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Abstrrzct

This paper studies coefficients !ih. n of sequences of polyno'miab

y/t(x) = ~ !ih, n x 1l

/I I)

defined by non-linear recurrences. A typical example to which the results of this paper
apply is that of the sequence

Bu(.r) = 1. Bh_1(.r) = 1 +.rB/t(.r)2 for Ii ~ 0,

which arises in the study of binar~' trees. For a wide class of :-3imilar sequences a, general
distribution law for the coefficients YII. n as functions of n \\'ith Ii fixed is C'stablished. It
follows from this law that in many interesting eases the distribution is asymptotically
Gaussian near the peale The proof relies on the saddle point method applied in a region
where the polynomials grow doubly exponentially as Ii -0. oc. Applications of these
results include enumerations of binary trees and ~-:l trees. Other structures of interest
in computer science and combinatorics can also be studied by this method or its
extensions.

1. Introduction

In many enumerati\-e problems in computer science and combinatorics one en
counters the difficulty that no closed form formulae exist for the quantities of interest
and only recurrences for generating functions are uyailable. For example, if Bit, n is
the number of binary trees with n internal nodes and height ~ h, then the generating
polynomials

satisfy the recurrence [5J

[
BII (:) = 1 + z(Blt _1(::))2

Bo(:) = 1.

In this paper, we introduce a new method for studying coefficients of sequences of
polynomials that satisfy recurrences of similar types.

\Ve study sequences of polynomials Yh(Z), which we will refer to as P~I-sequences

(for positive nonlinear iteration), \'rith

Y/t(z) = ~Yh.nZn. (1'1)
It
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( 1,2)(h ~ 0),

They are defined by some initial yu(z) =*= 0 which has non-negati\'e coefficients, and a
recurrence

where P(z, y) is a polynomial with non-negative coefficients,

P(z, y) = ~ Pk(z) yk with Pd(z) '* 0 and d > 1.
O-':;k-.:;d

\Ve define fl = lim d-h deg Yh(z),
h_C1J

(1,3 )

( 1'4)

p = inf{x: x E [R-"-, Yh(X) -,-., 00 as h -,-., ex:}. (1'5)

Clearly fl and p exist and are finite for e\-ery PXI-sequence {Y,J:::)} that contains non
constant polynomials. As will be explained below, it is sufficient to consider PXI
sequences for which P(:;, y) and Yo(:) satisfy the following conditions:

(A) P(;;, y) is not a monomial (i.e. P(;;, y) '* bzayd).

(B) At least one of the Yh' 0 ~ 11 ~ 2 has the property that !y,Jz)1 =YIt(l) and
1:/=1::>:=1.

\Ve prove two main results.

THEoRE:\I 1. Suppose that {Yit (z)} is a PSI-sequence that satisfies conditions (A) and (B),
and let ;\1 and ;\2 be any real numbers that satisfy

o < 1\ 1 < 1\2 < Ii.
Then for any integers nand h with

u'e have, uniformly in nand h,

_ rp,,(r)-1M-l)exp (dh(jJ(r) - rjJ'(r) log r)) -h12

Yh,n - dh2 \[27T(r2jJ"(r) +rjJ'(r))J (1 +O(d )), (1'6)

lchere r is the 1.wique solution in (p, x) of

rj3' (r) = nd-It ,

and 13(:) is a function u:hich is defined on (p. x) by

j3(z)=locry(z)+_l_loO'p(:)+ ~d-j-qoS!( Yj-"-1(:) ) (1'7)
e 0 d-1 e Ii j:-'ll '-lPd(:)Yj(z)ilj'

and is analytic there.

THEORE:\I 2. Suppose that {Yh(Z)} satisfies the conditions of Theorem 1. Let lY: denote
some n for lehich Yh, n is maximal. If p ~ 1, then

lim d-h~V: = o.
h-C1J

If p < 1, then ..i.Y'h-fl'(l)dh as h-,-.,oo, (1,8)

and the Yh. n are asymptotically Gaussian near the peak,. for

/n- ...Ytl == O(d2hi3
)

'lee have ( 1,9)

'lchere u 2 = fl'( 1) + fl"( 1).
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In the remainder of this section we first make some remarks about these theorems,
and then discuss their connections to other work. Section 2 proves a series of auxiliary
results that are at the heart of our method, and from which theorems 1 and 2 are easily
deduced in Section 3. Section -1 presents some applications, possible extensions, and
numerical results.

