). In
other words, th&, are generated as coefficients in the asymptotic expansion,

C 1p1/3 N7 +
(29) T yo/3) ;cr” (z— Oh).
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Table 1. The Airy constant€2, and their various normalizations; = /r!, oF = 22-1Q,/r!, u® =
- T (— é)/ I'((3r —1)/2). (Theu™ are the moments of the Airy distribution.)

r 0 1 2 3 4 5 6 7 8
Q 1 1 5 45 3315 25,425 18,635,625 18,592,875 403839930375
r 2 Z Z 16 7 64 1 256
1 1 5 15 1105 1695 414125 59,025 1,282.031,525
@r 2 8 3 128 32 1024 16 32,768
wy —% 1 5 60 1105 27,120 828,250 30,220,800 1,282,031,525
) 10 15 884 565 662,600 19,675 4,102,500,880
H 1 VT3 VT 63 32 VT 9009 192 8729721

From (28) and (29), we thus obtain a purely algebraic and explicit specification of
y (2) as a quotient of two divergent hypergeometric series (of Faeype) that matches
exactly the definition of the Airy distribution, witle, = . This characterizes the
distribution of construction cost in almost full hash tables.

THEOREM 3 (Limit Law for Full Tables). For almost full tablesthe distribution of the
random variable g,_1/(n/2)*2 converges to the Airy distributigin the sense that
pointwise for each x

dn,nfl

PF{WEX}—)PI‘{XEX} (n — o0),
where X is Airy distributed in the sense of DefinitibnThe same property holds for
completely full tables and the random variablg,d(n/2)%?.

(The property for full tables results from the fact tlat, has the same distribution as
dn.n—1 + Un, Wherels, is uniform over [0..n — 1].)

Initial values of the Airy constants are given in Table 1. The normalized constants
wp =22~1Q /r! turn out to be integers far > 1. This interesting sequence starts like

1,5, 60, 1105, 27120, 828250, 30220800, 1282031525, 61999046400, 3366961243750,
202903221120000, 13437880555850250, 970217083619328000, 75849500508999712500,
6383483988812390400000, 575440151532675686278125, 55318762960656722780160000,

and we propose calling it the Wright—Louchard-aa& sequence (see the remarks above
and our conclusion). It is howevabtto be found in Sloane and Plouffd&ncyclopedia
of Integer Sequencé41]. The variance of the Airy distribution is

¥ — 7 =0.19174 06797 43540. .

and the appearance of this magic value in a variance expression may be taken as a good
indication of the possible occurrence of the Airy distribution.

3. Sparse Tables. In this section we analyze sparse tables, where the filling ratio
defined asx = n/miis fixed and bounded away from one. The behavior of such tables
turns out to be much more tame than that of full tables discussed in the previous section.
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3.1. Combinatorial Analysis As seen at the beginning of Section 2, a simple circular
symmetry argument enables us to restrict attention to tables whose last location is empty.
Such a table then decomposes as a labeled produst-of clusters (sometimes also
figuratively called “islands”) that are, up to relabeling, almost full tables. Note that a
cluster may well have size 0, in which case it comprises only one unoccupied cell. For
instance, the table

[ [3fof4]7] [ [5]2] [8] [1[6] |

is, up to relabeling, a sequence of six almost full tables of respective sizes 0, 4,0, 2, 1, 2.
Define the generating functiodm, n(q) that counts the number of ways of creating

a nonfull table of lengtim and sizen (the rightmost location is empty) witlh marking

the total displacement. The construction cost (or total displacement) of partial tables is

inherited additively from component clusters. Therefore, the total displacement in partial

tables of parametém, n) has generating function

Hmn(@) = n! [2"]F(z, )™ "
The number of tables of length, sizen, with the last location empty is then
Hnn(D) = n! [Z] fo(™ " = n! [Z7] T (™",
a quantity that, by virtue of (1), equaisn — nym"~1, in agreement with the circular

symmetry argument. The probability generating function of the total displaceipgnt
is then

Hmn(Q) n!
Hnn(1) — (m—nymn-1

[Z"]F(z, )™ "

3.2. Moments The generating functions for sparse tables admit power forms that lend
themselves nicely to differentiation. In this way, moment generating functions are ob-
tained immediately from the corresponding computation for full tables.

