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Abstract

This study provides a detailed analysis of a function which Knuth discovered to play a central réle in the analysis of
hashing with linear probing. The function, named after Knuth Q(n), is related to several of Ramanujan’s investigations. It
surfaces in the analysis of a variety of algorithms and discrete probability problems including hashing, the birthday
paradox, random mapping statistics, the “rho” method for integer factorization, union-find algorithms, optimum
caching, and the study of memory conflicts.

A process related to the complex asymptotic methods of singularity analysis and saddle point integrals permits to
precisely quantify the behaviour of the Q(n) function. In this way, tight bounds are derived. They answer a question of
Knuth (The Art of Computer Programming, Vol. 1, 1968, [Ex. 1.2.11.3.13]), itself a rephrasing of earlier questions of
Ramanujan in 1911-1913.
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1. Introduction

In the 1911 issue of the J. Indian Math. Soc., Ramanujan [ 18] poses the following problem: Show
that

2 n

len=1 +% + % + -+ %0, where 0 lies between 4 and 3. (1.1)
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A solution was then outlined in [19]. Later in his first letter to Hardy dated 16 January 1913 (see
[20, p. xxvi], [1, p. 181], [8]), Ramanujan makes a stronger assertion, namely that

P S
135(n + k)’

0=14 where k lies between & and 4. (1.2)

It is immediately clear nowadays, on probabilistic grounds, that the left-hand side member in
(1.1) is approximated by the sum of the first n terms on the right. In fact, the sum
1+ -+ +n""!/(n — 1)! multiplied by e " represents the probability that a random variable with
a Poisson distribution of mean n be less than n. But by the Gaussian approximation of Poisson
laws of large mean, this probability is close to 4 and the argument supplemented by elementary real
estimates readily shows that 8 = 6(n) = O(1). Thus Ramanujan’s assertions appear as asymptotic
refinements of a basic probabilistic observation.

Berndt’s scholarly edition of Ramanujan’s Notebooks contains a complete bibliography on the
original problem which is closely related to Entries 47 and 48 of Ch. 12 [1, pp. 179-184] as well as
to Entry 6 of Ch. 13 [1, pp. 193-195]. Berndt qualifies the problem as “an ultimately famous
problem”. In his partial answer [19] and in the notebooks, Ramanujan provides in essence a way of
constructing an asymptotic expansion for 6 = 0(n). From his analysis there results that 6( o0 ) =}
while we have 6(0) = 4. This, translated in terms of k = k(n) says that k(o0 ) = # and k(0) = &, and
supported by a few initial value computations, must have naturally led Ramanujan to his assertion
(1.2).

A solution to the weaker inequality (1.1) was given by Szegd in 1928 [21], and almost
simultaneously Watson [23] wrote a paper where he proved (1.1) and adds regarding (1.2): “I shall
also give reasons, which seem to me fairly convincing, for believing that k lies between & and #”. Our
purpose here is to finally provide a complete proof of Ramanujan’s assertion (1.2).

In 1962, which is exactly 50 years after Ramanujan’s original note [19] and 75 years after
Ramanujan’s birth, Knuth conducted his first average-case analysis of an algorithm, namely the
analysis of hashing with linear probing (see the footnote on page 529 of [12]). That analysis is given
in full in Vol. 3 of The Art of Computer Programming [12] and, in Vol. 1, Knuth uses it as an
illustration of asymptotic analysis techniques [10, p. 113]. A key role in the analysis is played by
a function closely related to 6(n), the Q(n)-function, and in Exercise 1.2.11.3.13, Knuth asks for
a final solution to Ramanujan’s problem (1.2).

The variant form used by Knuth introduces the two functions

n—1 (n—1n-2)
O =1+ + = T
i (1.3)
R() =1+ —> e

P R sy
and one finds easily
Q(n) + R(n) = nle"/n".

Thus Q(n) and R(n) are closely related, and the asymptotics of one of them determines the
other. The relation of Knuth’s definition (1.3) to Ramanujan’s problem should also be clear,
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considering the equality

nn n—1 nnﬂ-Z
~ 0 =

Tt T

4+, (1.4)
which entails

T 0t =t — 0% and 0(m =4 (R() — Q).

n! n!