Both Theorems 1 and 2 gh-e information about the coefficients of the polynomials
Y/t(z) in terms of the function j3(z), which is defined by (1'7) in terms of the polynomials
Yh(Z). This is not circular, however, since the series in (1' 7) is extremely rapidly con
vergent, and is determined to great accuracy by just a few initial terms. Differentiating
the basic recurrence (1'2) yields a recurrence for Y;/+l (z) in terms of Y/t(z) and y!t(z), and
therefore the definition (1·7) of j3(z) also gives a rapid ,yay to compute the derivati\'es
of j3(z). As is shown by the examples in Section -1, the approximations (l'u) and (l'!))

are ,-ery accurate e,-en for small ,-alues of h.
JIany of the hypotheses of our theorems can be weakened. It is not essential, for

example, that all the coefficients of P(;;, y) or of the Yh(:;) be non-negati\-e. \Yhat is
really crucial is that the Z!h(:) should grow very rapidly as It ~ Cf:, on the positi\'e real
axis and :-5hould be rclati\-ely small elsewhere (('f. [6,7, 14J). Howe\-er, the appropriatc
growth conditions arc not always easy to check. anel so we ha ve chosen to restrict ollr
presentation to PXI-sequences, which are easy to characterize, and which are of
greatest intercst in computer science and combinatorics.

Condition (A) is nut necessary for the sueeess of our method. In fact, Theorem A

holds fur PXI-sequenccs which satisfy conditiun (B) but not condition (..:\.), except that
'\1 may h(1\-e to be bounded below away from O. Howe\-er. for PXI-sequences that do
not satisfy condition (~i), the definition of ;1(:;) can be simplified. \Ye note that ifY/t(:) is
a PXI-sequence for which condition (A) fails to hold, then

P(;;, y) = !J;;flzl
for some b > 0, a ) O. and so

Ylt (:) = (lr;a )(,fh_1) (tl-ll Yo(z )tlh ,

and we can reduce to the study of coefficients of high powers of yo(z). These, ho\ve\-er,
can be inn:'stigatecl much more directly, ,vithout developing most of the analytic
machinery of this paper, through use of the central limit theorem. Much stronger
results can also be pro\-ecl in this situation [12J.

Condition (B) is \'ery easy to check, since a polynomial

lit

y(z) = ~ akzl'\, 0 ~ eo < e1 < .. , < ellP aI' ... ,am > 0,
1.:=0

has the property that ly(z)1 = y(l) and Izl = 1 imply z= 1 if and only if

gcd(el-eO,e2-eO, ... ,em-eo) = 1,

which holds if and only if y(z) is not of the form

y(:) = zeoy*(ztl) (1'10)

for some polynomial y*(z) and some d > 1. The function of condition (B) is to ensure
(see Lemma 2-1) that for large h, the !/h(z) are not of the form (1'10), since in that case
our theorems are ob,-iously not true. However, P~I-sequencesof polynomials y,Jz)
for which each Yl/(z) is of the form
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(2'2)

can be studied hy our method hy looking at the sequences ?Jt(z), pro'"ided d is chosen to
he maximal. ,re also note that hy the proof of Lemma 2'1, condition (B) is equi'"alent
to only Y2(::) having the specified property. Lemma 2·2 shows that condition (B) cannot
be weakened.

Theorems 1 and 2 are pro'"ed in Section :3, while Section 2 proves a number of
auxiliary lemmas. The proofs rely on an analysis of the behaviour of the polynomials
Y/t(z) as It -;.- x, for Z E C, Izj > p. It is shown that, for Z in a narrow strip of the form
Rez > p+o, IImzl <,) for some fixed 0> 0, the polynomials Y/t(z) exhibit doubly

t:xponentialgrowth: YIt(z)=U(z):x(z)l/lt(l+o(l)) as h-;.-oc (1'11)

for certain functions .x(z), U(z), and that the y,,(z) are considerably smaller away from
the real axis. The precise estimates we obtain enable us to determine the asymptotic
behayiour of the !i;" 1/ by expressing them as contour integrals and using the saddle
point method.

The key to the success of this method is the doubly exponential growth (1'11) of the
Yh(z). Equation (1·11) generalizes the results of Aho and Sloane [2] about integer
sequences satisfying nonlinear recurrences of the type

with IUnl < lXn for n ~ no.
Our results are related to the immense literature on the subject ofr-ational iteration.

(See, for example./3. 4. 81.) )lost of the papers in that area arc concerned with questions
of eon'"ergence of iteration. In this paper, on the other hand, we are operating almost
exelusi"ely in the region of din:rgence, and we COIleentrate on the rate and nature of
di'"ergence. III other situations, such as those of [5, 10.11, 13], it is adntntageous to
study the iteration either within the convergence region or else right OIl the boundary
between eon\"ergence and di\·ergencc. ::\Iethods similar to some of those used in those
papers could also be used to obtain more information than is provided by Theorem 2
when p ~ 1.

:? Proofs of auxiliary results

As u first step. we pro'"e u technical result which will enable us to show that the
polynomials YIt(z) arc very small away from the positi\·c rcal axis.

LE:\L\I.\ :? 1. If fYIt(z)} is ({ PSI-sequence of polynomials that satisfies Condition (B),
then for erery h ~ 2 fllul every rE~-'-,

/Y,l::) I = !1h(r) and Izl = r => z = r.

