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Analytic Variations on the Airy Distribution 1

P. Flajolet2 and G. Louchard3

Abstract. The Airy distribution (of the “area” type) occurs as a limit distribution of cumulative parameters
in a number of combinatorial structures, like path length in trees, area below walks, displacement in parking
sequences, and it is also related to basic graph and polyomino enumeration. We obtain curious explicit eval-
uations for certain moments of the Airy distribution, including moments of orders−1,−3,−5, etc., as well
as+ 1

3 , − 5
3 , − 11

3 , etc. and− 7
3 , − 13

3 , − 19
3 , etc. Our proofs are based on integral transforms of the Laplace

and Mellin type and they rely essentially on “non-probabilistic” arguments like analytic continuation. A by-
product of this approach is the existence of relations between moments of the Airy distribution, the asymptotic
expansion of the Airy function Ai(z) at+∞, and power symmetric functions of the zeros−αk of Ai(z).

Key Words. Brownian excursion area, Airy function, Parking problem, Linear probing hashing.

Introduction. For probabilists, theAiry distributionconsidered here is nothing but the
distribution of thearea under the Brownian excursion. The name is derived from the
connection between Brownian motion and the Airy function, a fact discovered around
1980 by several authors; see [16] and [20]. For combinatorialists and theoretical computer
scientists, this Airy distribution (of the “area type”) arises in a surprising diversity of
contexts like parking allocations, hashing tables, trees, discrete random walks, merge-
sorting, etc.

The most straightforward description of the Airy distribution is by its moments them-
selves defined by a simple nonlinear recurrence. We follow here the notations and the
normalization of [11].

DEFINITION 1. The Airy distribution (of the “area” type) is the distribution of a random
variableA whose moments are

µr ≡ E(Ar ) = −0(− 1
2)

0((3r − 1)/2)
Är , r ≥ 1,(1)

where the “Airy constants”Är are determined by the quadratic recurrence

Ä0 = −1, 2Är = (3r − 4)rÄr−1+
r−1∑
j=1

(
r

j

)
ÄjÄr− j (r ≥ 1).(2)
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Table 1.A table of the Airy constantsÄr and of the Airy momentsµr .

r 0 1 2 3 4 5 6 7

Är −1 1
2

5
4

45
4

3315
16

25,425
4

18,635,625
64

18,592,875
1

µ(r ) 1
√
π 10

3
15
4

√
π 884

63
565
32

√
π 662,600

9009
19,675

192

√
π

The normalized random variable

B = A√
8

is called the “Brownian excursion area” (BEA).

The first few values of theÄr and of momentsµr are given in Table 1. We shall see
later that the Airy distribution is uniquely determined by its moments and that it admits a
continuous densityw(x). The definition by moments as given above is natural from the
point of view of discrete mathematics, where the quadratic recurrence of moments usually
appears as a more or less distant echo of some simple combinatorial tree decomposition.
The Airy distribution arises in the following contexts:

1. In probability theory,B = A/√8 is the distribution of the area
∫ 1

0 X(t)dt under
the Brownian excursionX(t) (X(0) = X(1) = 0, X(t) ≥ 0). See Louchard’s
works [16], [17]. The Airy distribution occurs in related problems relative to the
analysis of dynamic data structures (like stacks under a Markovian model and priority
queues under Knuth’s model), to the busy period of anM/G/1 queue, and to the
area of various classes of polyominoes; see [12] on the dynamic aspects and [8] for
applications to polyominoes.

2. Accordingly,A is, up to normalization, the limit distribution of the area under discrete
excursions, like the Bernoulli excursion [17], [22] (the probabilities of±1 jumps are
1/2) or the Poisson excursion (each jump is−1+Y whereY is Poisson(1) distributed),
where the latter was introduced by Spencer [21] in order to model traversals of random
connected graphs.

3. Path length in trees (that is, the sum of distances from the root to all the nodes) is
asymptotically Airy distributed in Catalan trees as well as in other combinatorial
families of trees that are defined by a finite set of allowed node degrees. This fact was
proved by Tak´acs [22]–[24] whose results apply also to trees determined by branching
processes and conditioned by the size of the total progeny.

4. The number of inversions in a random Cayley tree of large size is Airy distributed in
the limit [11].

5. The total displacement of a random parking sequence or equivalently the construction
cost of a hashing table under the linear probing strategy is Airy distributed in the limit.
See [11] and especially the work of Knuth [15] for a perspective.

6. The Airy constantÄr appears in the asymptotic enumeration of labelled connected
graphs withn vertices andn + r − 1 edges, an intriguing fact that points to deep
connections between random graphs and random walks [11], [13], [15], [21], [27]
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7. As implied by recent results of Chassaing and Marckert [5], breadth first search
traversal of random trees has a cumulated cost that is asymptotically Airy distributed.
Chassaing and Marckert’s study also provides interesting connections with empirical
processes and the additive coalescent of Aldous and Pitman fame [2].