In this way, Ramanujan’s problem can be rephrased as: “Show that

8
_ 24, °
R(n) Q(n) 3 + 135(” + k)a
where k = k(n) lies between # and §%”. Following Knuth, this is the form that we shall take as our
starting point, setting D(n) = R(n) — Q(n), so that D(n) = 20(n).

The approaches followed by Ramanujan himself and later authors all make use of real integral
representations derived from

o) =jw e"‘(l +§->"_1 dx, (1.5)

0

and proceed using the Laplace method for the asymptotic evaluation of integrals [3]. From this
representation, Q(n) is up to normalization an incomplete gamma function, a  F-hypergeometric,
and accordingly, it admits an explicit continued fraction representation of the Gauss type, as
already noticed by Ramanujan (Entry 47 in [1, Ch. 12]).

As a historical fantasy, it may be of interest to observe that, quite possibly, Ramanujan was led to
his conjecture by considerations related to the distribution of prime divisors in integers. The
Erdés—Kac theorem asserts that, for integers, the “number-of-divisors” function is asymptotically
Gaussian distributed over large ranges. A form of this theorem does appear in Ramanujan’s notes,
under a Poisson formulation: The number of integers less than n with numbers of prime divisors at
most k is asymptotically

x [1 loglogx_*_(loglogx)2 . +(Ioglogx)"].

log x 1! 2! k!

Letting k vary with n in the “interesting” region k ~ loglog x naturally leads to questions like (1.1).

It should also be said at this stage that, apart from sentimental value, the Q(n) function appears
in a number of problems in discrete probability and the analysis of algorithms:

(1) 1 + Q(n)is the expected number of persons it takes in order to find two having the same birth
date (when the year has n days!). This is the classical birthday problem which is of interest in
random allocations and general hashing algorithms (see [ 12, Section 4.1] or [4]). For instance, on
earth, it takes on average only 24.61658 persons to find two with the same birth date.

(2) The analysis of hashing with linear probing, when the table is full, is expressed simply in
terms of Q(n). The cost of successful search is about % ./nn/2, as results from the asymptotic
analysis of Q(n) (see [12, p. 530], [22, pp. 509-511]).

(3) Random mapping statistics involve Q(n) in several places, in relation to their cycle structure.
There is a vast literature on this topic, see [11, p. 8] for the basic results, [ 14] for related problems,
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and [5] for a recent survey of random mapping statistics. The corresponding analyses are also
relevant to the study of random number generators [11, Section 3.1]. It is starting from there that
Pollard conceived one of his integer factorization algorithms, the well-known “rho method”, which
itself permitted in its time the discovery of the factorization of the eighth Fermat number
Fg = 225l + 1

(4) Analysis of union-find algorithms under the random spanning tree model essentially depends
on Q(n) [16].

(5) Analysis of optimum caching [13] and the study of memory conflicts or deadlocks [15, 2]
involve the function Q(n).

The paper is organized as follows. Section 2 develops a complex integral representation based on
a generating function of the Q(n) from which yet another proof of its asymptotic expansion follows.
Our approach is in fact a hybrid of singularity analysis and saddle point in the following sense: It
starts with an integral representation based on an expansion essentially dictated by the singularity
analysis method (see Eq. (2.4), and the proof of Proposition 3); then a suitable change of variable is
introduced that causes the integration contour to pass through a saddle point (see Egs. (2.5), (3.1),
(3.2) and the developments at the beginning of Section 3). In Section 3 effective error bounds for the
intervening integrals are developed. The various lemmas and estimates are then woven together in
Section 4, where the proof of the main inequality is completed. Section 5 offers a few hindsights.

2. Generating functions, asymptotics, and an integral representation

An important function in combinatorial analysis is the function y(z) defined implicitly by the
equation

y(2) = 26, 2.1)
with y(z) = z + z2 + 3z3/2 + ---. By the Lagrange inversion formula, we have' the following
proposition.

