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Combinatoire analytique des diagrammes de cordes

R�esum�e : Cet article est d�edi�e au d�enombrement de diagrammes de cordes reliant 2n
points sur un cercle par paires disjointes. On y �etablit les lois limites de trois param�etres:
nombre de composantes connexes, taille de la plus grande composante, et nombre de croise-
ments. Des formules exactes pour les moments du nombre de composantes et du nombre de
croisements sont aussi donn�ees.

Mots-cl�e : Combinatoire analytique, diagramme de cordes, d�enombrement asymptotique,
loi limite.
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Abstract

In this paper we study the enumeration of diagrams of n chords joining 2n points on a

circle in disjoint pairs. We establish limit laws for the following three parameters: number

of components, size of the largest component, and number of crossings. We also �nd exact

formulas for the moments of the distribution of number of components and number of

crossings.

Introduction

Take 2n points on a circle labeled 1; 2; : : : ; 2n and join them in disjoint pairs by n chords. The
resulting con�guration is called a chord diagram (see Fig. 1). Besides its intrinsic combinatorial
interest, the enumeration of chord diagrams is relevant to other �elds, like the analysis of data
structures in computer science [4, 5], or the study of invariants in knot theory [18].

A classical result is that the number of diagrams were the chords do not cross is a Catalan
number. In a series of papers Touchard studied the problem of counting diagrams according to
the number of crossings of the chords and found the corresponding generating function in the
form of a continued fraction [19]. A remarkable exact formula in terms of the ballot numbers
was implicit in the work of Touchard and made explicit later by Riordan [14]. This formula
was revisited in [13, 10, 12].

1

Figure 1: A chord diagram with 4 components.

Touchard also considered connected diagrams, that is, diagrams where no set of chords can
be separated from the remaining chords by a line. A recurrence relation for the number of



connected diagrams was found by Stein [16]. At the same time Stein and Everett [17] found an
asymptotic expression for this number. If we de�ne a component in a diagram as a maximal
connected subdiagram, a natural extension is to study the enumeration of diagrams according
to the number of components, a problem for which we have not found explicit references.

In this paper we reexamine these problems and we analyze chord diagrams according to
several basic parameters: the number of components, the size of the largest component, and the
number of crossings, deriving limit laws for the corresponding distributions. For the �rst two
parameters we show in Section 1 that the limit laws are given by a modi�cation of a Poisson
distribution of parameter 1. We also �nd exact formulas for the mean and the variance of
the number of components. In the case of the number of crossings, we show in Section 2 that
the distribution is asymptotically Gaussian. The main tool in establishing this result is an
integral representation of the corresponding generating function. This integral representation
also allows the computation of the moments of any �xed order.

Our analysis is based on general methods of analytic combinatorics [9, 15]. First we �nd
speci�cations of combinatorial structures that translate into symbolic generating functions
(GF). Then we apply analytic methods to obtain asymptotic estimates and derive limit laws.
This work can be considered as a counterpart to a previous paper of the authors [6], where
we analyzed non-crossing con�gurations on the vertices of a convex polygon. Whereas in the
non-crossing case the GFs involved were algebraic, the present situation is quite di�erent as
we are dealing with divergent series.

Throughout the paper the size of a diagram will be the number of chords. By slightly
perturbing the points if necessary, we can assume that no three chords in a diagram intersect
in a point.

1 Components

If we let In be the number of all diagrams of size n, then it is well known that

In = 1 � 3 � 5 � � � (2n� 1) =
(2n)!

2nn!
:

Let
I(z) =

X
n�0

Inz
n

be the corresponding ordinary generating function. Note that we operate here with ordinary
GFs having radius of convergence 0.

Let Cn be the number of connected diagrams of size n and let C(z) =
P
Cnz

n be the
corresponding OGF. The basic relation is

I(z) = 1 + C(zI(z)2); (1)

and it is proved as follows. In a diagram, the particular connected component determined
by containing vertex 1 is called the root component. In the intervals de�ned by the edges,
arbitrary diagrams may be inserted. If the root has j chords, then it de�nes 2j spacings. Thus,
I(z) = 1 +

P
Cnz

nI(z)2n = 1 + C(zI(z)2), where the term 1 represents the empty diagram.
This gives a recursive determination of C(z),

C(z) = z + z2 + 4z3 + 27z4 + 248z5 + 2830z6 + 38232z7 + 593859z8 + � � � :
Let now In;k be the number of diagrams of size n and exactly k components, and let

I(z; w) =
X

In;kz
nwk

2



be the corresponding bivariate GF. As with equation (1) we have

I(z; w) = 1 + wC(zI(z; w)2); (2)

where the factor w marks the component containing vertex 1. From the known expansion of
C(z) we get