The analysis still relies on the functioris = U 84" F introduced in (11). We have

UdgF(z o)™ = (m—n)f" "1y,
Ud?F(Z )™ = (m—n)y(m—n—21) f" " 212+ (m—n) f" "1 1,

The values ofzfy, zf;, zf, are known from Section 2, and are expressible in terms of
T = T (2) alone; this gives for instance,

n! N men N1 T ()M
m[z Wk o™ = fi=l275 1-T@)?

Whatis required atthis pointin order to obtain explicitforms is amethod for coefficient
extraction,
A(T(2))

30 m-I— m-—n ,
(30) 21T @"" o
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whereA is a polynomial of degree: r. For computational purposes, it is convenient to
introduce the change of variables in Cauchy coefficient integrals that underlies Lagrange
inversion:

1 d
(31) NI @) = 5 / M@)o

1 -T
= .—/A(T)(l—T)e
2
= [t™e™(1 — t)A(t).

dT
(T gT)m+1

(Small contours around zero are understood in this derivation, and this shortcut is of
course logically equivalent to Lagrangefgiann inversion.)
Then the application of (32) to (30) yields

A-T) 1-tt

This is close to the form (6) of the generating function@f(m, n). Now, an argument
similar to the one used in (18) for full tables applies. The linear space spanned by

d femt = mt
{<ta> 1_t}r—0u{e }

contains all the rational functions of the foreéfA(t)/(1 — t)'~. Thus, there exist
polynomialsU andV such that

A(T :
1 _( T))f = %(U (m, n) +V(m, n) Qo(m, n)).

The computation is again purely mechanical. It can be recast in ter@gof, n— 1)
sinceQp(M, n) = 1+ (M/n)Qo(m, n — 1), and the forms so obtained are consistent
with those for full tables (Theorem 1).

[Zm] T m—n

[Zm]-l—m—n

THEOREM4 (Sparse Tables, Exact Form of Moments).
Eldna] = 5(Qo(m.n—1) - 1),
E[dZ ] = %((m -4+ N+3M-n?+@n+1(M—-n)+5n+4n—1
— (M =3+ 4m—n)? + (6n + 3)(M — n) + 8n)Qo(m, n — 1)).

The approximation formula (7) then produces the asymptotic form of the first moment
and of the variance of am-sparse table.

THEOREMS5 (Sparse Tables, Asymptotic Form of Moments).
o o
n p—
21— «a) 21— «a)
6a—6a2+4a3—a4n 603 + 2402 + 6a
12(1 — )4 12(1 — a)8

E[dm,n] =

-1

Var[dmn] = +0(n™.
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3.3. Limit Law. In this subsection we estimate the distribution of total displacement
in sparse tables, whan, n tend to infinity in such a way that the filling ratio= n/m
remains constant. We thus fixthroughout and assumef o« < 1. The mean, and

the variances? of the distribution are in this case bo®(n) and their precise form has
been given by the last two theorems.

The limit law is approached here by characteristic functions rather than by moments
as was done in the case of full tables. Indeed, cancellations already present in the vari-
ance preclude a moment approach. On the other hand, the power form of the involved
generating functions suggests an appeal to the saddle point method applied to Cauchy
coefficient integrals, this in order to estimate characteristic functions. Some care is how-
ever needed sincE(z, q) is sharply nonanalytic at = 1. The analysis proceeds by a
(delicate) perturbation of the (easy) saddle point estimates of the univariate problem of
counting sparse tables, name|[F(z, 1)™".

THEOREM6 (Limit Law for Sparse Tables). The limit law of total displacementg, in
tables with filling ratioe = n/m that satisfiest < 1 is asymptotically Gaussiams
n— oo,

dmn_Mn } 1 /X _g?
Pri/t < xt > —— e S/2ds,
{ On - \/27'[ —00

whereu, = E[dm.n] is the mean of the distribution ang, defined byfn2 = Var([dnn]
is the standard deviatigras given by Theoremband>5.