Proposition 1. The Taylor coefficients of y(z) = ze*'® and its powers are given by

. B n"- 1 . . B n—k~1
["]y@) =— and [2"]y'(0) = km- 22
Furthermore, a generating function of Q(n) is expressible in terms of y(z):
i n—1 Z_n — 1
,Z'l Qn)n . log1 et (2.3)

The well-known expansions (2.2) go back to Legendre and Eisenstein. The companion facts from
combinatorics are classical (see [7] or [5]): y(z) is the exponential generating function (EGF) of
rooted labelled trees and the function appearing in (2.3), L(z) = log(1 — y(z))!, is the EGF of

!'We let [2"] f(z) denote the coefficient of z" in the Taylor expansion of f(z).
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functional graphs (mappings) that are connected. Thus, Q(n)/n also represents the probability that
a random mapping be connected, a result already known to Rényi and Harris.

Eq. (2.3) has already appeared in the literature [16, 5, 14, 22]. It constitutes the starting point of
a transparent analysis of the asymptotics of Q(n). In this way, we rederive through generating

functions the asymptotic expansion of Q(n) known from the works of Ramanujan, Watson, and
Knuth [19, 23, 10].

Theorem 2 (Ramanujan, Watson and Knuth). The quantities Q(n), R(n) admit full asymptotic
expansions in descending powers of

nn
Q(")~\/;_ 12\/; B35
Rin) ~ ﬁJ“ +—\/; 350+

Proof. We sketch here the proof based on singularity analysis (see [22, 14, 5] for related develop-
ments). The implicity defined function y(z) has a singularity of the square-root type at z = 1/e, and

_ 1 11 3 43 " _
y(Z)—1—8+§8 _ﬁ +'5T0 e, &=4/2 = 2ez,
as z — e~ 1. This induces a logarithmic singularity for L(z) at z = 1/e,
o 7 2 133 ;3 1 L
L(z) = logs + 367758 + 3240 + = 2log(l ez)”

By singularity analysis [6], the asymptotic equivalent of L(z) transfers to the coefficients, which
gives [z"] L(z) ~ 3 ¢"n" !, and Q(n) ~ /% nn. The full expansion of L(z) in powers of (1 — ez)!/? also
translates into a full asymptotic expansion of Q(n) in powers of n'/2. The developments for R(n) are
entirely similar. [

In preparation for the more detailed treatment involving bounds for D(n), we next need to make
fully explicit the various expansions and representations related to its generating function.
We have Q(n) + R(n) = nle"/n" so that a generating function of D(n) is

(1 —y)?

z D(n)n" 1 =lo gi(—l—TCZ)

Appeal to Cauchy’s integral formula for coefficients of analytic functions. When applied to (2.3), it
gives

n! A—y@P, o dz
D(n) e =1 m 1§ logm dw withdw = Z"+1 , (24)

where % is a sufficiently small countour surrounding the origin.
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A key step is now to allow y to be taken as the independent variable (this is precisely inspired by
the analytic proof of the Lagrange inversion theorem) so that z = ye ™”. The result is an alternative
form of Eq. (2.4).

Proposition 3. Quantity D(n) = R(n) — Q(n) satisfies

nt 1 1 (1—y)?
12w J, C2(1 —yel ™)

D(n) = do with dw = —Z-:j% =(1—y)ev y‘,,ifl, (2.5)

where € is a small contour around the origin in either the z-plane (the first form of dw is used with
y implicitly defined by y = ze’) or in the y-plane (the second form is used with y being the independent

variable).