I(z; w) = 1 + wz + (w + 2w2)z2 + (4w + 6w2 + 5w3)z3 + (27w + 36w2 + 28w3 + 14w4)z4 + � � �
In order to express our �rst result we de�ne the numbers hn by means of

1

I(z)
= H(z) =

X
hnz

n: (3)

Theorem 1 Let Xn be the number of components in a random diagram of size n.
(i) For k � 1, one has

PrfXn = kg = e�1 � 1

(k � 1)!
(1 + o(1)) n!1:

In other words, �1 +Xn is distributed like a Poisson law of parameter 1.
(ii) The mean and the variance of the distribution of Xn are

�n =
In+1 + hn+1

In
� 2;

�2n =
In+2 � 2In+1 + (4n+ 1)hn+1 � 2n(2n� 1)hn

In
� �2n � 1;

where the numbers hn are de�ned in (3).

Proof. (i) A diagram is said to be \monolithic" if: (1) it consists solely of the connected
component that contains 1 (called the root component) and of isolated edges; (2) for any two
such isolated edges (a; b) and (c; d), one never has a < c < d < b nor c < a < b < d (for
instance, the diagram in Fig. 1 is a monolith).

The OGF of monoliths is clearly

M(z) = C

�
z

(1� z)2

�
;

since we can accommodate any sequence of isolated edges in each \leg" of the root component
as well as after the root component. Then clearly,

Mn = Cn +

�
2n� 2

1

�
Cn�1 +

�
2n� 3

2

�
Cn�2 +

�
2n� 4

3

�
Cn�3 + � � � :

According to Stein and Everett [17] we have

Cn

In
= e�1 + o(1);

and we deduce

Mn � e�1
�
1 +

1

1!
+

1

2!
+

1

3!
� � �
�
� In:

Thus, the probability that a random diagram is a monolith tends to 1, as n ! 1, a result
already observed in [17]. Asymptotically, it su�ces to analyze the number of components in a
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monolith. The number of monoliths with k components is the same as the number of monoliths
in which the root component has size n � k + 1, since every other component is an isolated
edge. But this is

Cn�k+1

�
2n� k

k � 1

�
� In � e�1 1

(k � 1)!
:

(ii) In order to compute EfXng and EfX2
ng we need to evaluate @

@w I(z; w) and
@2

@w2 I(z; w)
at w = 1 (see [15]). According to Stein [16] the numbers Cn satisfy the recurrence relation

Cn = (n� 1)
n�1X
j=1

CjCn�j ; C1 = 1;

(see [11] for a simpler proof of this result) and this in turn implies that the GF satis�es the
following formal di�erential equation:

2zC(z)
dC(z)

dz
= C(z)2 + C(z)� z: (4)

Di�erentiating (2) with respect to w, using (4) and eliminating C(z) we get

@

@w
I(z; w)

����
w=1

=
1

z

�
I(z) +

1

I(z)
� 2

�
:

Similarly, one obtains

@2

@w2
I(z; w)

����
w=1

=
(I(z)� 1)2(I(z) + (1� 3z)I(z)2 � 2)

z2I(z)
:

Expanding the last two series we get the formulas stated for �n and �2n.
The asymptotic values of �n and �2n are to be expected in view of part (i), but they cannot

be guaranteed just from pointwise convergence to the Poisson distribution. However, they can
can be found as follows (see [2, p. 294, ex. 16] for a similar problem). If we let gn = hn=In,
then from (3) we have

gn = 1�
n�1X
k=1

gk

�
n

k

��
2n

2k

��1
;

and from this it follows easily that gn = 1 + O(n�1). The values g1 = 1 and g2 = 2=3 give a
more precise estimate

gn = 1� 1

n
+

3

4n2
+O(n�3)

which is enough for our purposes. Indeed, we have

�n =
In+1 + hn+1

In
=

2n+ 1

n+ 1
+O(n�1) � 2:

and similarly for the variance.

Note. It is a curiosity that the same shifted Poisson law appears in many \subcritical" set
constructions [9, Ch. 9]; for instance it is asymptotically the distribution of the root degree of
a random Cayley tree.

More can be said about the number of components. Let Ik(z) = [wk]I(z; w) be the GF of
diagrams with k components. Then, applying the Lagrange inversion theorem to equation (2),
we get

Ik(z) =
1

k
[uk�1]C(z(1 + u)2)k:

4



(Set I = 1 + J to recover a classical case of application of Lagrange inversion.) Now, apply
Taylor's formula to C. This gives

C(z(1 + u)2) = C(z + zu(2 + u)) =
1X
j=0

1

j!

