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Analytic Variations on Quadtrees’ 

Philippe Flajolet,2 Gaston G ~ n n e t , ~  Claude P ~ e c h , ~  and J. M. Robsons 

Abstract. Quadtrees constitute a hierarchical data structure which permits fast access to multi- 
dimensional data. This paper presents the analysis of the expected cost of various types of searches in 
quadtrees-fully specified and partial-match queries. The data model assumes random points with 
independently drawn coordinate values. 

The analysis leads to a class of ~~~~~~-history ” divide-and-conquer recurrences. These recurrences are 
solved using generating functions, either exactly for dimension d = 2, or asymptotically for higher 
dimensions. The exact solutions involve hypergeometric functions. The general asymptotic solutions 
rely on the classification of singularities of linear differential equations with analytic coefficients, and 
on singularity analysis techniques. 

These methods are applicable to the asymptotic solution of a wide range of linear recurrences, as 
may occur in particular in the analysis of multidimensional searching problems. 
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Although the worst case is not very impressive, 
the quadtree is shown to be eficient 

in many practical problems. 
S .  S .  IYENGAR et al. [21, p. 731 

1. Introduction. A classical geometrical search problem consists in finding re- 
cords (points, elements) that satisfy a suitable condition in a collection of multi- 
dimensional data (see Samet’s book [33] or general references like [3], [17], [21], 
[28], and [34]). The elements to be retrieved may be specified by several (or all) 
of their components. If all components are specified in the search, the problem is 
called a fully specijied search. Otherwise, we call it a partial-match query. 

The quadtree structure is due to Finkel and Bentley [lo]. It can be used to 
answer both fully specified and partiallmatch search problems, and it is based on 
a tree data structure that extends the classical idea of a binary search tree to 
multidimensional data. The principle, in the case of planar problems,6 is simply 
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Fig. 1. A point P = (x, y )  separates the unit square into four quadrants NW, NE, SW, SE, also numbered 
1, 2, 3, 4. 

that a point partitions the search space into four quadrants (see Figure 1). When 
used recursively, this principle leads to a decomposition of the underlying search 
space into rectangular cells (see Figure 2). A closely related multidimensional tree 
structure is the k-d tree of Bentley [2]. 

This paper proposes a thorough analysis of the performances of various types 
of searches performed on quadtrees built from ‘‘random’’ data. A classical 
framework of analysis is that of “independent” data, with components of records 
being independently drawn from some continuous distribution which we may then 
freely assume to be the uniform distribution over [0, 11. 

The quadtree is expected to provide ‘‘fast” access properties, and in particular 
logarithmic cost access to fully specified searches. For instance, in their original 

Fig. 2. A quadtree decomposition of the unit square using the principle of Figure 1 recursively, based 
on 50 points. 
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paper [lo, Table 11, Finkel and Bentley observed by simulations that, for trees of 
size n = 1000 or 10,000, the average cost of a search tends to be about (0.90 & 0.05) 
log n. Gonnet in the first edition in 1984 of the book [17] proposed empirical 
formulae suggesting C, - (0.989 k 0.004) log n (for dimension d = 2) and 
C, - (0.662 & 0.003) log n (for d = 3). 

Our asymptotic complexity results are valid for every dimension d 2 2. They 
are expressed in terms of the number of nodes traversed in a search, more complex 
measures being amenable to similar analysis techniques. A fully specified search 
is found to have average cost 

2 
d 

clp’ - - log n. 

(These results are thus in good agreement with the empirical estimates mentioned 
above.) When comparing the cost of a search in a common (one-dimensional) 
binary search tree [22] which is -2 log n, we witness a “contraction factor” of 
l/d for the depth of d-dimensional quadtrees. This represents a sort of global 
conservation of the search costs (each node in a quadtree contains d fields), 
a phenomenon independently established in similar contexts by Devroye and 
Laforest [SI, [9] using probabilistic arguments. 