Proof. Lct fYh(Z)} satisfy the hypotheses of the lemma. Since Yn(z) has non-negative
coefficients. for 1:1 = r, Z =l= 0, we have

IY/t(z)1 = I~Yh.nznl :::; ~Yh,nrn = Y/t(r), (2·1)
n n

and equality can hold if and only if for some yEC with 11'1 = 1,

YIt, 11 zn = 1'Yh. nrn for all n.

Let u = z/r = ::/Izi. Then (2·2) is equivalent to

YIt, n u/~ = (YIt, It for all n,

whirh is equi\·ulent to !Yh(u)1 =y,,(l). Thus /Y,JZ) I = !//t(r) holds for some z =l= r, Izi = r

ifand only if !Yh(ll)1 = ,11,,(1) holds for some II * 1, lui = 1.
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Suppose now that m ~ 1 and that for some::; with I:! = 1 we hayc !.IJIIJ:): = !J{!!( 1).

The recurrence (1'2) implies that

Since all the coeffieients of Ym-l(:) antI of the Pk(:) are non-negative,

/Pk(Z)! ~ pk(I), 0 ~ k ~ J,

!Ym-l(zll ~ .'1111-1(1),

and so (2'3) can hold only if 1.'1111-1 (:) I = .'1/11-1 ( 1). Repetition of this argument shows that
if for some: =i= 1, !zl = 1, we ha\'e :.'111(:): = lld l ) for some h ~ 2. then 1.'1/1/(:) = .'1,)1)
for 0 ~m ~ h, and this contradicts Condition l B) and pro\-es the lemma. I

Lemma 2·1 guarantees that for P~I-..,equen(·es :Y;,(:): that satisfy Condition (TIl.
!J;,(::') for h ~ 2 achic\-es a unique maximu/ll Ull .::;, = rat ,.. This l1W'lllS. in particular,
that for large h, .'11,(:) will not be of t he form

(2'-1)

for some polynomiab .'It ( /l) and some m > 1. The next Lemma shows that Condition (B)

is in a sense best possible for our problt>1ll hC(,<1I1:'(, if it i::; \'iolated, then the polYllomiaL,
Y/t(:) can be written in the form (2'4), ;tlld tlworems 1 and 2 ('lcarl~' canllot hold for sut'll
polynomiab. The same result wOlild not folluw if we only impo:-:ed conditiollS OIl /1,,(:)

and !!I(z), as is shown hy the PXI-seqIH\lll'e detined by .110(::) = 1, P(z.!li = .:.'/- .::;;ll/-. In
this example :.'11,( - 1) I = !!h( 1) for It = n. 1. bllt not for It = 2. cll1d this seqtH'Il('l\ due~

satisfy Condition (B).

LE::\DL\. 2·2. If {.'Ill:)} is Ii PX[-~rqU(,Jlce0fp{)!.'I11omiu!8. Iwd thue is I[ z '*' 1. I::! = 1,

sitch that 1.'12(:)1 = y>!,(I), tl/('JI tlucre i8 UJI intqrr t' ~ 28/1('/' thotf,Jl' ('och 11 ~ II.

lchere the Yh(t) are polynomials.

Proof. Suppose that:; =l= 1, Izi = L and fYI,(Z)~ :,atisfy the hypotheses of the lemma.
By the arguments used in the proof of Lemma 2· 1, we see that i!h (z) I = .'11 (1) and

1.'10(:)1 = Yo(1) as well.
If .'12. n = 0 for n < liZ and Y2. ill * 0, then !Y2(zll = Y2( 1) implies that

I " .'II ~n-11l1 = '" 7/....... 2, n ,..., I ........ ,/2, n·
n~m (/::::11l

(2· 7)n.for allY2, n zn-m = Y2, n

Since the first term inside the absolute ,-alue sign in (2-0) it-) .'I?, n > 0, equality can hold
if and only if

Therefore either Y2. n = 0 for all n > in (i.e. Y2(.r) is a monomial) or else ZO = 1 for some
integer 9 ~ 2, and if 9 is chosen to be minimal such that zY = 1, then Y2. n = 0 if
n =$: m (mod g). In the second case, if r is any prime factor of g, then Y2, n = 0 if n :$: in

(mod r). The same arguments show that each of .'111(:1'), h = 0, 1, either is a monomial or
else has the property that Yh. It = 0 if n =i= ell (mod r), where eli is the smallest integer JI

such that YII. 11 :$: O. Therefore each Yh(.r), 0 ~ h :::; 2. which is not a monomial. l'an he
written in the form

(2'8)
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(2'9)P(x,!J) = ::: fh,j(.l·r, yr) x'yi,
0'-; i. j. r

where .lit (t) is a polynomial. But any monomial can ob\'iously be written in the fortll
(2·8), so we conclude that a representation of that form exists for each !hJr), 0 ~ 11 ~ 2.