Scope. In this note we examine analytic properties of the Airy distribution. The most
curious fact, perhaps, is that certain moments of fractional and of negative orders can be
explicitly evaluated in terms ofπ and of the gamma function evaluated at one-third. The
paper is also meant as a partial survey of fundamental properties of the Airy distribution
and the somewhat radical point of view adopted here is that of an analyst’s rather than
of a probabilist’s. In the perspective of discrete mathematics, the logical chain is as
follows:

— First, decomposable discrete models like area under a Bernoulli excursion or total
displacement in parking sequences lead rather directly to functional equations over
bivariate generating functions, for instance,

E(z,q) = z

1− E(qz,q)
,

∂

∂z
F(z,q) = F(z,q) · F(z,q)− q F(qz,q)

1− q
,

for area and displacement; see [9] and [11], [15], respectively.
— Second, (univariate) generating functions of factorial moments satisfy relations that

are deduced from bivariate functional equations by differentiation and specialization
atq = 1. Asymptotic forms of the moments then come out naturally through singu-
larity analysis of the univariate functional relations: this is the method of “pumping
moments” exemplified by [11], [14], [16], [24]. A number of situations then lead
rather elementarily to the moment recurrence of Definition 1 above.

— Third, the moments determine a probability distribution that is (by moment conver-
gence theorems) the limit law of the combinatorial parameter under consideration.

Following Louchard and Tak´acs [16], [24], we feel that there may be interest in drawing
conclusions that take off from a direct definition by moments ((1) and (2)) and proceed
from there straightforwardly using basic analysis.

1. The Airy Distribution: Generating Functions. The term “Airy distribution”
comes from the relation between the fundamental constantsÄr and the Airy function
Ai(z) (a solution ofy′′ − zy= 0), or, alternatively, with Bessel functions of orders that
are multiples of one-third. We recall here the standard definitions as found in [1]:

Iν(z) =
( z

2

)ν ∞∑
k=0

(z2/4)k

k! 0(ν + k+ 1)
,(3)

Kν(z) = π

2 sinνπ
(I−ν(z)− Iν(z)) ,(4)

Ai(z) = 1

π

∫ ∞
0

cos( 1
3t3+ zt)dt(5)



364 P. Flajolet and G. Louchard

= 1

π

( z

3

)1/2
K1/3

(
2z3/2

3

)
,(6)

2F0[α, β; z] = 1+ α · β
1!

z+ α(α + 1) · β(β + 1)

2!
z2+ · · · ,(7)

where the last relation (7) is to be taken in the sense of formal power series.

PROPOSITION1 [16], [24]. The Airy constantsÄr are characterized by any of the fol-
lowing expansions:

− I2/3(z/3)

I−1/3(z/3)
∼

z→+∞

∞∑
r=0

Är
z−r

r !
,(8)

3
d

dz
log K1/3

( z

3

)
∼

z→+∞−
1

z
+
∞∑

r=0

Är
(−z)−r

r !
,(9)

Ai ′(z)
Ai(z)

∼
z→+∞

∞∑
r=0

Är

2r

(−1)r z−(3r−1)/2

r !
,(10)

∑
r≥0

Är
wr

r !
= − 82/3(w)

8−1/3(w)
, 8ν(w) = 2F0

[
1
2 + ν, 1

2 − ν;
(

3

2
w

)]
.(11)

PROOF(SKETCH). The recurrence (2) for the Airy constantsÄr translates into a differ-
ential equation of the Riccati type for the associated generating function whose solution
is the logarithmic derivative of the solution of a second-order differential equation (as
seen via the usual linearization transformation of Riccati equations). This provides the
Bessel–Airy connection; see [11] for details in the case of (8), cases (9) and (10) being
similar. Finally, formula (11), to be understood as a formal power series equivalence,
derives directly from (10) combined with the classical asymptotic expansion of the Airy
function [1, Entry 10.4.59],

Ai(z) ∼ 1
2π
−1/2z−1/4e−ζ

∞∑
k=0

(−1)kckζ
−k,

ζ = 2
3z3/2, ck =

0(3k+ 1
2)

54kk! 0(k+ 1
2)
, z→+∞,(12)

that is valid for large positive arguments.

