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Abstract
This paper studies coefficients y, , of sequences of polynomials

.?/h('L‘) = S .’/h.nx"

n.h
defined by non-linear recurrences. A typical example to which the results of this paper
apply is that of the sequence
Byjry=1. B, ((x)=t+xB,(x)* for hx=0,
which arises in the study of binary trees. For a wide class of similar sequences a general
distribution law for the coefficients g, , as functions of n with 4 fixed is established. It
follows from this law that in many interesting cases the distribution is asymptotically
Gaussian near the peak. The proof relies on the saddle point method applied in a region
where the polvnomials grow doubly exponentially as A - oc. Applications of these
results include enumerations of binary trees and 2-3 trees. Other structures of interest
in computer science and combinatorics can also be studied by this method or its

extensions.

1. Introduction
In many enumerative problems in computer science and combinatorics one en-
counters the difficulty that no closed form formulae exist for the quantities of interest
and only recurrences for generating functions are available. For example, if B, ,, is
the number of binary trees with » internal nodes and height < £, then the generating
olynomials
p s Bh(:) — : Bh,n“n’

nz0

satisfy the recurrence [5]
{B,‘(:) =1+2(B,_;(z))* for Ah21,
By(z) = 1.
In this paper, we introduce a new method for studying coefficients of sequences of

polynomials that satisfy recurrences of similar types.
We study sequences of polynomials y,(z), which we will refer to as PNI-sequences

(for positive nonlinear iteration), with

Yuz) = Sy, 5™ (1-1)
n
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They are defined by some initial y4(z) % 0 which has non-negative coefficients, and a

recurrence Ynalz) = Pz y,2)) (B > 0), (1-2)

where P(z,y) is a polynomial with non-negative coefficients,

Pizy)= I px)yr with puz)+0and d > 1. (1-3)
o<lk<d
We define 1= lim d~*degy, (=), (1-4)
h—x
p=infla:zeR*, y,(x)—=o0 as h—oc} (1-5)

Clearly u and p exist and are finite for every PNI-sequence {y,(z)} that contains non-
constant polynomials. As will be explained below, it is sufficient to consider PNT-
sequences for which P(z, y) and y,(z) satisfy the following conditions:

{A) P(z,7) is not a monomial (i.e. P(z, y) &+ bz2y4).

(B) At least one of the y,, 0 < % < 2 has the property that |y,(z)| = y,(1) and

o = 1= =

We prove two main results.

THEOREM 1. Suppose that {y, ()} isa PN I-sequencethat satisfies conditions (A )and (B),
and let Ay and A, be any real numbers that satisfy

0 <A <A, <

Then for any integers n and h with
Ay < nd=R < A,

we have, uniformly in n and h,

rp(r) 1V exp (@A) = rf(r) log 1) i _
Ynon = d/'z\[277()‘2/5”(1‘)-%)‘/3’(1'))] (1+0((Z )): (1 6)

where r is the unique solution in (p, ) of
rf'(r) = nd=",
and fB(z) is a function which is defined on (p. =) by

! & g [ ¥ial2) -
2) = loe :+_]g W5+ [—!~l]g R bl S , 1
/J)( ) Oc?/o( ) d—1 0 Pr( ) j=U{ o lpd(:)!/j(:)d ( /)

and ts analytic there.
THEOREM 2. Suppose that {y,(z)} satisfies the conditions of Theorem 1. Let N'§ denote
some n for which y, , is maximal. If p > 1, then

limd-"NF = 0.
A

Ifp < 1, then NP~ p(1)yd* as h—>oo, (1-8)
and the y, , are asymptotically Gaussian near the peak; for
[n— N3 = O(d*3)

we have —;//i-—"- = exp(— Yo" (n—N73)3) (1 +O0(d=*|n— N}|%), (1-9)
h N

where g2 = g'(1)+p"(1).
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In the remainder of this section we first make some remarks about these theorems,
and then discuss their connections to other work. Section 2 proves a series of auxiliary
results that are at the heart of our method, and from which theorems 1 and 2 are easily
deduced in Section 3. Section 4 presents some applications, possible extensions, and
numerical results.

Both Theorems 1 and 2 give information about the coefficients of the polynomials
¥,(z) in terms of the function f(z), which is defined by (1-7) in terms of the polynomials
¥x(z). This is not circular, however, since the series in (1-7) is extremely rapidly con-
vergent, and is determined to great accuracy by just a few initial terms. Differentiating
the basic recurrence (1-2) yields a recurrence for y, . (z) in terms of y,(z) and y,(z), and
therefore the definition (1-7) of A(z) also gives a rapid way to compute the derivatives
of fA(z). As is shown by the examples in Section 4, the approximations (1-6) and (1-9)
are very accurate even for small values of 2.