\Yrite

where the fli.ill, v) are polynomials with non-negati\'e coefficients which are uniquely
determined by (2'!))' Then by the basis recurrence (1'2),

?h(.r) = :t"'lYi(:rr) = ::: gi,j(.rr, ?Jo(xy) x'-"-Ioiy~(.rr)j,
i.j

so \"e must have
e1 == i + (ioj (mod r)

for each pair (i.j) such that gi.j(ll, v) =F O. Similarly,

y:/r) = .I.:'~yt(.rr) = ~ul,ll·r.ih(.l'Y).rI'f'ljiJi(·I·r)i,
I. j

(2'10)

(2'11 )

so that we mllst ha\-e
(2'1~)

for each pair (i,j) with !!t,i(u, r) =F O.
Suppose first that there are two distinct pairs (i.j) such that :;1,)(11. /') '* U. Call them

(i1.j1) and (i'!.,j'!.). Then by (2'11),

(~.1:3)

(modt),

and if jl == J'!. (mod 1'), then we would han> i l == i:?, (mod tl, which is a contradiction,

since 0 ~ i1. i'!,')l.j:?, ~ r - 1 and (il')r) * U:?,.):?,). Helwe)l =F J:?, (mod l). Then by (2'1~)

and (2.1:3)

which implies that ('1 == ('0 (mod 1'), since)1 :$= J:?, (mod r) and r is prime. But in that case

Po == i + cnj (mod r)

for all pairs (i.j) with '1i,/Il, v) =*= U. and then an indueti\'e argument using (2'9) shows
that

for all h ~ 0, and this gi\-es the desired result.
To conclude the proof of the lenlllla. it only remains to consider the ('ase that there is

only one pair (i,j) with [fi,/Il,!") *O. But then

.1111+1(.1:) = fh i(.l~r, Y/t(xn .l'i'Y},(.l')j, (2'14)

and since (2'8) holds for 0 ~ h ~ 2, (2'1-l) shows that it holds for all 11 ~ 2 with appro

priate ell' Thus the lemma is true in this ease as weIl.l
\Ve now deri\-e a series of lemmas gi\-ing size estimates for the polynomials YII(z)

which willleaJ to proofs of Theorems 1 and 2.

LEl\E\L\. 2·3. Suppose that {YII(:)} is a PSI-sequence of polynomials and define

p = inf{x: x E rR-"-, YII(;r) ~ CIJ as h ~ CIJ}.

Then fur et'ery 0 > 0, there exist positive constants :', ,/, Ssllch that for;:; in the region

u;e have

R(J) = {:: 11m(z)1 ~ 'l,P+v ~ Re(.:) ~ V-I}

l?h(z)1 ~ yexp (Sdh
).

(2'15)

(2·16)
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Proof. Chooseih > 0 so small that p,k=) has no zeros in the region

R1 = {z: 11m (z) I ~ 'iJ l' P+ 0 :::; Re (::) :::; 0- 1J'

:J. = min{min 1-~P£1(Z)I,n.
::eR,

Then for any large enough K I we must have

IP(z,Y)1 > alyld
if Z E R1 and Iyl ): K 1, as can be seen from the inequality

IP(z,y)! > Ipli(z)llylcl[l- £1i:.
1

I
Pk((:))llylk- d l,

1.:=0 p" -

(2'17)

and the fact that the pd::.) are bounded for zERl .

If

then

so that if

and if

ajYld> IYI,

K"!. = max (1\.1. a- t (d-l»),

Ilo = Y an(l If 11..-1 = P(::, ll,J for J1): 0,

then for zER1, I!JI ~ K"!. we llllse

II :>.: (l(rli_l)(fl-illyidi.
k r ' I I . (~'18)

Therefore, if lyl is large enough, the Ilk exhibit doubly exponential gr0'vth.

Set

and let ho be such that

1\.3 = max (11."!., 2ft- I ),

Yho(P + (») ): 2K3 •

(2'19)u:e have

Since Yllo(Z) is continuous and increasing along the positi\"e real axis, we can find i/2

such that 0 < iJ'!, < iJl and if

R'!, = {z: 11m (::)1 ~ i/'!"p+O ~ Re(::) ~ 0-1},

then IYllo(z)1 ~ 1\.3

for zER2• But then the estimate (2'18) applies, and

Iy (-) I :>.: a(ri k -l),(d-ll l~dk :>.: (r n-li(d-ll)dk :>.: '>lil.
ho'"-k - ?' .1\. 3 ?' .1\.3«' ?'... ,

so that the estimate (2·16) of the lemma clearly applies for Ii ): lio and z E R2 if we take
'}' and ~ small enough.

To complete the proof, it suffices to extend the estimate (2'16) to all Ii. 'Ve note that
if iJ E (0, 1]2) is chosen small enough, then none of the polynomials Yo(=), ''', Yllo-l(Z) will
have a zero in the region R(o) S; R'!, defined by (2·15), so that (2'16) will hold for these
Y/I(z) also in that region if we take y small enough. I

LEMMA 2·4. If{y/z(z)} is a PSI-sequence that satisfies Condition (B), then for any 0, iJ > 0

there is a constant w > 0 such that for h ~ 2, P+0 ~ Izi :::; 0-1, and

z tt R(o) = {z: p+0 ~ Re (z) ~ 0-1, 11m (=)! ~ 1J},

!Yh(:)! ~ YII(I=I) exp (- wdh
).