It is interesting to note that the representations (8)–(10) are asymptotic series when
the variablez tends to+∞. There is a nonalternating representation in terms of Bessel-I
functions (that grow exponentially fast in (8)), as well as an alternating form in terms of
Bessel-K functions (9), or equivalently in terms of the Airy function (in (10) that decays
exponentially). It is on the better conditioned Airy representations (10) that the rest of our
treatment is based. In contrast to the defining quadratic recurrence, the hypergeometric
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formula (11) implies a linear recurrence [16] on the Airy coefficientsÄr that, although
of computational interest, does not tend to arise directly in combinatorial applications:

18rÄr = 12r

6r − 1

0(3r + 1
2)

0(r + 1
2)
−

r−1∑
k=1

(
r

k

)
0(3k+ 1

2)

0(k+ 1
2)

18r−kÄr−k.(13)

Furthermore, elementary manipulations of divergent series applied to (11) yield an
asymptotic estimate forÄr , hence forµr ,

µr ∼ 21/23r

(
2r

3e

)r/2

,

as noted by Tak´acs. (Janson et al. discuss the history of this expansion on pp. 262–263 of
[13], with contributions by Wright, Stepanov, Bagaev, Dmitriev, Meertens, and Vobly˘ı.)
It results in particular that the Carleman condition [4]∑

r

(µr )
−1/r = +∞

is satisfied, so that the Airy distribution isuniquely determinedby its moments.

2. The Airy Distribution: Laplace Transform and Density. The relation between
Airy coefficients and moments of the Airy distribution involves products and quotients of
factorials that, at generating functions level, are well known to correspond to direct and
inverse Laplace transforms. Letw(x),W(x) be the density and the distribution function
of the Airy distribution,

W(x) := Pr{A ≤ x}, w(x) = d

dx
W(x),

with G(y) the corresponding moment generating function,

G(y) =
∑
r≥0

µr
(−y)r

r !
= E

[
e−yA] = ∫ ∞

0
e−yt dW(t).

See Figure 1 for a display of Ai(x) andw(x). We have:

PROPOSITION2 [16], [24]. The Airy distribution function satisfies the double Laplace
transform relation:

1√
2π

∫ ∞
0

(
e−zy− 1

)
G(2−3/2y2/3)

dy

y3/2
= 21/3

(
Ai ′(21/3z)

Ai(21/3z)
− Ai ′(0)

Ai(0)

)
.(14)

The moment generating function and the density of the Airy distribution are given by

G(2−3/2y) =
√

2π y
∞∑

k=0

exp(−αky2/32−1/3),(15)

23/2w(23/2x) = 2
√

6

x2

∞∑
k=1

e−vk v
2/3
k U

(−5

6
,

4

3
; vk

)
, vk = 2α3

k

27x2
.(16)
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Fig. 1.Plots of the Airy function Ai(x) (left) for x = −20· · ·10, and of the density of the Brownian excursion
area 23/2w(23/2x) (right) for x = 0 · · ·2.

There, the quantities−αk are the zeros of the Airy functionAi(z) and U(a,b; z) is the
confluent hypergeometric function(17).

We recall that the confluent hypergeometric functionU is defined as

U (a,b; z) = π

sinπb

(
1F1[a,b; z]

0(1+ a− b)0(b)
− z1−b

1F1[1+ a− b,2− b; z]

0(a)0(2− b)

)
,(17)

where1F1[a;b; z] is the hypergeometric function (Kummer’s function)

1F1[a;b; z] = 1+ a

b

z

1!
+ a(a+ 1)

b(b+ 1)

z2

2!
+ · · · .

For comparison with standard results in the literature, the data in (15) and (16) are
expressed in terms of the moment generating functionGB and densitywB of the Brownian
excursion areaB = A/√8 that satisfy

GB(y) = G(y2−3/2), wB(x) = 23/2w(23/2x).

PROOF (SKETCH). Equations (14) and (15) are due to Louchard, while (16) is due
to Takács. Relation (14) follows formally by application of two successive Laplace
transforms to the expression (9). Then (15) results from a residue computation of the
inverse Laplace integral of (14). Finally, relation (16) comes from the fact that the inverse
Laplace transform ofe−x2/3

is a confluent hypergeometric function.

Thus,the Airy density is essentially a double inverse Laplace transform of the loga-
rithmic derivative of the Airy function. We now briefly discuss its tails. The left tail is of
an exponential type and it is expressed in terms of the zero of Airy’s function that is of
smallest modulus.

THEOREM1 (Left Tail of the Airy Distribution [16]). Let−α1
.= −2.33810 74104be

the first Airy zero. As x→ 0+, one has

23/2w(23/2x) ∼ e−2α3
1/(27x2)

(
8

35

α
9/2
1

x5
− 48

35

α
3/2
1

x3
− 11664

35

α
−3/2
1

x
+ · · ·

)
.
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PROOF. Whenx tends to 0, the first term in (16) corresponding toα1 dominates expo-
nentially all the other ones. The expansion then comes out as an immediate consequence
of Takács’s expression (16) and of the known asymptotic expansion of the confluent
hypergeometric function (see Entry 13.5.2 on p. 508 of [1]):

U (a,b, z) ∼ z−a

( ∞∑
n=0

(a)n(1+ a− b)n
n!