Many of the hypotheses of our theorems can be weakened. It is not essential, for
example, that all the coeflicients of P(z, y) or of the y,(z) be non-negative. What is
really crucial is that the y,(z) should grow very rapidly as 2 — oc on the positive real
axis and should be relatively small elsewhere (ef. [6.7, 14]). However, the appropriate
growth conditions are not always easy to check. and so we have chosen to restrict our
presentation to PNI-sequences, which are easy to characterize, and which are of
greatest interest in computer science and combinatorics.

(‘ondition (A) Is not necessary for the success of our method. In fact, Theorem A
holds for PNI-sequences which satisfy condition (B) but not condition (), except that
A; may have to be bounded below away from 0. However, for PNI-sequences that do
not satisty condition (1), the definition of #(z) can be simplitied. We note thatif y,(z) is
a PNI-sequence for which condition () fails to hold, then

P(z.y) = bztyt
for some b > 0. a > 0. and so
yh(:) - (]):a)(rl"—l) (tl—l)yo(:)d’"

and we can reduce to the study of coefficients of high powers of y,(z). These, howerver,
can be investigated much more directly, without developing most of the analytic
machinery of this paper, through use of the central limit theorem. Much stronger
results can also be proved in this situation [12].

Condition (B) is very easy to check, since a polynomial

y(z)= Y a,, 0<e<e<...<e€,, a,...a,>0,

has the property that |y(z)| = y(1) and |z| = 1 imply =z = 1 if and only if
ged{e; —ey, 6. —€g, ... €, —€y) = 1,
which holds if and only if y(z) is not of the form
y(2) = Foy*(e) (1-10)
for some polynomial y*(z) and some d > 1. The function of condition (B) is to ensure
(see Lemma 2-1) that for large %, the y,(z) are not of the form (1-10), since in that case

our theorems are obviously not true. However, PNI-sequences of polynomials y,(z)

for which each y,(z) is of the form zony (=)
SHY AR
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can be studied by our method by looking at the sequences (=), provided ¢ is chosen to
he maximal. We also note that by the proof of Lemma 2-1, condition (B) is equivalent
to only #,(z) having the specitied property. Lemma 2-2 shows that condition (B) cannot
be weakened.

Theorems 1 and 2 are proved in Section 3, while Section 2 proves a number of
auxiliary lemmas. The proofs rely on an analysis of the behaviour of the polynomials
yu(z) as b — ¢, for zeC, |zf > p. It is shown that, for = in a narrow strip of the form
Rez > p+4, [Imz| < 4 for some fixed § > 0, the polynomials y,(z) exhibit doubly

exponential growth: Ju(5) = g3 2= (L+0(1)) as koo (1-11)

for certain functions z(z), g(z), and that the y,(z) are considerably smaller away from
the real axis. The precise estimates we obtain enable us to determine the asymptotic
behaviour of the y, , by expressing them as contour integrals and using the saddle
point method.

The key to the suceess of this method is the doubly exponential growth (1-11) of the
un(z). Equation (1-11} generalizes the results of Aho and Sloane{2] about integer
sequences satisfying nonlinear recurrences of the type

T =24,
with lg, ! < Lr, for n > n,.

Our results are related to the immense literature on the subject of rational iteration.
{See, forexample. |3. 4. 8].) Most of the papers in that area are concerned with questions
of convergence of iteration. In this paper, on the other hand, we are operating almost
exclusively in the region of divergence, and we concentrate on the rate and nature of
divergence. In other situations, such as those of [5, 10. 11, 13], it is advantageous to
study the iteration either within the convergence region or else right on the boundary
between convergence and divergence. Methods similar to some of those used in those
papers could also be used to obtain more information than is provided by Theorem 2
when p > 1.

2. Proofs of auxiliary results

As a first step. we prove a technical result which will enable us to show that the
polynomials y,(z) are very small away from the positive real axis.

Lesona 2-1. If {y,(2)) is @ PN1-sequence of polynomials that satisfies Condition (B),
then for every h 2 2 and every re R+,

=] =ylr) and zl=r = =z=r.