One of the main uses of quadtrees is for partial-match queries. In that case, 
only s out of d coordinates, with 1 5 s c d, are specified in a search. First, a 
simplified model based on the assumption that the quadtree is a perfect tree may 
be considered. (See [4] and p. 513 of [2] for a similar model of k-d trees.) This 
leads to considering the recurrence for the cost in the perfect tree model 

since a search in a tree of size n first visits the root and then continues to explore 
2d-S trees each of size about n/2d by the assumption of a perfect tree. The solution 
of (2) is 

(3) 

Said otherwise, a perfect quadtree resembles a perfect grid with meshes of size n - l / d  . 
It turns out that the model (2) provides an unduly optimistic estimate for random 

data. The exact form of the recurrence for the average search cost QfPd) is given 
in Section 2 below. The corrected form of (3) is then found to be 

where the correction function O(x) in the exponent is defined as the solution 
8 E LO, 11 of the equation 
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For instance, when d = 2, a partial-match query with one component specified 
out of two has expected cost 

(,/i?-3)/2) 0 ( n 0 . 5 6 1 5 5 )  Q n  = O(n N 

as opposed to O(&) which is suggested by the approximate model. This situation 
resembles the case of k-d trees which has been treated earlier by Flajolet and 
Puech [ 151, though the multiplicative constants are naturally different. 

The analysis problems that we discuss here start with what may be called 
stochastic diuide-and-conquer recurrences. These recurrences on average costs are 
direct reflections of the recursive search procedures. A typical instance is the 
recurrence corresponding to path length in a standard quadtree, 

where the t n , k  are related to “splitting probabilities” (see below Lemma 3): 

(7) 
4 1 
n n tn,k = - [ H ,  - Hk] with H ,  = 1 + 4 + S 4- + -. 

The natural approach to recurrences of the form (6) is of course to introduce 
generating functions. We thus set 

f ( z ) : =  fnz”. 
n20 

A recurrence of the form (6), (7) then translates into a linear integral equation, 
itself equivalent to a linear diflerential equation of order 2. More generally, 
problems in dimension d lead to differential equations of order d. The analysis of 
quadtrees follows from their two different routes. 

In dimension d = 2, the differential equations that we encounter have explicit 
solutions which invariably invole hypergeometricfunctions, the formulae for partial 
match being typical. In this way, explicit forms-involving harmonic numbers or 
binomial coefficients-are available for the complexity analysis of standard quad- 
trees. Asymptotic forms are derived by elementary or complex asymptotic analysis. 

In dimension d 2 3, we no longer find explicit forms of generating functions 
that would be expressible in terms of known special functions. Our approach is 
inspired by the corresponding analysis of k-d trees in [l5]. The principles on which 
the analysis is based are: 
(0 

(ii) 

The nature and location of singularities of a function determine the growth of 
its coefficients (see, e.g., [14]). 
Singularities of the solution to a linear differential equation 

arise from singularities of the coefficients A i z )  and the zeros of A,(z) in a 
well-quantified way. 
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The k-d trees lead to differential systems while quadtrees introduce more naturally 
integrodifferential equations. However, in both cases, the analysis of generating 
functions' singularities via differential systems constitutes a fairly general method- 
ology which may be used in order to analyze linear recurrences with coefficients 
that involve multiple summations and rational function coefficients. 

Coming back to quadtrees, we establish here that, not too surprisingly, their 
expected performances are, as far as orders of growths are concerned, rather close 
to those of k-d trees. This agrees with some other results of Devroye who 
established that the height of quadtrees is logarithmic, like for the other search-tree 
varieties; Devroye proved that for a quadtree of size n, the expected height is 
asymptotic to 

C 
- log n, where c z 4.31 107 
d 

satisfies 

We may also mention that analyses of quabirees unclcr different uses, like for 
representing images or as an access method for data bases, have been given by 
Yahia et al. [30], [38], [26] and Regnier [31]. 