(−z)−n

)
, z→+∞.(18)

The first two terms of the expansion ofw were derived by Louchard in [16] (with his
constant in the second asymptotic term that needs to be corrected) using a saddle point
analysis of the integral that represents the inverse Laplace transform ofG(y). The easy
derivation given here builds upon the later formula of Tak´acs (16) and has the advantage
of being fully explicit thanks to (18).

The right tail seems to be less precisely quantified at the moment. As kindly pointed
to us by Marc Yor (private communication, December 1999), what is available is the
following recent estimate of [6] obtained by probabilistic methods.

THEOREM2 (Right Tail of the Airy Distribution [6]). As y→+∞, one has

log Pr

( A√
∀
> y

)
∼ −6y2.

In the perspective of our paper, it would be of interest to be able to get access to the right
tails by purely analytic methods.

Properties of the Airy Zeros. Airy zeros play an important rˆole in what follows and we
briefly summarize here some relevant facts. The Airy function is known to have zeros
confined to the negative real axis. The sequence starts with

−α1
.= −2.33, −α2

.= −4.08, −α3
.= −5.52, −α4

.= −6.78.

From the oscillating form of Ai(x) along the negative real axis [1, Entry 10.4.60],

Ai(−z) ∼ π−1/2z−1/4

(
sinZ

∞∑
k=0

(−1)kc2kζ
−2k − cosZ

∞∑
k=0

(−1)kc2k+1ζ
−2k−1

)
,

ζ = 2
3z3/2, Z = ζ + π

4
, ck =

0(3k+ 1
2)

54kk! 0(k+ 1
2)
, z→+∞,(19)

it is not hard to see that thekth zero admits a full asymptotic expansion in descending
powers ofk.

LEMMA 1. The Airy zeros admit an asymptotic expansion of the form:

αk ∼ ρk2/3

(
1+

∞∑
j=1

aj

k j

)
with ρ =

(
3π

2

)2/3

.(20)
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This relation is Entry 10.4.94 of [1] and the expansion starts as

αk ∼ ρk2/3

(
1− 1

6k
− ρ3− 15

144ρ3k2
− ρ3− 45

1296ρ3k3
− · · ·

)
.(21)

Thus, the absolute valuesαk of the Airy zeros grow likek2/3, so that the sum in (16)
expressing the Airy density is rapidly converging. This fact guarantees in particular the
existence of the density functionw(x).

3. The Airy Distribution: Mellin Transforms. In this section we examine the
effect of the classical Mellin transform on the various generating functions of the
previous section. The Mellin transform of a functionf (t) defined on(0,+∞) is by
definition

M[ f ] = f ∗(s) :=
∫ ∞

0
f (t)ts−1 dt.

If f (t) is the probability density of a random variableX, then f ∗(s) is nothing but a
moment ofX:

f ∗(s) = E(Xs−1).(22)

As a consequence, any explicit value of the Mellin transform of a probability den-
sity provides an explicit value of the corresponding moment. This is the strategy used
in the remainder of the paper in order to evaluate nonstandard moments of the Airy
distribution.

We first recall some operational principles of Mellin transforms. By linearity, the
definition of the Mellin transform implies transformation rules for “harmonic sums” and
“harmonic integrals”:

F(t) =
∑

k

λk f (µkt) H⇒ F∗(s) =
(∑

k

λkµ
−s
k

)
· f ∗(s),(23)

F(t) =
∫ ∞

0
λ(ξ) f (ξ t)dξ H⇒ F∗(s) = λ∗(1− s) · f ∗(s).(24)

We refer to the survey paper [10] and to the book by Wong [26] for detailed validity
conditions.

There is also a well-known correspondence—called the “mapping property”—that
fares both ways and relates the asymptotic expansions of an original functionf (t) at 0
and+∞ and poles of the transformf ∗(s) in a left and right half-plane, respectively; see
[7], [10], and [26] for details.

In what follows, an essential rˆole is played by what may be called the “root zeta
function” of the Airy function. This function is defined by

3(s) :=
∞∑

k=1

(αk)
−s (<(s) > 3

2),(25)
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where the sum is a priori defined and analytic for<(s) > 3
2, given the growth of theαk

described by (20). Furthermore, sinceαk admits a complete asymptotic expansion,3(s)
can be in fact continued as a meromorphic function in the whole of the complex plane.
The continuation property results from a classical process of inserting “convergence
terms” in a divergent series. For instance, the identity

3(s) =
∑
k≥1

(3πk/2)−2s/3+
∑
k≥1

((αk)
−s − (3πk/2)−2s/3)(26)

initially valid for <(s) > 3
2 extends by analytic continuation to<(s) > 0, where

the first term in (26) is(3π/2)−2s/3ζ(s) with ζ(s) the Riemann zeta function and the
second term has summands that areO(k−2/3s−1) because of (20). This construction
generalizes.