Proof. Let {y,(z)} satisfy the hypotheses of the lemma. Since y,(z) has non-negative

coefficients, for [z| = r, z % 0, we have

lyh(:)] = lEl//.,nZ”I < :;I//:,nrn = yh(r)’ (21)
n n

and equality can hold if and only if for some ye C with |y| = 1,
Yn a3t =YYy " forall n. {
Let u = z/r = z/|z|. Then (2-2) is equivalent to ‘
Yp 0 =y, , forall n,

which is equivalent to |y, ()| = y,(1). Thus |y,(z)] = y,(r) holds for some z % r, [z] = r
if and only if |y, (u)] = #,(1) holds for some u = 1, lu| = 1.
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Suppose now that m > 1 and that for some = with [z{ = t we have 1y, (=)l = y,.(1).
The recurrence (1-2) implies that

d ] il
2 pl.(:).'/m—l(:}kl = \_ p/‘(l)yux—l(”k' ("‘3)

h=0

A=

Since all the coefficients of y,,_;(z) and of the p,(z) are non-negative,
Pe(z)] < pill), O <k <A,
Jym—l(:)l < ylll—l(l)’

and so (2:3) can hold only if |y,,_,(z)] = #,,_,(1). Repetition of this argument shows that
if for some z = 1, {z] = 1, we have !y, (=) = y,(1) for some 2 > 2, then ly, () =y, (1)
for 0 € m < A, and this contradicts Condition (B} and proves the lemma. |

Lemma 2-1 guarantees that for PNI-sequences |y, (z}) that satisfv Condition (1),
yi8z) for b = 2 achieves a unique maxinium on =i = » at r. This means, in particular,
that for large 2, », () will not he of the form

!/h(: = :u_ayr(:m) (_)'4)

for some polynomials yf (v) and some m > 1. The next Lemma shows that Condition (B)
is in a sense best possible for our problem because if it is violated, then the poly nomials
Y(2) can be written in the form (2-4). and theorems 1 and 2 clearly cannot hold for such
polynomials. The same result would not follow if we only imposed conditions on y,(2)
and y,(z), as is shown by the PNI-sequence detined by y(z) = 1. Pz y) = zy = 2y~ In
this example [y, (= 1)] = »,(1) for = 0, 1. but not for & = 2. and this sequence does
satisfy Condition (B).

Leaia 2220 If {y, (=)} is a PN T-sequence of polynomicds. and there isa z = 1, 1z = 1,
such that jy, ()] = ya(1), then there is an inteyer ¢ = 2 sueh that for each i = 0,
Uz = g, (2:3)

where the yf(t) are polynomials.

Proof. Suppose that z = 1, lz| = 1. and {y,(z)} satisfv the hypotheses of the lemma.
By the arguments used in the proof of Lemma 2-1, we see that ly ()| = (1) and
[90(=)] = yg(1) as well.

Ify, , =0forn < mand y, , = 0.then |y,(z)| = y.(1) implies that

>

l : yﬂ.n:n_m! = E .’/2, n- (26)

nzm Az
Since the first term inside the absolute value sign in (2-6) is y, ,, > 0, equality can hold
if and only if Yo, n 2™ =Yy , forall =z (2:7)
Therefore either y, , = 0 for all n > m (i.e. y,(x) is a monomial) or else z# = 1 for some
integer g > 2, and if ¢ is chosen to be minimal such that 2¢ = 1, then y, , =0 if
n £ m (mod g). In the second case, if r is any prime factor of g, then y, , = 0if n £ m
(mod r). The same arguments show that each of y,(x), 2 = 0, 1, either is a monomial or
else has the property that y, , = 0if n = ¢, (mod r), where ¢, is the smallest integer »
such that y, , = 0. Therefore each y,(x), 0 < & < 2. which is not 2 monomial. can be
written in the form

1

YulR) = 2y (), (2-8)
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where y¥(t) is a polynomial. But any monomial can obviously be written in the form
(2-8), so we conclude that a representation of that form exists for each y,(x). 0 € h < 2.