@jC(z)

@zj
zjuj(2 + u)j :

Thus, when raising this expression to the k-th power and upon extracting coe�cients of uk�1,
one �nds that: Each Ik(z) is a polynomial in C(z) and its derivatives. For instance, we have

I1(z) = C(z)

I2(z) = 2zC(z)C 0(z))

I3(z) = zC(z)2C 0(z) + 2z2C(z)2C 00(z) + 4z2C(z)C 0(z)2

In other words, for each Ik there is a polynomial Pk(y0; y1; y2; : : :) (a sort of Bell polynomial)
such that

Ik(z) = Pk(C; �C; �
2C; : : :);

where � � z d
dz .

Largest connected component. The second parameter we analyze in this section is the
size of the largest component in a random diagram. The answer comes again by considering
monoliths.

Theorem 2 Let Ln be the size of largest connected component in a random diagram of size n.
Then,

EfLng = n� 1 + o(1); V arfLng = 1 + o(1);

and for any �xed k � 1, one has

Prfn� Ln = kg = e�1 � 1
k!
(1 + o(1)) n!1:

In other words, n� Ln is distributed like a Poisson law of parameter 1.

Proof. Asymptotically, it su�ces to analyse the largest component in a monolith. In fact, it
su�ces to analyse the size of the root component.

The same analysis as in the proof of Theorem 1 shows that the number of monoliths of
size n with root component of size n� k is given by

Mn;k = Cn�k

�
2n� k � 1

k

�
� In � e�1 1

k!
:

This proves that n minus the size of the root component of a random monolith is asymptoti-
cally Poisson(1). As monoliths asymptotically exhaust all cases, this establishes the analogous
properties for random diagrams. This root component is obviously the largest component with
probability 1� o(1), so that we are done.

Note. All this gives a precise probabilistic picture of a random diagram: It consists of the root
component (the component of 1) that is almost surely the largest component and a few isolated
edges, with additionally no two isolated edges entering a dominance relation. (In other words,
the associated tree in the tree decomposition is of height equal to 2 with high probability.)
Consideration of

M?(z) = C(z(1 + z)2);

the OGF of monoliths where no leg has more than one isolated edge, shows that almost surely,
there are O(1) isolated edges, all found in di�erent legs of the root component.
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2 Crossings

Let � denote the number of chord crossings in a chord diagram, and let In be the set of all
diagrams of size n. For a diagram in In, the parameter � lies between 0 and n(n � 1)=2. A
remarkable exact formula was discovered by Touchard and Riordan, namely

�n(q) :=
X
w2In

q�(w) =
1

(1� q)n

nX
k=�n

(�1)kqk(k�1)=2
�

2n

n+ k

�
: (5)

>From the combinatorial origin of the problem, we know that �n(q) is a polynomial in q with
degree n(n� 1)=2. The formula (5) involves heavy cancellations so that it is far from obvious
given only the analytic form of �n that it must be a polynomial, nor even that �n(1) =
1 � 3 � � � (2n � 1). The moments of the distribution are given by the values of the derivatives
�(r)(1). Again, though they are \contained" in the Touchard{Riordan formula, it is not a
priori clear whether they admit a simple form.

We prove here:

Theorem 3 Let Xn be the random variable equal to the value of � taken over the set of chord
diagrams In of size n endowed with the uniform probability distribution.

(i) The mean and the variance of the distribution of Xn are

�n := EfXng = n(n� 1)

6
; �2n := V arfXng = n(n� 1)(n+ 3)

45
;

(ii) The distribution of Xn is Gaussian in the asymptotic limit: for all real x, one has

lim
n!1

PrfXn � �n
�n

� xg = 1p
2�

Z x

�1
e�y

2=2 dy:

Proof. (i) The exact values of the mean and the variance are mentioned by Riordan [14] who
says that he \does not take place to prove the results". A proof was subsequently given by
Flajolet, Puech and Vuillemin [7] using orthogonality properties of q-Hermite polynomials.

A direct proof of Riordan's mean value result can be based on the decomposition of the
number of crossings as

Xn =
X

1�a<b<c<d�2n
Y (a; b; c; d);

where Y (a; b; c; d) is a random variable whose value is 1 if the number of edges attached to
a; b; c; d is exactly 2 and these edges cross, the value of Y being 0 otherwise. By symmetry,
the mean of each Y conditioned upon the fact that a; b; c; d de�ne two edges exactly is 1=3;

the mean value EfXng = 1
3
n(n�1)

2 results from there. The extension of this approach to a
determination of the variance is practicable but the combinatorics for higher moments soon
becomes intractable.

(ii) A di�erent approach to moment determinations is proposed here that also leads to
the determination of the limit distribution. The heart of the matter is the following integral
representation of certain q-series that Flajolet and Salvy [8] have used in the enumeration of
connected graphs by excess of number of edges over number of nodes.