LEMMA 2. The root zeta function3(s) is meromorphic in the whole ofC. For any
integer q≥ 0, it admits an expansion with convergence terms, valid in<(s) > − 3

2q, of
the form

3(s) =
∑
k≥1

(
1

(αk)s
− 1

ρsk2s/3

(
g0+ · · · + gq(s)

kq

))
(27)

+ ρ−s

(
q∑

j=0

gj (s)ζ(
2
3s+ j )

)
.

The polynomials gj (s) are defined in terms of the asymptotic expansion(20)by

g0 = 1, 1+
∞∑

j=1

gj (s)

k j
∼
(

1+
∞∑

j=1

aj

k j

)−s

.(28)

In particular, from (21), one finds mechanically

g0(s) = 1, g1(s) = 1
6s, g2(s) = 1

144ρ3
s(2sρ3+ 3ρ3− 15), . . . ,

with the corresponding continuations of3(s):

3(s)=
∑

k

1

αs
k

(<(s) > 3
2),

3(s)=
∑

k

(
1

αs
k

− 1

ρsk2s/3

)
+ 1

ρs
ζ( 2

3s) (<(s) > 0),

3(s)=
∑

k

(
1

αs
k

− 1

ρsk2s/3

[
1+ s

6k

])
+ 1

ρs
[ζ( 2

3s)+ s

6
ζ( 2

3s+ 1)] (<(s) >− 3
2).

Lemma 2 implies that3(s) has simple poles at a subset of the points

s= 3
2, 0, − 3

2, −3, − 9
2, . . . ,
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and is of polynomial growth at±i∞ in any right half-plane. We shall verify later (see
Section 5 and (43)) that3(0),3(−3),3(−6), . . . are all finite, so that3 is in fact
analytic at these points. We can now state:

PROPOSITION3. The following Mellin transform formulae hold:

M
[
21/3 Ai ′(21/3t)

Ai(21/3t)
− 21/3 Ai ′(0)

Ai(0)

]
= π

sinπs
21/3(1−s)3(1− s),(29)

M[G(2−3/2t)] = 3
√
π2s/20( 3

2 + 3
2s)3( 3

2 + 3
2s),(30)

M[2−3/2w(2−3/2t)] = 3
√

2π2−s/20(3− 3
2s)

0(1− s)
3(3− 3

2s).(31)

In particular, the moments of the Airy distribution exist for any s∈ C and satisfy

E
[( A√

8

)s]
= 3
√
π2−s/20(

3
2(1− s))

0(−s)
3( 3

2(1− s)),(32)

where3( 3
2(1− s)) is to be taken either as the power sum symmetric function of the

αk by (25) for <(s) < 0, or as one of the analytic continuation forms of Lemma2 for
<(s) ≥ 0.

PROOF. The proof of (29) starts with the fact that the Airy function is an entire function
whose growth at∞ is O(e2/3|z|3/2), so that it is of order32. On the other hand, its zeros
are such that ∑

k

1

αk
= +∞,

∑
k

1

α2
k

< +∞,

meaning that it has genus 1. Consequently, the Weierstrass–Hadamard factorization
theorem [19, Chapter 15] applies and one has

Ai(z) = ed0+d1z
∏
k≥0

(
1+ z

αk

)
e−z/αk ,(33)

for constantsd0,d1 that are identified by the expansion of Ai(z) at 0:

d0 = log Ai(0), d1 = Ai ′(0)
Ai(0)

.

Accordingly, the Mittag–Leffler decomposition of the logarithmic derivative of Ai(z)
deduced from (33) is

Ai ′(z)
Ai(z)

− Ai ′(0)
Ai(0)

=
∑
k≥1

(
1

z+ αk
− 1

αk

)
.(34)

This form is a harmonic sum whose Mellin transform is

M
[

Ai ′(z)
Ai(z)

− Ai ′(0)
Ai(0)

]
= 3(1− s)

π

sinπs
,(35)
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by virtue of the harmonic sum property (23) and the basic transform of 1/(1+ z) that
equalsπ/sinπs. Thus, (29) is established for<(s) ∈ (−1,− 1

2).
Next, we observe that, by the harmonic integral property (24), the Mellin transforms

of w andG are related by

w∗(s) = G∗(1− s)

0(1− s)
,

so that it suffices to evaluateG∗(s). The transform ofG is itself obtained by applying
the harmonic sum property (23) to the exponential sum (15). (Equivalently, one could
apply the harmonic integral property (24) to the Laplace-like transform (14).)