\YI‘ite P(.l’, 3/) — E .(/I"]_(J.r’ yr) .L'/‘l/"i, (29)
O j-r

where the g, ;(x, ) are polynomials with non-negative coefficients which are uniquely
determined by (2-9). Then by the basis recurrence {1-2),

Yi(x) = iy (a) = /PICE yolxy)atoyg ey,
1Y)

so we must have
e, =1i+e,j {(modr) (2-10)

for each pair (i.j) such that g, ;(x,v) % 0. Similarly,

(¥} = 2eyEar) = N, T eyt Iy, (211)

id

so that we must have
ey =i+r,j {(modr) (2-12)

for each pair (¢, j) with g, ;(u.v) = 0.
Suppose first that there are two distinet pairs (¢, j) such that g, (w.r) % 0. Call them
(7;.J1) and (24, /,). Then by (2-11),

L=ey—ey/, (mode)y, iy,=e/—regj, (modr), (2.13)

and if j;, = j, (mod r), then we would have 7, = ¢, (mod ), which is a contradiction,
since 0 < ¢ 0, js < r=1Land (7, j) = (/. ju). Henee jy = j, (mod 7). Then by (2:12)

and (2.13 . .
( ) ey = ety =yl = e (e =) (mod r),

Hi

which implies that e, = ¢y (mod r), since j, = Jj, (mod r) and ris prime. But in that case
py=1+e,j (modr)
for all pairs (i.)) with g, ;(«, v) %+ 0. and then an inductive argument using (2:9) shows

that
) = oy ()

for all & > 0, and this gives the desired result.
To conelude the proof of the lemma. it only remains to consider the case that there is

only one pair (¢, ) with g, ;(u,r) % 0. But then
;’/h;l(‘l’.) = .’]i,]('vrr .’/h('r)r) 'l.l?/l/(‘r)j’ (214)
and since (2-8) holds for 0 < 4 < 2, (2-14) shows that it holds for all & > 2 with appro-

priate ¢,. Thus the lemma is true in this case as well. |
We now derive a series of lemmas giving size estimates for the polynomials y,(z)

which will lead to proofs of Theorems 1 and 2.
Ley>ya 2-3. Suppose that {y,(z)} is @ PN I-sequence of polynomials and define
p=infla:xeR* y,(¥v) > as h— oo}
Then for every § > 0, there exist positive constants v, y. & such that for = in the region
R ={ImE)] < pp+d < Re(z) g0l (2-15)

we have l,(2)] = yexp (&d"). (2-16)
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Proof. Choose 3, > 0 so small that p,(z) has no zeros in the region
Ry =1z ]Im(z)] < g, p+8 < Re(z) <471,

and let 2= min{miln 13pa(2)], 3}
zeR,

Then for any large enough K, we must have
|P(z,9)| > alyl* (2:17)
if ze R, and |y| > K,, as can be seen from the inequality

PA(

PG > o o1 =5 (B e

and the fact that the p,(z) are bounded for z¢ R;.
If lyl > a=td=3
then alylt > lyl,
so that if K, = max (K| ¢=V-1)
and if uy=y and w, ;= P(zu,) for nz0,
then forze R, ly| > K, we have
e > Al =Dui=n] il (2-18)

Therefore, if |y| is large enough, the u, exhibit doubly exponential growth.
Set K, = max (A, 2071),

and let A, be such that U lp+0) = 2K,
Since y, (=) is continuous and increasing o.lonor the positive real axis, we can find y,
such that 0 <, <npandif

Ry,={zIm()| < n,p+d < Re(z) <871},
then 193, (2)] = Ky
for ze R,. But then the estimate (2-18) applies, and

[y 2)] 2 a(ri"—l).(«l—-l)[\'g" > (Kya~Wd-D)d* > 2t

g™

so that the estimate (2-16) of the lemma clearly applies for h > /i, and ze R, if we take

v and £ small enough.
To complete the proof, it suffices to extend the estimate (2-16) to all 2. We note that

if € (0, 7,) is chosen small enough, then none of the polynomials y,(z), ..., %;,~,(z) will
have a zero in the region R(8) < R, defined by (2-15), so that (2-16) will hold for these
y,(z) also in that region if we take y small enough. |

Lemma 2-4. If {y,(z)} isa PN I-sequence that satisfies Condition (B), then forany &,7 > 0
there is a constant w > 0 such that for h > 2, p+6 < [z] < 671, and

z¢R(0) ={z:p+d < Re(z) <64 |Im)| <9},
we have [4,(2)] < yallz]) exp (— wd™). (2-19)
Proof. By Lemma 2-3, if & is large enough, say & > kg, and

lyn(=)] < wal]z])exp (—c),
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.
t

for some positive ¢, ¢ < 3, (=)}, then
./h

Unale)] < Pzl e

N

palizhnjz])led ¥ wyh( zf)~heck
' k=0 pll( :I)

|
[yemed(1+ Oy, (|2 I) 1)
|

< .’/14~1(|
< Ypallz]iexp (—ed +2cE571d) < yy_y(]z]) exp(—cd(1 —d~"2)). (2:20)
> q .
By Lemma 2-1, Uh ./ho(] = (2-21)
for all 2,22 R(8), p+43 < |z] < 8-'and some ¢ > 0, so that (2:20) implies
1 hy =l —1 e
Ung- ()] < g 24(12]) exp ( —edt T (1 “'I_"g))
j=h,
< g al7)exD (et /2, (2:22)