2. Basic Probabilities and Recurrences. The average-case complexity of divide- 
and-conquer algorithms is normally expressed by recurrences. For instance, the 
average number of comparisons C ,  needed to sort n data items using the Quicksort 
algorithm satisfies the recurrence [22, equation 5.2.2-18, p. 1201 

3 n - 1  

and a closely related recurrence [22, equation 6.2.2-4, p. 4271 provides the average 
search cost in a binary search tree of size n. Digital searching leads to recurrences 
of a different shape, see, for instance, equation 6.3-17, p. 499, of [22]. 

The general scheme which covers the examples above as well as the quadtree 
costs is 

n -  1 

(9) 
k = O  

Here f, is the unknown sequence of costs which is to be determined, an is a known 
(and usually simple) number sequence, and the cn,k are of various forms that reflect, 
in each case, the probabilities that a problem of size n decomposes into similar 
subproblems of size k .  The form (9) is more complex than the standard divide- 
and-conquer recurrences of which (2) is a particular example, and we may call it 
a stochastic divide-and-conquer recurrence (Table 1). 
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Table 1. Various types of stochastic divide-and- 
conquer recurrences.* 

Problem an t n ,  k 

Quicksort 

Binary search 

Patricia search 

2 
- n + l  
n 

2n 1 

n + l  n + l  
- ~ 

1 

4 
n 

Quadtree path length n - ( H n  - Hk) 

n - k  
Quadtree partial match 1 4- 

n(n + 1) 
* The first three recurrences appear in Knuth's book [22] 
(on pp. 120, 427, and 479, respectively). The quadtree 
recurrences appear in Lemmas 3 and 4. 

In this section we establish the form of recurrences satisfied by the search costs 
in a standard quadtree of dimension d = 2. Let U = [0, 11, denote the unit square, 
The probabilistic model of use7 assumes that n elements are drawn uniformly and 
independently from U. 

PROPOSITION 1. Let pnl, n2, n3, n4 be the probability that the four root subtrees of a 
quadtree built on n = 1 + n ,  + n2 + n3 + n, records have sizes n,, n,, n3,  12,. Then 

1 (n ,  + n,)! (n3 + n,)! (n ,  + n3) ! (n,  + n,)! -- - 
n - n !  n,! n,! n,! n,! P"l,"2."3,"4 

PROOF. 
probability sought is 

Let ( r , ,  r 2 ,  . . . , r,) be a random element of U", and set r j  = (x j ,  yj). The 

n - 1  
[(uvy'((l - u)v)"*(u(l - v)y3((l - u)(l - v))n4] du du. 

= ( n l ,  n 2 ,  n 3 ,  n4) * j O 1  10' 

' This model is of course equivalent to assuming simply independent drawings from any continuous 
distribution. 
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Here du du is the probability that u 5 x1 < u + du and u 5 y ,  < u + du. The 
integral gives the probability that the n ,  elements, r 2 , .  . . , r n l +  1, are in the first 
subtree, that the next n2 elements r,, + 2 ,  . . . , r,, +nZ+ are in the second subtree, etc. 
Finally, the multinomial coefficient represents the number of possible “shufflings” 
of the n - 1 elements r 2 ,  . . . , r ,  into four groups of cardinalities n l ,  n 2 ,  n3 ,  n4. 

From the classical Eulerian beta integral, see Chapter 6 of [l] or Chapter XI1 
of [36], applied to (lo), 

a !  p!  
(a + p + l)!’ s,‘ xa(l  - x)p dx = 

we get the stated form of the splitting probabilities. 

We now proceed with determining a recurrence satisfied by the expected values 
of path length in quadtrees. 

DEFINITION 2. The level A(v) of a node v in a (quad) tree of root p is defined as 
the number of nodes on the branch connecting v to p. (The root itself is thus at 
level 1.) The (internal) path length of a tree t is defined as the sum cy A(v), the sum 
being extended to all internal nodes of t .  

We let Pn denote the expectation of path length in a quadtree formed from n 
random records. Thus Pn/n represents the cost of a random successful search in 
a random quadtree of size n, the search cost being as usual defined by the number 
of internal nodes traversed. 