In order to make use of (2.5), we first observe that, from (2.2), the coefficients of (y — 1)* form an
asymptotic scale:

n! n _ n! " 2__2
[0 -D=1 =S -DP= -5,

n! 3 6 n! 20 24

n _ 3=___ - n . 4 __ -~ _ =
[ T 1 [ (26)
nl s 15 130 120
n"_l [Z ](y 1) - nz n3 + n4 [

with n!n~""1[z"](y — 1)* being O(n~¥%) and comprising [ k/27 terms.
If we expand the integrand of (2.5) in powers of (y — 1) and use the first form of dow,
dw = dz/z"*!, then through (2.6) we get an asymptotic expansion for D(n):

D)~ ¥ alz"]1(y — D 2.7)
k=1
where (6 =y — 1)
52 )
log T i 100 El a0
_2. 1, 1 1 1
=3%-36% ~810° " 12960° T 68040°
1 . 1 , 13 .
+ 12247200 ° 61236006 1175731200‘S +o 28)

By (2.6), Eq. (2.7) itself transforms into a standard expansion,

Do)~ 3 %, 9

k=20
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whose first few terms are

L 8 16 32 . 1794
135n 283517  8505n° ' 12629925n*

Dy~

Analytically, the complete process leading to (2.9) is again justified by the singularity analysis
theorems. It is quite parallel to the proof of Theorem 2 (only y — 1 is used instead of the
asymptotically related ¢) and refinements of it are going to provide the required bounds.

3. Expansions with effective error bounds

The main device employed here follows the outline given in Egs. (2.7)12.9). We use a terminating
form of (2.8) inside our main integral representation,

n"1! 1 K 1
! D(n) = i i <k§o aly — 1)") do + 7 ﬁ; Ri(y — Ddo, (3.1)

n

where the ¢, are defined by (2.8) and

1 — 2
Ry - 1) = log 5 —)

K
I R 62

z2K+1

The integral with the finite sum in (3.1) is known exactly from Section 2 and Eq. (2.6); our aim is to
derive constructive bounds for the integral containing the remainder.

To estimate the remainder integral, we make use of the second form of dw, namely
dw = (1 — y)e™dy/y"*! together with a contour in the y-plane whose choice is dictated by a saddle
point heuristic. The quantity €™y ™" has a saddle point at y = 1 with axis perpendicflar to the real
line; accordingly, we take € = €, U%, where

€ ={l+it]—1<t<1} and %,={yllyl=/2,R(y) <1} (3.3)

Our proof, which will eventually fix K = 10, consists of two simple phases.

(a) The integral of the remainder term along %, is small since there y ™" = O(2~"2); in addition,
it can be effectively bounded.

(b) Along %,, quantity Ry is small since it was obtained by subtracting from a function the first
K terms of its locally convergent Taylor expansion; in addition, constructive bounds can be
derived.

We thus proceed with this programme, starting with estimates.of the ¢, coefficients con-
tinuing with the estimates along %,; then %, which we give for a general K. To take care of
recurring factors of the form n!/n", we appeal to a weak form of Stirling’s formula valid for all
nz1,

n! <—i—bl-n"e"‘\/2nn. (3.4)
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Lemma 4. For all k > 1, we have

10.96714833
ICkI < —_Tti— (35)

Proof. From Eq. (2.8) we estimate the coefficients of log f(z) where

Z2

—(z+1De™?)
by means of Cauchy’s formula:

1
2mi

16 =3q

= logf(z kd+ I (3.6)
where 2 is any small enough simple contour encircling the origin. We propose to take here as
contour 2 the boundary of the square |#z| < =, |3z| < 7.

First, elementary computations show that there are no zeros nor poles of f(z) within 2. The
graph of Fig. 1 which represents the image of 2 by f(z) confirms this via the principle of the
argument since f(2) has winding number O with respect to the origin. Thus logf(z) is analytic in
and on 2 and the Cauchy integral (3.6) for ¢, can be evaluated by taking 2 as the integration
contour.

20

.

Fig. 1. The transform by f(z) of the square of side 2r centered at the origin together with a blow up of the picture near the
origin (lower right).
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By considering the four sides of the square |Rz| < n, |3z| < 7 and using trivial estimates we
obtain:

n? T

itont e SO ST m e

We next have to consider the argument of f(z). For this purpose we investigate the argument of the
denominator of f(z). We restrict our investigation to the part of the square with 3z > 0. By
examining the behaviour of the sign of the real and imaginary part of g(z) =1 — (z + 1)e % on the
three lines Rz =n, 0 <z <, —n<Rz<n,Iz=nand Rz= — 1,0 < 3z < n, we find that
g(z) does not enter the third quadrant. Thus we have — 37 < argg(z) < n. On the other hand, we
have 0 < argz? < 2rn. Combining the two bounds yields

largf(2)| <3 m.