First, the three Mellin transforms above are meromorphic in the whole of the complex
plane, given our earlier discussion of3(s). The transform (29) is analytic for<(s) ∈
(−1,− 1

2), while the transform ofG is analytic in<(s) > 0. The transform ofw is a
priori meromorphic in the whole ofC. It represents in fact a function analytic in the
whole ofC since the only poles of3(s) which are ats = 3

2,− 3
2,− 9

2, . . . are cancelled
by the gamma function in the denominator of (31).

Finally, the Mellin transform of the density, corresponding to the right of (31), is
Lebesgue integrable on any vertical line since it is a product of a rational form in
gamma functions that decreases exponentially towards±i∞ and of a3 factor that is
only of polynomial growth by Lemma 2. Thus, by a version of Mellin inversion (see
Theorem 29 on p. 46 of [25]), the Mellin integral expressingM[2−3/2w(2−3/2t)] does
converge for everys. The moment formula (32) is then plainly the translation of (31) by
s 7→ s+ 1.

The last property stated in (32) corresponds to the existence of moments of all positive
as well as negative orders for the Airy distribution, a fact that is characteristic of fast
decaying tails both at 0 and at+∞.

4. Moments of Negative Order. As already pointed out in (22), the Mellin transform
of a density function evaluated ats is none other than the moment of orders− 1 of the
corresponding random variable. In the case of the Airy distribution, the Mellin transform
is expressed in terms of the root zeta function3(s) of Ai(z). Thus,any explicit value
of the root zeta function provides an explicit moment evaluation. We proceed with this
programme and determine here some of the negative moments in connection with the
expansion of Ai(z) at 0 corresponding to values of3(s) with s> 0.

THEOREM3 (Moments of Negative Order).Let m be any real number such that m> 0.
Then the moment of order−m of the Airy distribution is expressible in terms of the root
zeta function3 as given by(25) in its region of convergence:

E

[( A√
8

)−m
]
= 3
√
π2m/20(

3
2 + 3

2m)

0(m)
3( 3

2 + 3
2m).(36)
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Furthermore, the moments of odd negative order−m= −1− 2p for integers p≥ 0
are rationally expressible in terms of

√
π , 0( 1

3), and algebraic radicals. One has

E

[( A√
8

)−1−2p
]
= −3

√
2π2p0(3+ 3p)

0(1+ 2p)
(−1)3p[z2+3p]

Ai ′(z)
Ai(z)

,(37)

where the bracket notation[za] f (z) refers to the coefficient of za in the analytic expansion
of f (z) at 0. For instance, one has

E

[( A√
8

)−1
]
=
√

2π

(
3− 16

π3
√

3

0( 1
3)

6

)
,

E

[( A√
8

)−3
]
=
√

2π

(
18− 480

π3
√

3

0( 1
3)

6
+ 7680

π6

0( 1
3)

12

)
.

PROOF. The first equation of the statement is a direct rephrasing of the Mellin rela-
tion (31). Note that for moments of order−m < 0, the sum (25) over Airy zeros is
convergent, so that moments can be estimated directly by (25) in all cases.

For the second equation, the Mittag–Leffler expansion (34) entails, upon expanding
1/(z+ α) and exchanging summations,

Ai ′(z)
Ai(z)

− Ai ′(0)
Ai(0)

=
∑
k≥1

3(1+ k)(−z)k.(38)

Thus, the values of3 at thepositiveintegers are explicit, given the classical expansion
of Ai(z) at 0 that starts like

Ai(z) = 1

6

35/60( 1
3)

π
− 1

3

32/3

0( 1
3)

z+ 1

36

35/60( 1
3)

π
z3− 1

36

32/3

0( 1
3)

z4+ · · ·(39)

and it involves rationallyπ and0( 1
3) in addition to algebraic radicals. This leads to

Ai ′(z)
Ai(z)

= −2

3

π35/6

0( 1
3)

2
− 4

3

π232/3

0( 1
3)

4
z+ 1

6

(35/60( 1
3)

6− 16 · 31/3π3)31/6

0( 1
3)

6
z2+ · · · ,

which in turn gives, by way of (36) and (38), the moments in (37).

The proof also gives access to certain moments of order a multiple of− 1
3.

THEOREM4 (Moments of Fractional Negative Orders).The moments of negative frac-
tional orders

− 5
3, − 7

3, − 11
3 , − 13

3 , . . .

evaluate in closed form by(37); for instance,

E

[( A√
8

)−5/3
]
= 9
√
π25/6

0( 1
3)

7
(31/30( 1

3)
6− 8 · 35/6π3).