LEMMA 3. 
size n satisfies the recurrence 

The expected value of internal path length Pn in a random quadtree of 

PROOF. 
has size k. Then, clearly, we have 

Let nn,k be the probability that the first subtree in a quadtree of n nodes 

The nn,k are determined by adapting the argument employed for the full splitting 
probabilities of Proposition 1. We introduce the intermediate quantities w n , k ,  

representing the probability that the first subtree has size k while the sizes of the 
first and third subtrees (west!) add up to 1. We thus have 
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The value of mn,k,I is 

du dv  k , l -  k,n - 1 - 1 (14) w n , k , l  = 

The multinomial represents the number of ways in which we can select, out of 
n - 1 “places”: k places for elements going to the northwest quadrant, 1 - k places 
for the southwest quadrant, and the n - 1 - 1 remaining places for the east 
half-plane. The integrand represents the probability that, in a sequence of n - 1 
elements: the first k fall northwest of (u, v), the next 1 - k fall southwest, and the 
last n - 1 - 1 fall east. 

Finally, the explicit form of (14) follows from the beta integrals (1 1) and the value 

is derived from tu,&, I by the second equation of (13). 

We now turn to partial-match queries. This is a search on a randomly built 
tree where only one of the coordinates-the x-coordinate value, say-is specified 
(and this x-value is taken to be uniform over [0,1], independently of the data 
items on which the tree is built). Again cost is measured by the number of internal 
nodes traversed. 

LEMMA 4. 
random quadtree of size n. Then Q,  satisjes the recurrence 

Let Q,  be the expected value of the cost of a partial-match query in a 

PROOF. The probability that INWl = k,  lSWl = 1 - k,  /El = n - 1 - I ,  and a 
random partial match with coordinate x is such that x lies west of the root is 

- u du dv 
k , l -  k,n - 1 - 1 (16) w:,k,l = 

Observe here the extra factor of u (underlined) in front of du dv, which takes into 
account the probability that a random search hits west. Thus, the recurrence for 
Q, is 
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The sum represents the contribution to the cost arising from a search that hits 
west, the factor 2 takes into account the symmetrical contribution from searches 
that hit east. The statement follows from (18). 

Returning to Lemma 3, we observe that the identity EJ,,~,~ = l/(n(l + 1)) in (14) 
also has an intuitive interpretation: If we consider the sequence (xl, x2, . . . , x,), 
the rank of x1 assumes each of the possible values 1,2, . . . , n with equal likelihood, 
i.e., with probability l/n. Then the number of elements that fall in the first and 
second subtrees assumes each of the possible values 1 = 0, 1, . . . , n - 1 with 
probability l/n. Once such a value is fixed, amongst these 1 elements plus the root, 
each of the ranks with respect to the y-coordinate of r l  is equally likely, and has 
probability 1/(1 + 1). Thus w , , ~ , ~  = l/(n(l + 1)). 

Similar ''combinatorial interpretations'' are available for (17). 

3. Standard Quadtrees in Dimension d = 2. In this section we carry out the 
analysis of search costs in standard quadtrees where the dimension is d = 2. 
Recurrences translate into integrodifferential equations. For d = 2, the generating 
functions can be found explicitly. This leads both to exact and to asymptotic forms 
for the costs of fully specified searches and partial-match queries. As a uniform 
measure of costs, we take the number of internal nodes traversed in a tree search. 

In this and the next section we use a few tools from the theory of linear 
differential equations for which we refer to the books by Henrici [19] or Wasow 
[35]. A treatment of hypergeometric functions that suffices for our purposes is to 
be found in [l] and [36]. 

PROPOSITION 5. Let P(z) = P,z" and Q(z)  = Q,z" be the generating 
functions of P, and Q,. Then P(z) satisfies the second-order equation, P(0) = 0, 

(19) 
Z du 

P(z) = 
(1 - 2 ) 2  

The function Q(z) satisfies the diflerential equation 

together with the initial conditions Q(0) = 0, Q'(0) = 1. 

PROOF. The proof follows by a direct translation from recurrences to generating 
functions. 
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By direct computations, we find 

49  3 295 4 503 5 P(Z) = Z + 3Z2 + 7 . Z  + XZ + + O(z6),  

20 3 122 4 2129 5 Q(z) = z + $z2 + + 4 5 2  + + O(z6). 