Thus we obtain

2

log? n LB 2)" 613578
B r+r e+ 4 =%

Bounding the integral (3.6) trivially, we arrive at

1 /8.613578
leel < I (“;ﬁT’) (8m),

llog f(2)] < (

which is equivalent to (3.5). [J

Numerical computations suggest that the c, decrease roughly like 7% so that the estimate of
Lemma 4 is not too tight. It is however amply sufficient for our purposes. With it, we next bound
the remainder integral along €.

Lemma 5. We have

nl 1
n"~ 1 2m

f Ri(y — l)dw‘ < H(K)n*?27"2, (3.7)
€,

where

K
H(K) = 181.7306404 ( ! +n\/§> .

Proof. Estimate (3.2) by the triangle inequality applying the bounds (3.5) of Lemma 4 for the
coefficients c,; use Stirling’s formula (3.4) to eliminate the factorials. This gives the upper bound

1+/2

() i ) () )
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with M = 10.96714833 being the constant appearing in Lemma 4. All reductions done, this
provides the stated bound. [

It remains to evaluate the remainder integrals along €, .

Lemma 6. For all n > 1, we have the bound

n! 1 1
F-za ﬁg RK(y — l)d(D < G(K) W, (38)
where
11 2k+3 K+3 Rx(y
G(K) = 10 \/— px T ( ) and g = max O —DF (3.9
Proof. Setting y = 1 + it, and bounding the integral in (3.8), we find
n! 1 11 ny/2nn /27n
F-z_‘rt_l_[ Rg(y — 1)dw ] 0 o HxJ(K), (3.10)
with ug defined in (3.9) and
+1 d’C
_ K+2
I = [ 1o ey
1 dr
K+2
<2j‘0 T ———(1 e (3.11)

Since, in the given range, we have 1 + u > ¢*/2, we find

J(K)<2 J‘ k274 4

0 L]

and a change of variable shows that the right-hand side coincides with a gamma function, namely
(K)<2"+3F<K; 3> K432 (3.12)

Using (3.12) inside (3.10) yields the statement of the lemma. [J

4. Ultimate inequalities and the main theorem

We are finally in a position to combine the effective bounds provided by Lemmas 4-6 and derive
the main result of the paper.
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Theorem 7. With the quantity 8 = 8(n) being defined by
n 2 n

r, n
§e=1+ﬁ+ﬁ+“'+;l—!9,
one has, for all integers n = 0,

1.4
~ 37 135(n + k)’

where k = k(n) lies between F and ;.

6

Proof. The proof uses the decomposition (3.1) together with the estimates derived in the last
section. We fix the value K = 10. The remainder integral containing Ry is estimated along %, and
%,. Then we consider the main terms.

(i) The remainder integral along %, is estimated by Lemma 5. For K =10, we get
H(10) = 13.05227701 so that we find

n! 1 3/29—n/2
nn—l i f‘@z RlO(.V l)dwl < 13.06n°°2
1

(Numerical studies show that much better could be done, but the effect on n, is marginal.)

(ii) The remainder integral along %, is estimated by Lemma 6. This requires estimating the
quantity ux appearing in the bound (3.8). The smallness of the ug’s is naturally related to the
exponential decay of the coefficients cx since ug ~ cg.

From Lemma 4, we find with M = 10.96714833,

1 M [1\K
<M - = - )
i Sk 7‘“1<“)

and in particular, for K = 10:
U1o < 0.00005468 so that G(10) = 56.59398.

(From numerical experiments, we expect a slightly better bound to hold: y,, < 1077 — but once
more the effect is marginal.)