Proof. By Lemma 2-3, if h is large enough, say h ): ho' and

IYh(:)1 ~ Y/t(I=I)exp(-c),
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By Lemma 2· 1,

for some positi\'e c, t,C :s; YhC=!)'!, then

jYh-l(Z)! :s; P(I=!,y,,(I:!)e-C
)

~ P (izi)y (j:l)de-ctl ~ Prl-k(lzl)y (I:I)-keck
" Ii I, II I .... P (I_I') h I

k=U Ii ""

:s; YIIH(lzl)e-Cd(l +O(ecYII(I=/)-I))

~ Yh'-1(I=i)exp(-cd+2c~-ld-1I):s;YII..,-1(lzj)exp(-cd(1-d-II '2)).

iy;,o(:)! :s; y;,/!:!) e-£

for all z, =1R(o), p +,) ~ 1=1 :s; 0-1 and some € > 0, so that (2'20) implies

(
' II.) :-1.-1 ')

IY;'o+k(Z) I :s; Y;'o'-k( 1= i) exp - ull.: ,n (1 - r/-j, 2)
} =;",

(2'20)

(2,21 )

v..hieh pro\'es the lemma for li ;): li o' BlIt the estimate (2,1 H) follows trivially for
2 :s; li :s; li o- 1 from Lemma 2·1 if \ve choose (JJ small enough. I

LE.:\DL\. 2-;''). If {y;, (Z)} is a P ~rI-sequence, th(',n joomy () > 0 there i.Hi ~ > 0 such that jor
z ER(o) (defined as in Lemma 2-:3) Ice flllee

Y,/(:) = exp (d"/J(:) - d ~ 1Iogp,/:)) (1"';" O(exp (- ~dh))),

where P(:) is defined as in Theorem 1 and is a!lfl!ytic in R(o).

Proof. Since none of the y;,(=) has a zero in R(S), we can define

v,J:) = log !lh(z), (2'23)

where for real z, we take the principal value of the logarithm, and for z E R(/)) - fil, the
logarithm is determined by analytic continuation. The basic recurrence (1'2) can be
written

L{' q(z, '!J,(Z)) )
YII'-l(Z) = Ptl(z) Yh(z)t \ 1+Pd(Z) Yh(z)d ' (2'24)

where q(z, y) = P(z, y) - PIi(Z) !if
• (2'25)

Taking logarithms of both sides of (2,24), we obtain

Since

(2'26)

where

iterating (2'26) yields _

dll -1 h
vh(z) = dll log Yo(z) + d _ 1 logpd(z) + L dj-1'h_j(Z),

m=l

r.(z) = 100'(1 + q(Z,Yj(Z))).
) e Pd(z) .lI;(z)d .

\Ye no\v introduce the function

(2'27)

(2'28)

(2'29)
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By Lemma 2,3, the I):) arc bounded in RU». so the series in (2·2\)) con';erges and makes
/J(:) an analytic function for: =- R(o). Furthermore, (2'27) shO\vs that

1 Cf:)

t'h(z) = dhjJ(z)-d-. logpt/(z)- ~... d-j-lr/t~j(z),
- 1 j=U

and by Lemma 2·3 the last sum in (2'30) is

(2-30)

for some g > 0, which concludes the proof of the lemma. I
For future reference, we note that it follows from (2,2:3), (2·2f)), and (2'30) that

I1(Z) = lim d-hv/t(z) = lim d-h log Y/t(z).
h-oo /i......x

(2':31 )

In Lemma 2-;";. ;3(z) was defined for zER(o). HO\\'e';er, the definition of jJ(z) does not
depend 011 0, so we conclude that ;3(.:) is defined and anal,ytic in the union of all the
R(/n for 0 > O.

Before proceeding to the proofs of the theorems, we prove some auxiliary r~sults

about jJ(.:).

LE:'IDI.\ 2·(). Suppose C~h(:)} is n PXI-sequence lehich satisfies conditions (A) rmd (B),
fwd let Ii, p be dejined by (1·4) and (1',5), respec/h·ely. Then

and

(Z/3'(:))' > ° for z E (p, X),

lim zjJ'(::) = fl.

(2'32)

If P(:: . .11) is not a monomial (i.e. P(z, .11) * bzayd ), then

lim ::11'(::) = 0.