THEOREM 1. 
internal nodes traversed-in a quadtree of size n 2 1 is 

The expected cost of a positive search-measured by the number of 

n + l  C =-= 1 + -  H,------. 
" n ( i n )  6n 

The expected cost of a negative search under the same complexity measure in a 
quadtree of size n 2 1 is 

I n - 1  
6 n + l '  

e, = H ,  - - - 

PROOF. The formula for P, was initially found by trial-and-error* from exact 
rational number forms of P, for small n. (The occurrence of the harmonic number 
is not too unexpected!) Once it has been conjectured, it is a simple matter to verify 
that the generating function of the P,  as given by (21), namely, 

1 2 2 + 1  1 1 z2 + 42 
log - +- P(z) = - 

3 ( 1  - z ) ~  1 - z 6 ( 1  - z ) ~ '  

satisfies the second-order integral equation (19). 
With regard to C,, we have the relation 

(Co + 1)  + (Cl + 1)  + - e -  + (CkA1 + 1)  = nC, = P,. 

Such a relation classically expresses that the search for all records in a tree requires 
traversing the same nodes as when the record was first inserted into the tree. Thus 
C, results from P, by differencing: CL = P,+l - P, - 1. 

COROLLARY 6. 
in a quadtree of size n has average cost log n + O(1). 

Asymptotically, a random search, either successful or unsuccessful, 

The expected search cost was independently determined by Devroye and 
Laforest using recurrence manipulations [SI. They further determined an exact 

~ 

Guessing can be eliminated by systematic reduction to hypergeometric form as we do  below for other 
two-dimensional analyses. Also this problem nowadays falls into a category solvable algorithmically 
and automatically by computer algebra, see the discussion at the end of Section 4. 
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form for the variance whose asymptotic equivalent is 4 log n, so that the distribu- 
tion is concentrated around its mean. Recently, Flajolet and Lafforgue [l2] have 
further obtained an explicit form for the corresponding probability generating 
function, qn(t), 

(24) 

This is based on hypergeometric computations, and from there it is found that 
(like for standard binary search trees [25]) the distribution of costs is asymptotic- 
ally Gaussian. The search costs in two-dimensional quadtrees may thus be 
regarded as fully known, and we turn to partial-match queries. 

THEOREM 2. 
n 2 1 satisjies 

The expected cost Qn of a partial-match query in a quadtree of size 

a - l + n - k  a a - 1  1 
1 + Q n =  k = O  ( n - k  )(k)(  k )k+l) 

where a is the root located between 1 and 2 of the equation a(a + 1) = 4; thus 
CI = (J17 - 1)/2 M 1.56155 28128 08830. 

PROOF. First we convert the differential equation of Q(z), (20), to standard form: 

d 2  d 2 
~ ( 1  - z ) ~  ~ Q(z) + 2( 1 - z ) ~  - Q(z) - ~ Q ( z )  = - . 

dz2 dz 1 - 2  

We observe that a particular solution to this equation is - 1/(1 - z), and therefore, 
by considering y(z) = Q(z) + 1/(1 - z), we find that y(z)  satisfies the homogeneous 
equation 

d 2  d 
d z  dz 

Z(1 - Z)2 7 y(Z) 4- 2(1 - z ) ~  - Y ( Z )  - ~ Y ( z )  = 0. 

By general theorems, the only possible singularities of a solution to such an 
equation are the singularities of the coefficients, and the zeros of the leading 
coefficient. Thus, the only possible candidates are z = 0, z = 1, and z = co. It is 
known a priori, from the origin of the problem, that the function element Q(z) is 
regular at 0 and has radius of convergence exactly 1 since its coefficients are 
polynomially bounded. 