“'hiLh proves the lemma for & > /. But the estimate (2-19) follows trivially for
< < hy—1from Lemma 21 if we choose & small enough. |

Leya 25 If (=)} isa PN T-sequence, then furany § > Othere isa l > 0 such that for

22 R(8) (defined as in Lemma 2-3) we have

Y, (z) = exp ( dh3(z) —~ {—1——lox*p,( ) (1 +O(exp (= &iM)),

where 3(z) is defined ws in Theorem 1 and is analytic in R(J).
Proof. Since none of the y,(z) has a zero in RB(5), we can define
v,(z) = log (=), (2:23)

where for real z, we take the principal value of the logarithm, and for ze R() ~ R, the
logarithm is determined by analytic continuation. The basic recurrence (1-2) can be

written , (= (=)
o) = o) ey 1+ LG ED ) 2.24
Yena(®) = PR ) (14T (2:24)
where gz ) = Pz y) — pa(2) yl. (2-25)
Taking logarithms of both sides of (2-24), we obtain
(= yn(=))
Ups dv,(z) + log p, loc(l ; ————-—) 2:26
ne1(z) = duy(z) pu(z)+ Tpd(z)!/h(z)d ( )
Since vo(2) = log yo(=),
iterating (2-26) yields .
dh
() = d*logyy(=) + —— 10“11,1( )+ X s - (=), (2-27)
m= 1
where 7;(z) = log (1 + 96z 4,(2)) ) 2-28
i) P G =29
We now introduce the function
1 o .
A=) = log yy(=) + 7 log (=) + S d=7-r (). (2:29)
d-' 1 j=0 /
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By Lemma 2-3, the r () ure bounded in 2(3), so the series in (2-29) converges and makes
/(z) an analytic function for z = R(4). Furthermore, (2-27) shows that

1 .
Ble) = d"lE) == log pule) = T A (c), (2:30)

i=u
and by Lemma 2-3 the last sum in (2-30) is

Ofexp (—&d")

for some £ > 0, which concludes the proof of the lemma. |

For future reference, we note that it follows from (2:23), (2-29), and (2-30) that

A=) = imd~"v,(z) = imd-"logy,(=). (2-31)
h—ax h—x

In Lemma 2-5. 2(z) was defined for z & R($). However, the definition of A(z) does not
depend on 4. s0 we conclude that 2(z) is defined and analyvtic in the union of all the
R(§) foré > 0.

Before proceeding to the proofs of the theorems. we prove some auxiliary results
about f4(z).

Lesia 2-6. Suppose {y,(=)} is @ PN 1-sequence which satisfies conditions (4) and (B),
and let ju, p be defined by (1-4) and (1-3). respectively. Then

=2 >0 for ze(p,x), (2:32)
and limzg'(z) = u. (2-33)

If P(z.y) is not a monomial (i.e. P(z,y) = bz%?), then
lim z8'(z) = 0. (2-34)

e
Proof. By (2:31), for any z¢ (p, ), we have

Hz) = hlim d-" %h(—(:i)). (2:35)

We first observe that for any entire function f{z) = 0 with non-negative Taylor series

coefficients,

the quotient g(z) = T(T

is an increasing function of z for z€ R*, since computing the derivative of g(z) yields

iy — 2 G LG (FRN
GO =EFa G (f(:))’

and the quantity on the right side of (2-36) is the variance of the random variable X

such that .
. fx <k

(2-36)

Moreover, we see that g'(z) = 0 is possible if and only if only one of the f, is + 0.
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Next, we prove that if f(z) = fi(z) + fu(z), where f1(z) and f,(z) are both non-zero
entire functions with non-negative Taylor coefficients,

f6) = £ fudt = 1,2),
e

for any 2 R*. To see this note that, by the preceding paragraph, the quantity on the
left side of (2-37) is the variance of the random variable .X such that

fl; :k

-~

T
B
I

GO
I
% 3

But X is a mixture of the random variables X, and ‘\q, where

with weights f,(z)/f(z). (A mixture AY, + (1 = A} ¥, of random variables ] and I, with
weights A and t — A corresponds to choosing 1] with probability Aand ¥, with probability
1 —A). Thus to prove (2:37), it will suffice to show that if I] and I, are any real-valued