PrOOF By Lévy’s continuity theorem, it is sufficient to consider the characteristic
function of the standardized distribution (centered around its mean and scaled by its
standard deviation), that is,

* _ 1 —itun/onroNn it/onym—n
¢n(t) - [Zn] F(Z, 1)m_n (e K [Z ]F(Zv e ) )7

and prove that it converges pointwise for any fixed the characteristic function of a
standard normal variate,

(32) or(t) > e /2,
Sinceon, = O(4/n), we analyze instead the closely related quantity

i _ hn(t) : ont
33) hp(t) i=[Z"|F(z, €/YM)™ " sothat —— = tm/Vigr (22 ).
(33)  ha(t) :==[Z"]F(z ) hn(0) ¢ /n

The analysis of large coefficients in large powers of generating functions is known, in
the univariate case at least, to be amenable to the saddle point method; see [3], [8]-[10],
and [33]. We start by briefly reviewing the case- 0 that corresponds to a univariate
problem expressed by the “unperturbed” integral,

dz
Zn+1 !

(34) [Z"F(z, 1) = i/ F(z,h)m™"
2w
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By a standard argument, such an integral (34) involving large powers is precisely of the
type amenable to saddle point analysis. Here, we kazel) = fo(z2) = T(2)/z, and
the saddle point equation is

d
4z ((m—=n) fo(2) —nlogz) =0,

which has a unique positive root between 0 antlat; = «e™. At that point, one has
additionallyT (¢) = « and fo(¢) = €.

The classical saddle point analysis is based on integration on thel gjrele together
with the fact that only a small sector of amplitusl@round¢ dictates the asymptotic
contribution of the integral in (34). One should tak& — oo andns® — 0, for
instance$ = n~%4 s suitable, a choice that we fix here. Then a local expansion reduces
asymetotically and up to normalization the integral to be evaluated to a complete integral
of e™v"/2,

Now, the strategy for evaluating the integral in (33) consists in adopting the same
integration contoufz| = ¢ as in the unperturbed case (34). The perturbation introduced
in (33) byq = €'/v" must then be quantified precisely. It turns out that concentration in
a sector of amplitudé = n=%4 still holds as the maximum of the integrand’s modulus
on the contour only gets displaced by a much smaller amount, na@n@ly®®). Local
expansions near the real axis then provide the asymptotic fohx(f, from which the
Gaussian law eventually results.

First, we establish globally that the geometryFafz, q) on |z] = ¢ does not differ
much from that of (z, 1) whenq = € andd lies in a suitably restricted interval around
zero. The derivatives

8I’

fr (Z) = Bq’

F(z,q)

a=1

exist as formal power series irthat are furthermore analytic iz < e~*. Also, since
the total displacement parameter on an object of siealways at most?, we have

9 r 9 2r
— ) F(z 9 < <z—) F(z 1),
(q 8q> q g=1 9z

where« indicates here coefficientwise dominance between power series with nonneg-
ative coefficients. It results th&t(z, €?) is in fact an infinitely differentiable function

of 6 for all fixed z inside the diskz| < e~*. (Construct formal derivatives whose ana-
lytic existence is guaranteed by the domination property and then reEgzee?) by
repeated integration.) In particular, Taylor's formula with remainder, when applied to
F(z, €?), with z treated as a parameter, yields

- ) 92
(35) F(z,€") = fo2 +i0f1(2) — E(fz(z) + f1(2)

1 p 9 .
— 0 —u)—F(z, €")du.
+3!/0( Pz

The last term igD(03) and this estimate holds uniformly with respectzidor z in any
subdisk of|z] < e, since, by coefficient dominance again, the third partial derivative
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is dominated coefficientwise by(d/dz))® fo(z). The uniform estimate (35) precisely
quantifies the way (z, €?) approximates (z, 1).

Next, along the circléz| = ¢, the quantity]F (z, 1)| has a unique maximum on the
real axis at the saddle poiat= ¢. Also, |F(¢€¥, 1)| is an upward concave function
of the argument in a fixed neighborhood ap = 0. By the uniform approximation
property (35) and the continuity that it implies, upwar@doncavity, that is expressed by
a sign condition on second derivatives, must persisEfare ¢, €?) providedsd stays in
a sufficiently small neighborhood of zero. Also, for valuegajutside the guaranteed
concavity interval and agatsuitably small, the approximation relation (35) entails that
|F(c€?, €% < F(z, 1) — ¢, for some fixect > 0.

The preceding discussion thus provides a clear pictund=@, €)| on the circle
|zl = ¢. When#, now a parameter, is such th@ remains less than a small fixed
nonzero thresholdy, the quantity|F (z€'¢, €%)| is upward concave negr = 0 (that
is, for z near the real axis) while its values at least remain boundedly smaller than the
absolute maximunfy(¢), outside the concavity interval.