Thus, moments of negative order are closely related to the expansion of Ai(z) at 0.
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5. Moments of Positive Order. We continue with the programme outlined in the
previous section and examine the consequences of the root zeta function expression (32)
of Proposition 3. The moments of positive order are by definition given by the asymptotic
behaviour of the Airy function Ai(z) at +∞. Here, we show that such moments are
also indirectly determined by the behaviour of Ai(z) towards−∞, where the function
oscillates rapidly, this via the coefficients in the asymptotic expansion of the zeros−αk.

Consider the function

h(x) := Ai ′(x)
Ai(x)

− Ai ′(0)
Ai(0)

.

As x→∞, one has

h(x) ∼ −x1/2− Ai ′(0)
Ai(0)

− 1

4
x−1+ 5

32
x−5/2− 15

64
x−4+ 1105

2048
x−11/2− 1695

1024
x−7+ · · · .

The Mellin transform ofh(x) exists a priori in the fundamental strip−1< <(s) < − 1
2

where it equals (we repeat here (35))

h∗(s) = π

sinπs
3(1− s),(40)

and3(s) is already known to be meromorphically continuable (with simple poles at
most) to the whole ofC. Finally, the mapping property of Mellin transforms implies that
the singular expansion ofh∗(s) is the image of the asymptotic expansion ofh(x) at+∞:

h∗(s) ³
(

Ai ′(0)
Ai(0)

1

s

)
s=0

−
∑
r≥0

(
(−1)r

Är

2r r !

1

s− (3r − 1)/2

)
s=(3r−1)/2

.(41)

(Such an expansion is nothing but the formal collection of all singular parts at all sin-
gularities, here for<(s) > − 1

2, and it results from the direct version of the “mapping
property”.)

Special values of3(s) on the positive line (that is, in a region where the sums (27)
over Airy zeros that express it involve convergence adjustments) result from a closer
examination of the expansion (41), as we now explain.

We start with the first two terms of (41).

— At s= − 1
2, one has

3(1− s)
π

sinπs
∼ 1

s+ 1
2

,

which corresponds to the principal part of3 at the simple pole3
2, reflecting the

asymptotic equivalenceαk ∼ (3πk/2)2/3.
— The value of3 (1) results from comparing the residues ats= 1 in (40) and (41):

3(1) = Ai ′(0)
Ai(0)

= − 2
335/6 π

0( 1
3)

2
.

This gives explicitly the moment of order1
3 that is related to3(1).
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THEOREM5 (Moment of Order One-Third). The moment of order13 of the Airy distri-
bution is expressible in terms of0( 1

3) as well as in terms of Airy zeros as(ρ = (3π/2)2/3)

E

[( A√
8

)1/3
]
= 2−1/631/3

√
π

0( 1
3)

= − 25/6

31/2
√
π
0( 1

3)

[
ζ( 2

3)

ρ
+
∑

k

(
1

αk
− 1

ρk2/3

)]
.

The alternative expression with Airy zeros is an application of Lemma 2 and specifically
of (27). Numerically, taking the first 1000 Airy zeros yields an accuracy of about 10−3

in the second formula.
The authors communicated a preliminary version of the present note to Marc Yor in

December 1999. With astounding speed, Yor observed that the evaluation of the moment
of order 1

3 can be derived rather simply from the Bessel bridge model of the Brownian
excursion and he refers to Theorem 3.5 of Chapter XI in his book [18].

We finally examine the effect of the other singularities in the expansion (41) ofh∗(s).
The functionπ/sinπs is singular ats= 0,1,2,3, . . . and it has residue(−1)m ats= m.
Thus, comparison of the poles dictated by (40) and (41) shows that the interesting points
on the positive real line are those of

{1,2,3,4, . . .} ∪ {1, 5
2,4,

11
2 , . . .}.

These sets are not disjoint: the first one corresponds to the singularities ofπ/sinπs, while
the second one represents potential singularities of3(s). Because of overlaps, several
cases are to be distinguished:

(i) For s ∈ S1, whereS1 = {2,3,5,6,8,9, . . .}, there is no pole ofh∗(s) and, since
π/sinπs is singular, one must have

3(−1) = 3(−2) = 3(−4) = 3(−5) = · · · = 0.(42)

This corresponds to an explicit evaluation of certain sums over Airy zeros in terms
of values of the zeta function.

(ii) For s ∈ S2, whereS2 = {1,4,7,10, . . .}, π/sinπs has a simple pole with residue
±1, so that3(1− s) must have a finite nonzero value,

3(−3m) = Ä2m+1

22m+1(2m+ 1)!
.(43)

This corresponds to a relation between moments of odd order of the Airy distribution
and sums over Airy zeros.