€[0, 1], then
=) Var (1,). (2-38)

(
2-38) is equivalent to

random variables, and A
Var (A~ (1-A) 1) = Var (1)) +

If F, denotes the distribution function of ., then (

/\J-‘L‘"'([Fl +(1 —/\)f.v‘-'dF_,— (I\f.z'rlFl+(l —/\)f.r(lF._,);
> AfﬁdFl -A (f.vrlFl)- +(1 -—/\)f.vng_. —(1=A) (f,r(IF_,)-,

2-37).

which is easily seen to hold. This completes the proof of (

We now apply (2-37) with
fl ptl .//1( ) s f'_’(:) = yh-l(:)_fl(:) = P(:?Z/h(z>) pd( )./h( ) .

Wediscover i) BB (i) i)
~(!//.-1(5) Yiaz) T\ pa(z) T w®)
g2 ) _(:y/’,(:))'
T az) T\ma/

If we iterate this inequality, we obtain
:y,§+1(:))’ . (‘J 16 ))' b 2a()y,(z)
Py Ane S0t > dh 2~ __________.
(yhfl(:). Yal7) JHJ Yj+1(?)

Now Lemma 2-3 implies that the product
2 pal=) y;(=)

j=2 ./)‘ (
converges toa numberd = b(z) > 0, and since each factoris < 1, we deduce from (2-39)
that o rs
A1z (”’—(”)) > d-1bz (M) (2-40)
yh(:) .I/‘.’.(:) ’
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and the lust factor on the right side in (2-40) is > 0 by Condition (B). Since z(z4’(=
the limit of the left side of (2-40) as /i — ¢, we obtain the claim (2 3’) of the lemmd
To prove (2-33), we note that if f (=) is any polynomial with non-negative coefficients,

th
" () < deg (f().fe) (GeR7),
and so zﬂ (z) € limd~"degy,(z) = p. (2-41)
h-+>o

To complete the proof of (2-33), note that for & > A,
deg ;.1 (z) = ddegy,(2) + deg p,(=),

k_
and so degyp,-1(z) = d*degy, (=) + %;—l-deg DPalz)- (2:42)

Next, note that for ze R+,

Yn(z) = dpy(E) (=) yal=),
’M) = (lm
Yp-1(7) Iilz)

for some 7, £ > 0, where this holds uniformly for all A 2 1 and all ze(p+1,2¢) by

Lemma 2-3 (applied with any § < 1 such that R(3) # ¢) and the fact that each of the

() is increasing on R*. Therefore for anyv ¢ > 0, if we choose £, such that

and so (1 —ye=5t")

X
[T (1—vest"y > 1—¢/2,
h=hy

then for any ze (p+1,2¢) and anv & > &, we will have

B > q-nYl) 2 2.43
/ ( Jh( ) e/ ( )

If we now choose %, > max (A, %,), and = so large that
:y"_“()) (1 —¢/10)degy, (=),

then by (2-43) we will have
2B'(z) 2 (1 —e)dh2degy, (=)

Since by (2-42) d~":degy, (z) = imd~—"degy,(z) = p,
- h—o
this together with (2-41) proves (2.33).
To complete the proof of the lemma, we need to prove (2.34) when P(z,y) is not a
monomial. Define i(z)
() = @-n 202 (2-44)
& ya(2)’

Tpk( z) yu(2)*
o) = .———————_—_—-. 2'45
() SPACTIELS (2-45)

L PACPACE
bp(z) = ~ . 2-46
U TSP (240

Then the recurrence (1-2) gives
rsa(2) = d104(2) +By(2) 4 (2). (247)
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If £ = max [deg p,(z)}, then comparison of terms in the numerators and denominators
of (2-43) and (2-46) shows that for any ze &,

Hence taa(2) < (=) + O(d =1, (2-48)
and therefore tyom(®) < 4(2)+ Cd~zt (2-49)
for all me Z+ and some C' > 0.

Let us first suppose that p + 0. We show that in this case y,(p) s bounded as h — o,
To see this, note that for each re R~ there is a Y (r) > 0 such that P(z,y) > 2y for
zzry >z (). Nowif y,(p) is unbounded as £ -+ ¢, then by continuity we must have
y(p') > Y(p/2)somelarge kand forsome p’ € (p/2, p).and then y, (1) is also unbounded
as i — oz by the argument above, which contradicts the definition of p.