Now take = t/+/n, which is needed for estimatirg (t). The value of is fixed anch
is assumed to be large enough so that the local concavity and majorization properties hold.
A local expansion shows that the maximum|Bfice®, &/¥Y)| occurs atp = @o(n),
where

t 1 fl(;)
®o(N) Clﬁ(1+ Oo(n™)), C1 Q)
This is well within the range of the unperturbed saddle point integral which is given by
the boundary pointge*'?, wheres = n~%4. Therefore, we can conclude in the usual
way that

1 [t o )
ha(t) = E / F({e‘“’, e|t/«/ﬁ)mfnefn|zp d(p(l + O(nfl/z)),
-4
(The error term could in fact be made exponentially small.)
Now, the analysis can be performed in the small interval, [+5] by means of local
expansions of the integrand, themselves attainable from the main approximation (35).

For estimates up to relativ@(n—'/?) error terms, it suffices to use the quadratic approx-
imation part of (35), so that

+8 ) ) .
o = 5, / | foee™MNAGE)™ T dp(L+ O ),

where

t 12 2@+ h©@
A=A "2 o
From this point on, the computations are routine but particularly tedious, so that
we only sketch them. It suffices to expata — n)log A(z€¥) with respect tap up
to guadratic terms again, then set= w/./n, and extend the integration bounds to

(—o0, +00). The integral is thereby reduced asymptotically to a form

+00 2
(36) / exp(a + iajw — a2w2/2) dw = 2—71 exp(ao — i) i
—o0 V & 2a;
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that is evaluated by completing the square. Once more the support of a computer algebra
system like Maple is especially welcome, and one finds (some details omitted)

2 = plog fo(()n+i,3tf1(§)n1/2_/3_t2 ( f2()+f1(0) f1(¢)?

>+O(nl/2),

¢ fo() 2 fo(¢) fo(¢)?
_ (Bfe®) itBg ey g 12
@7) & = < fo@) 1) n+ fo(g)z(fo(i)fl(;“) fo(2) f1(£)n™ + O(1),

a0 = BE £ = £16(©) fo(0) = fo(@) fg(&)
T2 fo(¢)?2

with g = =% — 1.
All reductions done (!), we obtain from (36) and (37) the asymptotic estimate

n+ O(n*?),

ha (1)
hn(0)

2,2
ton t;

_ i _n -1/2
—eXp<|Mnﬁ o )(1+ o(n ),

(38)

where use is made of the asymptotic formswpfando,.

We observe in passing (see also the comments below) that the asymptotic form of
moments derives systematically from the basic saddle point method and that the expres-
sions can all be obtained directly in termsfpfand their derivatives evaluatedéatFor
instance,

[ fo@m™ "tz " tdz pn 1)
[ fo@™"z-n-1dz fo(@)’

(39) pn = (M—n)

and so on.

The final estimate (38) after renormalization according to (33) then yields the con-
vergence of characteristic functions (32). This completes the proof of the Gaussian limit
law. O

The saddle point method has been used in a technically different context by Pittel [34]
who showed that the size of the largest cluster (hence, also the maximum displacement)
in a sparse linear probing table only grows logarithmically, on average and in probability.

The process used in the proof of the last theorem is in fact very general and we
encapsulate it into a general statement.

COROLLARY 1. A Gaussian limit law holds for the coefficients of any “large pgiver
[Z1Gz 9, B >0,

(B fixed n — oo) provided the following conditions hald

(C1) G(z,9) = >_,0n(q)2" has nonnegative coefficients addggn(q) = O(n*) for
some integek.

(C2) There exists some r with < r < +o00, such that Gz, 1) is analytic in|z| < r,
and G(0, 1) # 0,G(0, 1) # 0.

(C3) limyy-2G,(z,1)/G(z, 1) = +o0.
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(Cs) There exists 0 ny, ki, ko with ky # ko such that the coefficienfg™q*]G(z, q)
and[z™q*]G(z, q) are nonzero

PrROOF  (Sketch) Condition{C;) ensures analyticity of partial derivatives and smooth
perturbation;(C3) ensures existence of the basic saddle paids) ensures unicity of

this saddle point(C4) ensures a nonzero variance. It can be recognized that these are
the only conditions used in the proof of Theorem 6, when one defines abstractly the
functionsf, by U 8{1G and the saddle poigtby the equatios f3(¢) — fo(¢) = 0. The
moments are then all expressible in termg @ind thef, ; for instance, the mean of the
distribution is asymptotic t@n f1(¢)/ fo(¢), in accordance with (39). O

Givenits mild analytic conditions, Corollary 1 applies to a diversity of situations where
large random assemblies of labeled or unlabeled combinatorial objects are involved. In
the case of linear probing hashing, it implies that the number of clusters of some fixed
size p has a distribution that is asymptotically Gaussian with mean and variance that are
bothO(n).