(iii) We finally consider the first 10 ( = K) terms in the expansion (3.1) which contribute
a polynomial of degree 9 in 1/n to D(n). Define

n! 1 10
Dlo(n)-‘:;,—,;‘_—l'ﬁ %kgo c(y — D'do
_ 2 N 8 16 32 + 17984 + 13159709
3 135n 2835n? 85051  12629925n* ° 9699782400 n°
977069 36669961 117191 479

1039262400n° 2829103200017 * 56582064n®  561330n°
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Eq. (3.1) and the bounds found for K = 10 yield
Dyo(n) — 4(n) < D(n) < Dyo(n) + A(n),

where

under the sole condition that n = ny = 116.
The two basic inequalities

2 8
AW B+ = fornz=n, =24,
Dlo(n) A(n) 3+ 135(n +28§) orn ny 2
2 8

Dio(n) + A(n) < for n = n, = 116,

3V B0+ 2)

42)

are verified by normalizing the involved rational fractions and studying the variations of the
numerator polynomials that are of degrees 8 and 7, respectively. Thus, from (4.2), the main

assertion of the theorem is established for

nz maX(no, nl,nz) = 116.

0.2

0.18

01"

*e.
s
""“nno.

0.08

20 40 60

80

100

120

Fig. 2. A plot of the first 120 values of k(n) confirms that they all lie inside the interval &, &1
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To finish the proof, it suffices to calculate k(n) for n < 115 by computer and to verify the
inequality in these cases (see Fig. 2 for a display). [

Proof and computation. The symbolic manipulations needed by our proof were performed with the
help of the computer algebra system Maple. Computer algebra intervened at most stages in the
construction of the proof: in performing various expansions like (2.6), (2.8), (2.9), and in obtaining
the various bounds of Sections 3 and 4. As soon as enough terms have been gathered in the
asymptotic expansion of Q(n), the truth of the conjecture in its weaker asymptotic form, for “large
enough” n, is immediate. The difficulty in obtaining a complete proof of Theorem 7 is then twofold:
(i) the proof of asymptotic estimates should be suitably transformed in order to yield inequalities
valid for large enough n; (ii) the range of excluded values of n should be small enough that the
remaining cases, here n < 116, be amenable to exhaustive verification. The second of these
conditions has necessitated a rather delicate tuning process that could be done rather painlessly
with the help of a few hours of interaction with our computer algebra system. A hand carved proof
along our lines, though perhaps conceivable, would have involved a rather formidable calcu-
lational effort.

5. Some conclusions

It may be of interest, at last, to reflect on the various alternatives that offer themselves in order to
estimate asymptotically sequences like Q(n) or D(n).

(1) Laplace method. The Laplace method for integrals, based on the integral representation (1.5)
was the starting point of earlier approaches. As Szegd and Watson show, it can be made
“constructive” (instead of providing only O-bounds) but its operation becomes then somewhat
intricate.

(2) Singularity analysis. This is the method that gave us here the expansion of Theorem 2. It is
based on the fact that the implicitly defined function y(z) has an algebraic singularity of the \/-type,
from which the singularity types of the generating functions associated with Q(n) or D(n) follow.
The method can also accommodate constructive bounds on a function’s coefficients [6]. Conse-
quently, it might be applicable to derive Theorem 7, although, in this case, bounding y(z) in the
appropriate region would probably prove unwieldy.

(3) Darboux’s method. Darboux’s method also leads to a full asymptotic expansion by a route
very similar to singularity analysis. However, it does not have the capacity to provide bounds since
it is intrinsically based on a nonconstructive lemma on Fourier series.

(4) Saddle point. This is in essence the route that we took, after a suitable change of variable. Its
application in the case of implicitly defined functions and Lagrange series is also to be traced in
Darboux’s works, an interesting combinatorial application occurring in [12]. By this method, we
were able to reduce the problem to the task of finding simple bounds for elementary functions on
circles and line segments. Interestingly enough, when considering the conformal mapping defined
by y'"1(z), it appears that the induced contour in the z-plane closely resembles the type of
“Hankel” contour used in the z-plane under the singularity analysis approach. This establishes
a perhaps unexpected relation between two seemingly unrelated methods — singularity analysis
and saddle point — at least in the context of implicitly defined functions and Lagrange series.
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