Proof. By (2':31), for any ZE (p, x), we have

:jJ' (z) = lim d-h :Y;l:) .
h--oo Yh(Z)

(2'34:)

(2'35)

.:c

f(z) = ~ fk zk , j~ ~ 0,
k=U

'Ye first obsen-e that for any entire functionf(:) 4= 0 with non-negative Taylor series
coefficients,

the quotient g(::) = zf'(:)
j (::)

is an increasing function of z for::E !R+, since computing the derivative of g(z) yields

f "(-) f'(-) (-1'(_))2I l) - iw':",..

z(J (z) = z- j(z) +z f(::.) - f(z) , (2'36)

f k

Pr(X = k) =J/(~).

and the quantity on the right side of (2'36) is the variance of the random variable X
such that

:Moreover, we see that g'(z) = 0 is possible if and only if only one of the fk is * O.
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Xext, we pro\-e that if 1(:) = ]1(:) +]?(z), where 11(Z) and f:.(z) are both non-zero
entire functions with non-negati,-e Taylor coefficients.

00

f( "') - "f ",k (; - 1 '»i' - - ..:.... i, k- 1I - , ... ,

k=O

then z (;;1 I (z )) I ~ 11 (z) .z (':;] ~ (z )) I.

](z) ](z) ]1(:;)
(2·37)

for any z E lR~. To see this note that, by the preceding paragraph, the quantity on the
left side of (2':37) is the ,"ariance of the random ,-ariable X such that

f -"
PI' (X = k) = k.':'-

4 ] (z)'

But X is a mixture of the random yariahles Xl and X 2 , where

f ",k

PI' (Xi = k) = 0 ;'~~k') ,
with weights]i(z)/1(,:). (A mixture ,tYl +(l-,\)Y:! of random variables Yl and Y:! ,vith
weights ,t <In<1 1-It corresponds to choosing }"1 with probability ,\ and Y2 with probability
1 - ;\). Thus to pro\"e (2·;ri), it will suffiee to show that if Yl and Y~ are any real-valued
random '"ariables, and ,t E [0, 1], then

\~ar (,tYI ~ (1 - ,I.) Y~) ~ Val' (YI ) + (1 -It) Val' (Y:!).
If F

1
denotes the distribution function of Xi' then (2';~8) is equi,-alent to

,tf.l:'!.(lFI + (1 -,I.) f.l::!dF'!. - (,\f-rdFl + (1 -It) f.rdF'.l) '!.

~ ,\fX2dFl -It (j.rrlFl ) 2 + (1 _It) f.t 2dF"!. - (1 -,\.) (f XdF'!.) 2,

whidl is easily seen to hold. This completes the proof of (2'37).

'Ye now apply (2'3i) with

\\"e discover

(2·38)

(2·39)Z(ZY~+l~Z))' ~ dh-2Z(ZY~~Z))' . Ii Pd(Z)Yj:Z)d.
Yh,l(-) , Y'J,(-) j=2 Yj+1(-)

Now Lemma 2·3 implies that the product

nPI/(z) Yj(Z)d

j=2 Yj+1(z)

converges to a number b = b(z) > 0, and since each factor is ~ 1, we deduce from (2·39)
that

(2'40)



zf'(.::) ~ deg(f(z))·f(z) (ZE~-'-),
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and the last factor on the right side in (2'40) is > 0 by Condition (B). Since z(z(3'(:;))' is
the limit of the left side of (2'40) as Ii -+ x, we obtain the claim (2'32) of the lemma.

To pro\'e (2'3:3), we note that iff (.::) is any polynomial with non-negative coefficients,
then

and so zfJ'(Z) ~ limd-hdegYh(z) = p.
h-.cr;

(2'41)

(2'42)

To complete the proof of (2'33), note that for It ~ ho,

degYhH('::) = ddegYh(z) +degpd(z),

dk -l
and so degYho~k(Z) = dkdegYho(Z) + d-l degpd(z),

Next, note that for z E ~~,

Y;/-c-l(Z) ~ dprt(z) Y/t(z)d-I y~(z),

and so Y;-l('::) ~ dY;(z) (l-ye-~tl/')
Y!I~I('::) !fh(::·)

for some y, g > 0, where this holds uniformly for all h ~ 1 and all z E (p + 1, ex:) by
Lemma 2·3 (applied with any 0 < 1 such that R(o) =f 9) and the fact that each of the
Yh(Z) is increasing on [R-'-. Therefore for any t > 0, if we ehoose hI such that

cr;

n (1- ye-f: tl") > 1-t/2,
h=h,

then for any z E (p + 1, ex;) and any h ~ hI we will havc

z(3'(.::) ~ d-hzYh (::) (1-£/2).
Yh('::)

If we now choose h?,. ~ max (h o, hI)' and z so large that

-y' (-)
'"' h~ - ~ (1-e!10)degYhJ:),
Yh,)Z) .

then by (2'43) we will have
:(3'(::) ~ (l-e)d-h2 degYh

2
(z).

Since by (2'42) d-hzdegYhJz) = limd-hdegY,Jz) = Il,
• h-CX)

(2'45)

(2'44)t (z) = d-hY~(z)
h Yh(Z) ,

L p;.(z) Yh(z)k

ah(z) = £Pk(Z)Yh(Z)k '
k

this together with (2'41) prov"es (2.33).