4. Conclusion. The analysis of sparse tables (Section 3) is a by-product of the treat-
ment of full tables (Section 2) that do constitute the primary combinatorial objects, so
that we discuss them in more depth here. The Airy distribution and its companion mo-
ment formulae turn out to be part of a ring of problems treated often independently by a
variety of methods and authors. A brief census of “Airy phenomena” in combinatorial

applications then reveals five main ranges of problems that we now list (see Figure 2).

(P1) Construction cost in linear probing hashinghis is the context of Section 2 and
the analysis applies verbatim to total displacement in parking sequences as well.

(P2) Number of inversions in tree\n inversion in a rooted labeled tree is a p@irj)
such that is on the path from the root tpandi > j. Exact generating functions
have been first found by Mallows and Riordan [31] in the case of “Cayley” trees
and other families of trees are considered in [11].

(Q) Connectivity in graphsA major problem in graphical enumeration and random
graph theory [5], [18] is the determination of the numpén, n + k) of connected
graphs withn vertices andh + k edges. (The quantity (n, n — 1) is for instance
the number of labeled tre€k, = n"~?, discussed in Section 1.) The basic problem
was first solved by Wright in a famous series of papers [49]-[51]. Wright’s solution
involves a quadratic recurrent sequence that, after normalization, is the same as
that of Section 2, so that the Airy constants make an appearance.

(Ry) Area of excursiondBy an excursion is meant a random walk that is never negative,
and has initial and final altitudes both equal to zero; area is defined as the sum of
altitudes of all nodes. The simplest type is the Bernoulli excursion definellby
steps (also called gambler’s ruin sequence); Louchard [29], [30] established that
the area of the Bernoulli excursion is asymptotically Airy distributed. Louchards
results are also related to other contemporary works from the early 1980s dealing
with Brownian motion [37], [40] where Airy functions also crop up explicitly.
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(1) (P2) (Q) (F) (R2)

Linear Probing «—— Tree inversions «— Graphs «—— Excursion area —— Tree pathlength

Atry functions

Fig. 2. Five problems resorting to the “Airy phenomenotPy, P,, Ry, Ry) lead to the Airy distribution while
(Q) involves the Airy constants.

(Ry) Path length in treesThe path length of a tree is the sum of the distances of all
nodes to the root of the tree. In a series of papersadafd4], [46] has established
limit Airy distribution results for various families of trees including Cayley trees
and Catalan trees as special cases, while rederiving independently in [43] and [45]
some of the results of Louchard.

Regarding methods, our Theorem 3 establishes directly the Airy lawwFgrby a
recursive determination of moments. A similar process has been employed by Louchard
and Talkics for(R;) and(R). The underlying combinatorial decompositions are however
quite different. For(P;), one may regard the Airy law—via the quadratic recurrence or
the Riccati equation—as a reflection of the basic binary tree-like decomposition of linear
probing tables, while other decompositions prevailfey) and(R,). Problem(P;), as far
as we know, has not been previously considered under the angle of asymptotics and limit
distributions, but it appears eventually to be an essential element in the combinatorial
picture (see below).

The enumeration of connected gragk® has a different status, since combinatorial
enumerations rather than limit distributions are involved. Wright's major result states
that

m20730/2, n+(3k—1)/2
T((3k/2) + 1) :

for a family of constantsy. A direct comparison between our basic recurrence of (23)
and [49] shows that

y(n,n+k) ~

1
RFTCEE T
where the2, are the Airy constants of Section 2.

Thus, three limit distribution problems, namél:, R;, R), have been found previ-
ously to lead to Airy laws, while structural constants of the Airy type are seen to appear
in the graph connectivity problerfQ). This suggests a closer look at combinatorial
relations between these problems.