Since y,(p) is bounded and P{x. ) is not & monomial, we see from (2-48) that there is

some B < 1 such that b <B. k30
Hence f(p) < Bt(p) +03d"). (2-530)

Sinee the ¢,(p) are bounded as & — 5. as is shown by (2-49), we find by iterating (2-50)

that for some €, > 0

tanlp) < CUBY +d=),  tay_y < C(BY+d). (2:51)
Hence ¢,(p) = 0 as & — . Given ¢ > 0. let us choose A, so that
Cd=ro+ C{(Bho+d~T0) <6 /4. (2:532)

Then there is a & > 0 such that o (2) < ¢/2

for p < z € p+4. But then (2-49) and (2-32) imply that
iz) ¢
forall 2 = 2h,and z€[p. p + 8], which implies that #'(z) < ¢ for z in that interval. Since
this holds for every ¢ > 0, we must have 3'(z) =~ 0 as z = p.
To complete the proof of the lemma, we need to prove (2:34) when p = 0. We first
observe that it will suffice to show that

lim lim z¢,(z) = 0. (2-53)

h—oo =0~
To see this, note that if (2.53) holds, then for any ¢ > 0 we can find 2, and § > 0 such
that for z€ (0, 8), y (3) < 6/4, Cdlo < e/t
But then (2:49) shows that
() <€, meZr, ze(0,9),

which proves the claim.
Suppose now that p = 0 and that y,(0) = 0 for all large A. If we write

yh(’:) = 21"'.?/71‘(:)7
where y5(z) is a polynomial with y}(0) + 0, then
Yul=)

lim =~ =,
=0 Yi(Z) '
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But P(x.y) is not a monomial, 50 »,_; < (¢ —-1)v,, and therefore

limzt,(z) € (L —d=1),

=0~
which proves (2-533) in this case. On the other hand, if 3,(0) # 0, then
ﬁmzy,_,(z) =0,
z—0 yh(:>

and (2-33) again holds. This finally concludes the proof of the lemma. |

3. Proofs of the Theorems

We now use the results of Section 2 to prove Theorem 1. Suppose that all the
hypotheses of that theorem are satisfied. We use the Cauchy integral representation

1
—_ . Yy w=n=1 1~ - 2.
Un on = ?,”'fryh(")" " {["'-' ('3 1)
which is valid for any simple closed curve " with the origin in its interior.
n
Let A=, (3-2)
so that A} < A € A,. We choose for [ the cirele centred at the origin of radius r, where
r3(r) = A. {3-3)
Since zf’(z) is strictly increasing from 0 to « between = = p and z = = by Lemma 2-6,
equation (3-3) defines r uniquely and shows that for Ae[A;, A,], re{r,r,], where
p < ry <r, < x. The choice of the above contour is inspired by the fact that r satisfying
(3-3) is an approximate saddle point of the integrand in (3-1).

By Lemma 2-5, we find that there isa constant 6, > O such that A(z) isanalyticin the

region
° Sz S =0 < Arg(z) < 6,

In that region we have the expansion
Re f(re?) = B(r)— L0223 (ry + rf3'(r)) + O(6%), (3-4)
and, by taking ¢, small enough, we can ensure that
Re f(re’?) < B(r) = 10°(r28"(r) +73'(r)). (3-5)

)
If T, denotes the section of the circle = = re?® with 0, < § < 27 —6,, then, by Lemmas

2-4and 2.5, 1

573 | a1tz = Or=mexp (@ (Blr) — ),
<mJr,
where % > 0 depends only on ry, 7, and 6,. If T', denotes the section of this same circle
with —6, <8 <6,, then Lemma 2-5 implies that
1
2mi

1
j Yp(z) sz = = | p,(z)"Ve-Vexp (d"B(z))z7"1dz
F, T rz
+ 00" exp (dr(B(r) — '), (3'6)
where " > 0 again depends only on r/, r,, and 0. To estimate the integral on the right

side of (3-6), we write
r,=r,uly,
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where

Fy=1{re”: =0, <0 <0, 0,=hd"?.

On T, =TTy, (3-5) yields Re 3(rei?) < flr)— w"hed

for some w” > 0 which depends only on r, and r,, and so

1
2—7—7—;] P (z) V4 Vexp (dhf(z2)) 271z = O(r—mexp (d"B(r) — w"h?)).
Finally, if J = ’Lm p(( yTMd=Dexp (d"f(z)) =~ "tdz,
h
then J = )ln Pz(""a) Ld-bexp (d"f(rel?y — nlog r — nit) do.