(iii) For s ∈ S3, whereS3 = { 52, 11
2 ,

17
2 , . . .}, the functionπ/sinπshas value±π , and the

singularity ofh∗(s)must arise from a simple pole of3(1− s) there. Identification
of residues with (41) yields

Res3(s)|s=3(1/2−m) = (−1)m−1 Ä2m

π22m(2m)!
for m≥ 1.(44)
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This corresponds to a relation between moments of even order of the Airy distri-
bution and residues of3 that themselves, in accordance with (27), relate to the
coefficients in the asymptotic expansion (20) of theαk.

As a consequence of this discussion, we obtain:

THEOREM6 (Moments of Positive Order).Let m be any real number satisfying m> 0
and m 6= 2,4,6, . . .. The moment of order m of the Airy distribution is expressible in
terms of sums over Airy zeros with convergence factors in the sense of Lemma2:

E
[( A√

8

)m]
= 3
√
π2−m/20(

3
2(1−m))

0(−m)
3( 3

2(1−m)).

The moments of even order m= 2,4,6, . . . are expressible as finite polynomial forms
in the coefficients{ai } in the expansion(21)of theαk.

PROOF. The first statement follows directly from Proposition 3, (32), and from the
effective formulae of the continuation lemma, Lemma 2. The second statement is a
rephrasing of Case (iii) of the discussion above.

EXAMPLES. As an illustration of Case (i), we have3(−1) = 0, which, thanks to the
continuation formula of Lemma 2 taken withq = 1 gives the evaluation∑

k

[
αk − ρk2/3+ ρ

6
k−1/3

]
= −ρζ(− 2

3)+
ρ

6
ζ( 1

3).

Case (ii) leads to similar evaluations but with an inhomogeneous term that involves
the moments of odd order. Such evaluations are special cases of explicit evaluations of
symmetric functions of zeros of entire functions of genus 1. (For instance, the series
expansion of the logarithmic derivative of sinz gives rise to the evaluation of the zeta
function at even integers by essentially similar devices.)

Case (iii) has a more curious feature: it relates directly the moments of even order to
the asymptotic expansion of the Airy zeros. For instance, by (44), the “echo” ofÄ2 = 5

4
is to be found in the fact that

3(s) ∼ 5

32π

1

s+ 3
2

, s→− 3
2,

while the principal part of3(s) is, in the notations of Lemma 2,

ρ−3/2g2(− 3
2)ζ(

2
3s+ 2) ∼ 3

2ρ
−3/2g2(− 3

2)
1

s+ 3
2

,

andg2(s) is itself determined by the coefficientsa1,a2 in the asymptotic expansion (20)
of αk. A closer look at the dependencies shows thatmoments of positive even order and
coefficients in the asymptotic expansion of Airy zeros determine one another.4

4 These relations can also be understood in the light of the fact that the expansion of the Airy zeros is fully
determined by the oscillating expansion (19) of Ai(z), which, given general principles of linear differential
equations, is essentially a formal variant of the expansion (1) at+∞. The striking similarity of coefficients
in (19) and (12) tells a good deal of the story.
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6. Postscript. The Airy distribution can be approached from many angles. As stated
in the Introduction, we decided to explore here the direct consequences of the recursive
definition of moments, a point of view that may be useful in combinatorial applica-
tions. A related motivation is the fact that a growing number of distributions in analytic
combinatorics are found to involve the Airy function and a better understanding of the
driving analysis is needed; see for instance the recent work [3] for an Airy distribution of
the “map type” that describes the size of largest multiconnected components in random
maps.

It is a fact that the appearance of the Airy distribution (of the area type) is a good
indication of the possibility of a stronger functional limit theorem expressing convergence
to the Brownian excursion process. That such is the case, by design, for discrete random
walks (via the Brownian excursion area) and stochastic convergence has been determined
recently for several of the examples mentioned in the Introduction. Also, as pointed out
in relation to the evaluation of the moment of order1

3 and Yor’s comments, alternative
probabilistic derivations of some (or all?) of our results are possible.

What we feel to be perhaps the most striking outcome of our investigations is the
dependency between complex analytic properties of the Airy function and probabilistic
properties of the Airy distribution. A final summary is as follows:

Airy function Airy distribution

Ai(z) asz→+∞ Positive integral moments (Definition 1 and Proposition 1)
— Moment of order13 (explicit)

Ai(z) asz→ 0 Negative moments
— Moments of order−1,−3,−5, etc. (explicit)
— Moments of order− 5

3 ,− 7
3 ,− 11

3 , etc. (explicit)

Ai(z) asz→−∞ All moments via the root zeta function3(s)
(Airy zeros−αk) — Moments of order 2,4,6, etc. and asymptotic

exponential ofαk

Acknowledgment. The authors are grateful to Marc Yor for many insightful comments
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