Guidedg by the usual principles of singularity analysis, the local behavior of 
Q(z), or equivalently y(z),  around z = 1 should be determined in order to derive 

An alternative way to arrive at the result is to observe that (26) has three regular singular points 9 

m d  therefore relates to the Riemann P-equation [36] .  
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the asymptotic form of the Q,. TO that purpose, we first try to substitute an 
asymptotic form y(z )  - C/( 1 - z)” inside (26). The main terms on the left-hand side 
of (26) are ‘‘normally’’ of order (1 - z)-‘, safe for certain exceptional values of cc, 
where cancellation occurs through the coefficients; we expect precisely these 
cancellation cases to provide solutions to the differential homogeneous equation 
(The left-hand side of (26) must be identically 0.) Proceeding in this way suggests 
that y(z )  - C/(1 - z)” with a a root of a(a + 1) = 4. 

To make this precise, we set 

with a still kept undetermined at the moment. The function Y(z)  satisfies a 
transformed equation, namely, 

From the preceding discussion, we now fix a to be a root of a(a + 1) = 4, and 
we select the largest root, namely, a = (fi - 1)/2, since it is the candidate for 
providing the dominant growth of y(z). In doing so, a term of ( z  - 1) factors out 
and Y(z)  satisfies 

d 2  d 
z(1 - 2)  2 Y(z)  + (2 - (2 - 2a)z) - Y(z)  + a(1 - a)Y(z)  = 0. (29) dz dz 

Equation (29) clearly has three (so-called ‘‘regula”’) singular points at 0, 1, and 
co and we may compare it with the standard hypergeometric equation. 

The classical hypergeometric equation [36, p. 2831 involves three parameters, 
a, b, c. It reads 

d 2  d 
~ ( l  - Z) 7 F(z) + [C  - (a + b + l ) ~ ]  - F(z) - abF(z) = 0. (30) dz dz 

A formal solution of it defines the classical hypergeometric function, 

a *  b z + F[a, b;  c; z ]  = 1 + - - U(U + 1)- b(b + 1) z2  - + .... 
2! c(c + 1) (3 1) c l! 

Now match the hypergeometric equation (30) with (29) satisfied by Y(z). The 
correspondence is 
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If we adjust the initial conditions with the form of the hypergeometric series, we get 

(33) 

with a = ( 4 1 7  - 1)/2, the hypergeometric function F being defined by (31). (Note: 
the other solution of the hypergeometric equation has a logarithmic singularity 
at z = 0, so it cannot appear in a generating function.) 

By the binomial expansion and the hypergeometric expansion, we have 

(34) F[a ,  b;  2; 23 = f (;a)( ;b) z" n +  I '  
n = O  

This determines an explicit convolution form of the coefficients of Q(z),  as described 
in (33). The statement of the theorem follows. 

From the generating function form (33) of Q(z), detailed asymptotic information 
on the coefficients Q, is available. By the general principles of singularity-analysis 
techniques [14] that we review now, the asymptotic form of Q, is determined by 
the aysmptotic properties of Q(z) at its singularity z = 1. 

SINGULARITY ANALYSIS. This method is based on two principles. First, if we 
examine coefficients of standard functions that are singular at z = 1, we observe 
that functions that get larger around z = 1 have larger coefficients. Let [ z" ] f ( z )  
denote the coefficient of z" in f(z). Approximating the binomial coefficients, we find 

(35) 

Next, it can be proved under a variety of conditions that the type of estimate (35) 
also holds for functions only known asymptotically at z = 1, 

One set conditions ensuring the validity of the ''transfer" of (36) is that the 
expansion of the function holds in an extended domain of the complex plane. 
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' The combination of (35) and (36) shows that once a singular expansion O f a  
function has been obtained, the asymptotic form of its Taylor coefficients is known. 
Thus, under the analytic continuation conditions of [ 141, we have the implication 

THEOREM 3. 
satisfies asymptotically 

The expected cost of a partial-match query in a quadtree of size n 1 1 

(37) 
1 r ( 2 4  
2 r(43' Q, - pa-', where y = - - 

with a = (a - 1)/2. Numerically y z 1.59509 90958 29715. 