But (3-2). (3-4), and Palre!?)=HID = p () =TE=D(] £ O 01))

imply that
J = 2myt A, n)f ‘ exp (= YMr2B"(r) + (1)) 0% . (1 + O([0)) + O(d"10}%))d | 8]

=A@, n)d=22a (2B (r) + rp (1)) (L + O,
where A(rm) = py(ry" ¥ @=Vexp (d"B(r) — nlogr),

which together with the previous estimates proves Theorem I
From Theorem 1, we see that the largest values of i, , when n varies correspond to
values of n (defined by (3-3)) which maximize
gy = piry—rp’(r)log r.
Now g = () +r/3"<r>> log 7,
and since #'(r)+r3"(r) > 0 for » > p by Lemma 2-6, ¢'(r) will have a unique maximum
atr = lifp < t,and will be < 0in (p,xc}if p = 1. To complete the proof of Theorem 2,

we need to consider p < 1 and study the distribution of y, , for r near the peak. Define

ny = ny(h) = g'(1)d",

and set ro=(n—ny)dhz
We will consider < dMs,
If r is defined by rf’(r) = nd=",
then (n—nyd=" = rp'(r)=pg'(1)
= (r=1)o*+0((r—1)?),
where ) o= g'(1)+ £"(1).
Hence we have r—1 = ad~""2g? + O(23d~H).

Expanding the quantities that occur in the statement of Theorem 1 in a similar way,
we obtain Theorem 2
4. Applications and extensions
The problem that originally led to our investigation was that of estimating B, ,, the
number of binary trees of height < % and having » internal nodes. The recurrence for
the generating polynomials is given in the first paragraph of this paper. It is easy to see
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Fig. 1. The function f#(r) for binary trees.
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01t

0-0 ! ] I
00 0-2 0-4 0-6 08 1-0

A ————

Fig. 2. The function f(A), which equals the limit of
2-*log Bn. o 88 h, n—> 00 with n ~ A2h,

that p = 0 and g = 1. Theorems 1 and 2 imply that for large but fixed %, B, , is
maximized for n ~ 240-628968 ..., (4:1)

and that its maximum value is asymptotic to
212 exp (2*.0-407 354...).0-685 517 ... (42)
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Forh =9, By , is maximized for n = 322, as predicted by (4.1). and the value of By ,,,
differs from that predicted by (4-2) by less than 0-05°,, which demonstrates how
accurate the asymptotic approximations of our theorems are. Fig. 1 presents a graph
of the function f(r), defined as in Theorem 1. Fig. 2 shows a graph of the function

JAY = B(ry=rp’(r)log r,

where 7 is determined by 0 < r < 1, and r is determined by
'rﬁ'(r) = A,
‘This function dominates the behaviour of B, ,, so that if A — o« and
n~A2" as k>

then lim 2-*log B, , = f(\).

h—= -

There are many enumerative problems which involve nonlinear iterations of

polynomial generating functions, but which are not covered by our thecrems. As an
example, enumeration of AVL-trees (also known as height-balanced binary trees (1, 9))

leads [11] to the polynomial sequence defined by
Yol=) = 2. (=) = 2%,
Y1 (B) = 12 (1 (3) + 2,4 () for A > L

Since ,.,(z) depends on y,_;(z) as well as on y,(z), our results do not apply directly.
However, it should be possible to use the methods of this paper to prove results
analogous to Theorems 1 and 2 for these polynomials, as well as for many other
sequences satisfying similar recurrences.

It is also possible to use the methods of this paper to study recurrences such as (1-2)
where the y,(z) are entire functions with non-negative coefficients and where P(z, y)
might also not be a polynomial. However, in many cases it is simpler to use the results
of [6.7, 14].

Finally, we mention that it should be possible to use our methods to study multi-
variate polynomials satisfying nonlinear recurrences. Such polynomials occur, for
example, in studies of 2, 3-trees [15], where one is interested in the coefficients of the
polynomials 4,(x, y) defined by A,(z,y) = 1, and

‘-1h+1(xs !/) = xy‘-llt(:vy ;’/)2*‘@'.2/2-411(1:?/)3 fOI‘ h 2 0.

By applying our theorems to the sequences 4,(x, ) and 4,(1, y), we can obtain more
precise information than is provided by [15], but it might be interesting to obtain
estimates for the full distribution of the coefficients of the d,(x, y).
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