Lemma 4 Let uk be a number sequence with ordinary generating function U(z) =
P

k ukz
k

that is assumed to be a Laurent polynomial. Then the q-sum

S(q) :=
X
k

qk
2=2uk

6



admits the integral representation

S(et) =
1p
2�

Z +1

�1
e�x

2=2U(ex
p
t) dx: (6)

Proof. Start from the Gaussian integralZ +1

�1
e�x

2=2 dx =
p
2�;

then set x 7! x� a to get

ea
2=2 =

1p
2�

Z +1

�1
e�x

2=2eax dx:

The lemma is obtained upon setting a 7! k
p
t and summing.

The formula (6) \linearizes" the exponent in a quantity like qa
2=2, which constitutes the

real strength of the method (various other conditions may of course be imposed on U(z)). For
the generating function of crossings, we have uk = (�1)k� 2n

n+k

�
q�k=2, the generating function

is
U(z) = (�1)nq�n=2(pz �

p
q=z)2n;

and application of the lemma yields

�n(e
t) =

1p
2�

Z +1

�1
e�x

2=2x2nH(x; t)ndx; (7)

where

H(x; t) =
2 sinh2(x

p
t=2� t=4)

x2 exp(t=2) sinh(t=2)
: (8)

This formula is enough to derive the number of diagrams (!) by taking the limit as t! 0,

�n(1) = lim
t!0

�n(e
t) =

1p
2�

Z 1

�1
e�x

2=2x2n dx =
(2n)!

2n n!
:

Di�erentiation with respect to t followed by passage to the limit t! 0 gives access mechanically
to moments of any �xed order. The process is well within the capabilities of a computer algebra
system like Maple, and one �nds in this way:

EfX0
ng = 1

EfX1
ng = 1

6n(n� 1)

EfX2
ng = 1

180n(n� 1)(5n2 � n+ 12)

EfX3
ng = 1

7560n(n� 1)(35n4 + 14n3 + 235n2 � 188n+ 24)

(9)

Notice that the formulas for the mean and the variance follow directly from the above expres-
sions.

The limit distribution is next obtained by showing that the Laplace transform of a stan-
dardized version of Xn converges pointwise to the Laplace transform of a normal variable. By
the continuity theorem for Laplace transforms [1], this entails convergence in law to a normal
variable. We thus set

X?
n =

Xn � �n
�n

;  (u) = EfeuX?

ng;

7



so that

 (u) = e�u�n=�n
�n(e

u=�n)

�n(1)
: (10)

When u is a �xed real number,  (u) as provided by (7), (8), (10), can be evaluated through
Laplace's method [3]. The case of  (0) is a textbook example of the method. The maximum
of the integrand is attained at x = ��, where � =

p
2n, and the contribution of the integral

outside an interval of length 2 logn around the points �� is exponentially small, being of the
form e�c log

2 n, for some c > 0. It then su�ces to establish the corresponding property when
u 6= 0. We do this for u > 0 and examine the positive part of the real line, the other cases
being similar.

In the range x � 2�, the quantity e�x
2=2x2nHn decreases (its derivative is negative for large

enough n), while being already exponentially small at 2�. By the fast decrease of e�x
2=2, the

contribution of the integrand for x � 2� is therefore exponentially small. Thus, for dominant
asymptotics, we may well restrict a priori the integration interval to [�2�; 2�]. But, in this
domain, the quantity H(x; t) is readily evaluated by Taylor expansions at 0 since t = O(n�3=2)
and x = O(

p
n).

Setting x = � + y with the additional restriction jyj � logn, we �nd

n logH(
p
2n+ y;

u

�n
) = u

p
5n

2
+

r
5

2
uy � 1

8
u2 +O(n�1=5):

It then su�ces to integrate Hn against e�x
2=2x2n for jyj � logn (by Equations (7), (8)),

complete the tails, and multiply by the normalization factor exp(�u�n=�n) from (10). This
purely mechanical process (intermediate computations omitted) yields

e�u�n=�n�(eu=�n) = e�nn2n
Z +1

�1
exp

 
�y2 +

r
5

2
uy � u2

8

!
dy � (1 +O(n�1=5)):

The contribution arising from the peak of the integrand at �� is similar, and one �nds

 (u) = eu
2=2(1 +O(n�1=5)):

Thus, the Laplace transform of the distribution converges pointwise to that of a standard
normal variable, and the limit law is established.

Note. The evaluations of (9) hide nontrivial and somewhat mysterious identities starting with
the Touchard-Riordan identity

1 � 3 � 5 � � � (2n� 1) =
nX

k=�n
(�1)k

�k(k�1)
2

n

��
2n

n+ k

�
:

More generally, there is a computable polynomial Pr(n) such that

(1 � 3 � 5 � � � (2n� 1)) � Pr(n) =
nX

k=�n
(�1)k

�k(k�1)
2

n+ r

��
2n

n+ k

�
:
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