To complete the proof of the lemma, we need to prove (2.34) when P(z, y) is not a
monomial. Define

(2'46)

Then the recurrence (1'2) gives

thH (.::) = d-h-1ah(Z) +bh(z) th(z). (2'47)
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If E = max :'degpk(z)}, then comparison of terms in the numerators and denominators
of (2'45) and (2'4G) shows that for any Z E [R-,

o ~ ah(z) ~ EZ-l,

(2'48)

(2'49)

11 ~ o.

o ~ b,Jz) ~ 1.

Hence th-<'l(Z) ~ tlt(z) + O(cZ-hZ-1 ),

and therefore th~m(z) ~ th(z) +Cd-hz- l

for all m E Z~ and some C > O.

Let us first suppose that p * O. \Ye show that in this case Yh(P) is bounded as h ~ oc.
To see this, note that for each r E IR~ there is a Y(r) > 0 such that P(z, y) > 2y for
Z ~ r, Y ~ Y(r). Xow if Yh(P) is unbounded as 11 -;.. x, then by continuity we must have
Yk(P') > 1"(p /2) some large k and for some p' E (fJ /"2, p), and then Yh(P') is also unbounded
as 11 --;-. x by the argument aboH.', which contradicts the definition of p.

Since Y/i(P) is bounded and P(.r.lJ) is not a monomial, wc sec from (2"W) that there is
some B < 1 sUth that

Hence (2';30)

Since the th(p) are bounded as 11 -;.. x, as is shown by ("2'4D), we find by iterating (2'50)
that for some C1 > 0

(2'51)t'!.h(P) ~ C1(B"+d- Ii ), t:!."_l ~ C\(B"+rl-h
).

Hence t,Jp) -;.. 0 as h ~ x. Gi\"en € > O. let us choose Ito so that

Cd-ho+(\(Bho+,z-ho} < t/-!.

Then there is a 0 > 0 such that
l:!."J:;) ~ f./2

for p ~ z ~ p + o. But then (2··t-!}) and ("2';32) imply that

t,l:) ~ r;

for all h ~ 211 0 and z E [po P +0], which implies that /i' (z) ~ r; for z in that interval. Since
this holds for every t > 0, we must ha'"e ;3'(z) ~ 0 as::; -;.. p.

To complete the proof of the lemma, we need to pro\"e (2'34) w'hen p = O. \Ye first
obsenye that it will suffice to show that

lim lim zt,l:) = o.
h-oo =-0+

(2'53)

To see this, note that if (2.5:3) holds, then for any € > 0 we can find lto and 0 > 0 such
that for Z E (0, 0),

But then (2'49) shows that

Ztho~IJ!(Z) ~ t, mE Z+, Z E (0, 0),
which proves the claim.

Suppose now that p = 0 and that Y/t(O) = 0 for all large h. If we write

y/t(z) = Zl'hy!(Z),

where y!(z) is <1 polynomial with !/h(O) =F 0, then

1
. zy~(z)
1m -- = t'/t.

=--0" Yh(Z}
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But P(;l:, y) is not a monomial, so L'1I-l :s; (d - 1) V It' and therefore

lim:tlt(z) ~ (1-d-1)1t,
=--0--

which proves (2'53) in this case. On the other hand, if Yh(O) =F 0, then

1· zy~(z) 0
llll-- = ,

=-0 Y,Jz)

and (2'5:l) again holds. This finally concludes the proof of the lemma. I
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3. Proof'3 of the Theorems

\Ve now use the results of Section 2 to prove Theorem 1. Suppose that all the
hypotheses of that theorem are :-;ati:-:;flcd. \re use the Cauchy integral representation

which is \Talid for any simple closed cUr\"e r with the origin in its interior.

Let
11,

" = dJt' (3'2)

so that ;\1 ~ II. ~ ;\~. \rc choose for r the circle centred at the ol'igin of radius r, where

1';1' (r) = ;\..

Since :;13'(:;) is strictly increasing from 0 to,ll between:; = fJ and:; = x by Lemma 2'0,

equation (3-:J ) defines r uniquely and shows that for II. E [/1. 1 , "2]' l' E [r1 , rJ, ,vhere
p < r 1 < r"!. < x. The choice of the above contour is inspired by the fact that rsatisfying
(:J'3) is an approximate saddle point of the integrand in (:~·l).

By Lemma 2'5, we find that there is a constant 00 > 0 such that 13(:) is analytic in the
region

In that region we have the expansion

Re j3(re lO ) = j3(r) -},O'2(r'2j3"(r) + rj3' (r)) + 0(0 1),

and, by taking 00 small enough, we can ensure that

Re j3(re iO ) ~ jJ(r) -10'2(r2jJ"(r) + rj3' (r)).