Ok k+15

(P1—P,) The fundamental recurrence of Section 2 in relatiofRp is indeeddentical
to the recurrence of [31] that modglR,). Thus, the two problems must be
combinatorially isomorphic. This fact has been noted by Knuth [25], following
Kreweras [28]. Knuth also evokes in [25] the alternative of a direct and exact
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combinatorial correspondence based on Exercise 6.4-31 of [23]. An immedi-
ate consequence of the present work in conjunction with the observations of
Kreweras and Knuth is thethe number of inversions in a random Cayley tree

is asymptotically Airy distributed

(P,—Q) An exact correspondence between inversions in trees and connectivity in
graphs seems to have been first detected around the turn of the 1980s by several
authors. Gessel and Wang [12] have an especially elegant formulation in terms
of depthfirst search, where this mode of graph traversal leads precisely to a
tree augmented by return edges that form inversions.

(Q-Ry) This thread is due to Spencer [42] who noted thiadthfirst search of a
random connected graph has a “trace” that is a random excursion of the so-
called Poisson type. (Depth-first search in the style of [12] is an alternative for
this correspondence.) Under Spencer’s correspondence, area under the Poisson
excursion relates iexactterms to “excess” of the original graph.

(Ri—Ry) There are many known similarities between random walks and random trees.
One of the most classical combinatorial correspondences relates bijectively
Bernoulli excursions and general Catalan trees (see, e.g., [21] and [39]). Under
this correspondence, area of an excursion transforms into path length of the
associated tree.

These various relatiohsn a way “explain” the common occurrence of the Airy dis-
tribution in (Py, P2, Ry, Ry) as well as theafe of the Airy constants in probleQ).

They also point to an alternative and more combinatorial deduction of the Airy law that
would be based on the following steps: (i) the exact equivalence between linear probing
and inversions in trees b§P,—P;); (ii) the exact equivalence between tree inversions
and graph connectivity®,—Q) by depth-first search; (iii) the exact reduction to Poisson
walks (Q—R;) by Spencer’s principle; (iv) the reduction to Louchard’s derivation of
the Airy law through an appeal to universality of Brownian motion. Our derivation of
Section 2 offers instead a self-contained approach to the problem.

PosTscrIPT Apart from this conclusion section, the technical developments of our
paper are otherwise independent of the recent preprint of Knuth [25]. Knuth has been
kind enough to share numerous informations regarding [25], and this sheds additional
light on the structure of the generating functions that appear in Sections 2 and 3. A major
consequence of [25] is that the fundamental difference-differential equation admits a
closed form solution. This can be checked by direct comparison with [31] or [25].
(Alternatively, the combinatorial correspondences mentioned above could be used.) As
aresult, the bivariate generating functiérz, q) happens to have an explicit expression:

00 Ny _ 1\—N
n=

|
=1 n:

6 Exchanges with Joel Spencer in 1995, while [42] was being developed, have been at the origin of our interest
in Airy phenomena. Private communications with Knuth have then greatly helped us to complete the picture
offered in this section. See [25] for an insightful perspective.



On the Analysis of Linear Probing Hashing 513

> g2 g — 17"/l

n=0

> QU2 g — 17"/l

n=0

These forms are recognizable variants of the bivariate generating functions of graphs,

n—1

z
F(zg+1 = nn+t—1Hg—,
(zq+1) nZty( Y

and Knuth’s analysis starts precisely from this relation.

Notice that (40) does not trivialize our moment computations, since it is already far
from clear, given (40), that the tree functions should be involved. The manipulation of
g-series expansions like (40) is in fact particularly delicate, as attested by the “Giant
component” paper [18] on which [25] relies.

The exact correspondence with graph connectivity is at any rate neatly exposed by
(40). Preliminary work by Flajolet and Salvy (1995) inspired by Prellberg [36] indicates
that distributions can in fact be extracted from suchseries by a method of coalescent
saddle points [48] that provides uniform asymptotic expansions and is well known to
lead to Airy functions. Such an approach should allow us to characterize the “phase
transition” between sparse and full tables, thanks to uniform asymptotics. In addition,
it provides an analytical “reason” for the Airy phenomena observed here: a law of the
Airy type may be generally expected whenever a coalescence of two neighboring saddle
points (a so-called “monkey saddle”) occurs in a Cauchy coefficient integral.

Acknowledgments. The authors are thankful to Don Knuth, to whom this paper is
dedicated, for his constant support and his openness in sharing his thoughts on the
subject.
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