(3'4)

(3'5)

Iff I denotes the section of the circle z = rewwith 00 :s; () ~ 27T - ()o, then, by Lemmas
2·4 and 2·5,

where 10 > 0 depends only on rl , r2, and 00 , If f 2 denotes the section of this same circle
with -00 ~O ~()o, then Lemma 2·5 implies that

i-:f Y/t(z) z-n-1dz = i-:f Ptt(Z)-I/(d-U exp (dhj3(z)) z-n-1dz
..7T~ r, .7T? r,

+ O(r-n exp (dn(jJ(r) - w'))), (3'6)

""here w' > 0 again depends only on )'1' r2 , and 0U' To estimate the integral on the right
side of (3'0), we ,,,rite
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for some u.:" > 0 which depends only on r1 and r2 , and so

Finally, if

then

But (:l'2), (:~'4), and

where

Xow

which together with the pre\"iOllS estimates pro\'es Theorem 1.

From Theorem 1, we see that the largest nllues of.'ih./1 when n "aries correspond to
yalues of n (defined by (:~-:~)) which maximize

g(r) = p(r) - rp' (r) log r.

y' (I') = - (P' (r) + rjJ"(r)} log r,

antI since IJ'(r} + r;J"(r} > 0 for r > p by Lemma 2'0, r/(r} will ha\Te a unique maximum
at r = 1 if p < 1, and will be < 0 in (p, cc) ifp ~ 1. To complete the proof of Theorem 2,
we need to consider fJ < 1and study the distribution ofYh. II for r near the peak. Define

no = ll()(h} = P'(1}dh ,

and set

\Ve will consider

If r is defined by

then

where

Hence we have

.1' = (n - llo) r!-h;2.

Ixl ~ dhi6 .

rp' (r) = nd-h ,

(n-ll o}d-ll = rp'(r)-p'(1)

= (r-1)0"2+0((r-1}2),

(J'2 = P'(1) +p"(1).

r - 1 = :rd-ll/2(J'2 +0(.r2d- Il ).

Expanding the quantities that occur in the statement of Theorem 1 in a similar way,
we obtain Theorem 2.

4 . .Applications and extensions

The problem that originally led to our iIl\Testigation was that of estimating B il • Ttl the
number of binary trees of height ~ hand lut\Ting II internal nodes. The recurrence for
the generating polynomials is gi\'en in the first paragraph of this paper. It is easy to see
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Fig. 1. The function jl(r) for binary trees.
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0·0 '--__---' --'- --'- ...........__----J

0·0
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Fig. 2. The function f(A}, which equals the limit of
2-h log Ph. n as h, n ~ 00 with n ,... A2".

that p = 0 and J.l = 1. Theorems 1 and 2 imply that for large but fixed h, Bh• n is

maximized for n _ 2h 0·628 968 ... , (4'1)

and that its maximum value is asymptotic to

2-h/2 .exp (2 h . 0·407 354 ... ).0·685517.... (4'2)



P. FLAJOLET AXD A. ~I. ODLYZKO

For 11 = 9, B'J, n is maximized for n = :322, as predicted by (-t.I), and the value of B'J, 322

differs from that predicted by (4'2) by less than O·f)5 0;), which demonstrates how
accurate the asymptotic approximations of our theorems are. Fig. 1 presents a graph
of the function p(r), defined as in Theorem 1. Fig. 2 shows a graph of the function

f(A) = fi(r) - rji'(r) log r,

where r is determined by 0 < r < 1, and r is determined by

rp' (r) = t\.

-This function dominates the behavionr of B Ii , 11' so that if h -+x and

n '" 1\211 as h -+ x,

then lim 2-11 log B/;, Il = f(,\)·
h-Xi

There are many enumerati\"e problems whic'h in\"oh'e nonlinear iterations of
polynomial generating functions, but which are not eo\"ereu by our theorems. As an
example, enumeration of AVL-trees (also known as height-balanced binary trees [1, 9J)
leads [llJ to the polynomial sequence defined by

Yo(=) = =, Yl(=) = =2,

YIt71(=) = y,J:) (!!It(:) + 2Yh-l(:)) for 11?; 1.

Since 'Yh-:.-l(=) depends on Yh-l(::} as well as on !!It(=), our remIts do not apply directly.
However, it should be possible to use the methods of this paper to prove results
analogous to Theorems 1 and 2 for these polynomials, as well as for many other
sequences satisfying similar recurrences.

It is also possible to use the methods of this paper to study recurrences such as (1' 2)
where the Yh(=) are entire functions with non-negati\-e coefficients and where P(=, y)
might also not be a polynomial. However, in many cases it is simpler to use the results
of[6,7,14].

Finally, we mention that it should be possible to use onr methods to study multi
variate polynomials satisfying nonlinear recurrences. Such polynomials occur, for
example, in studies of 2, 3-trees [15], where one is interested in the coefficients of the
polynomials Ah(x, y) defined by ..1o(x, y) = 1, and

Ah+l(x,y) = xyA,lr,y)2+ xy2A h (x,y)3 for It ~ o.
By applying our theorems to the sequences An(~r, 1) and A h(1,y), we can obtain more
precise information than is pro\-ided by [15], but it might be interesting to obtain
estimates for the full distribution of the coefficients of the .d. h (.1:, y).
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