PROOF. First, by a classical identity of Gauss, we have 

r(c)T(c - a - b) 
r ( c  - a)r(c  - b) ' 

FEa, b;  c ;  11 = 

whenever the real part %(c - a - b) > 0, and c # 0, - 1, -2, . . . (see Section 14.11 
of [36] or Article 15.1.20 of [l]). Thus, we find from (33) that 

* r *  

(39) 

with 

That asymptotic expansion is easily found to hold true in an extended domain 
of the complex plane since the hypergeometric function only has algebraic or 
logarithmic branch points. Thus, by singularity analysis [14], we are able to 
''transfer'' the asymptotic relation on Q(z) into a corresponding asymptotic form 
of Q,, namely, 

The statement of the theorem thus follows with y = y*/T(a). 

A refinement of this argument leads to a full asymptotic expansion for the Q,. 
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COROLLARY 7. DeJne the asymptotic series in n, 

Then 

with a = (- 1 + f i ) / 2 ,  and a the conjugate of a, ii = (- 1 - f i ) / 2 .  

PROOF. By using relations between hypergeometric functions at z and at 1 - Z, 

a complete singular expansion of Q(z) results. From the known expansions, see 
Section 14.53 of [36] or Article 15.3.6 of [ l ] ,  we find 

Q(z) + (1 - z ) - ~  = ~ " ( 1  - z)-"F[-a,  1 - a; -2a; 1 - Z]  

+ y**(l - z)-aF[-E,  1 - a; -2a; 1 - z], 

where y** derives from y* by changing a to E. That convergent expansion can in 
turn be transferred termwise to coefficients. 

The form (40) provides an asymptotic expansion (that is divergent!) of Q,. The 
asymptotic scale involves inverses of descending "factorials" of n + a and n + E. 

We have thus found a new expansion of Q, as a sum of two purely divergent 
formal ,F,-hypergeometric forms. The quality of the approximation that we obtain 
by retaining the first four terms of the expansion (40)-these terms all come from 
p(a, n)-is already quite exceptional; for n = 1, 10, 100, 1000, the absolute error 
is of order respectively lo-,, The error is tiny, even for n = 1, 
while the series is divergent! 

lo-', 

4. Higher Dimensions. In this section we examine the cost of various searches 
in quadtrees for data taken in higher-dimensional spaces. The recurrences involve 
more complicated splitting probabilities and the generating function equations 
have integral forms that reduce to linear differential equations of order d ,  when 
the dimension is equal to d. The results are less explicit than in the case d = 2, 
but orders of growth can still be precisely quantified although, in the case of partial 
match, the multiplicative constants no longer appear to have closed forms (to the 
best of our knowledge!). 
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We use in an essential manner singularity-analysis techniques. We are thus led 
to analyzing generating function solutions to ODE locally around their dominant 
singularity at z = 1. 

The case of a fully specified search illustrates a situation in which the dominant 
asymptotic behavior at z = 1 comes from the inhomogeneous term in the 
differential equation. 

The case of a partial-match query corresponds to a situation where the 
dominant asymptotic contribution comes from solutions to the associated 
homogeneous equation. 

In both cases we use a modest amount of the theory of singular points of ordinary 
linear differential equations as may be found in books by Henrici [19] or Wasow 
C351- 

SINGULAR DIFFERENTIAL SYSTEMS. By a classical theorem, the singularities of a 
homogeneous linear differential equation or system can only arise from singular- 
ities of the coefficients. For systems, a particularly important case occurs when 
the coefficient matrix is meromorphic and the singularity under consideration is 
only a simple pole. The singularity is then called regular. If the singularity is 
normalized to occur at z = 1, a fundamental result implies that solutions of the 
form 

exist. By substituting inside the original equations, we need to obtain complete 
cancellation. It is then seen that only a finite number of possibilities exist for a; 
these are solutions of a polynomial equation which is known as the indicia1 
equation. The process could be called a method of ‘‘indeterminate exponents,” and 
further full expansions follow by the usual technique of indeterminate coefficients. 
Finally, inhomogeneous equations are treated by means of quadratures once 
solutions to the associated homogeneous equations have been determined (the 
process is known under a nickname, the ~~~~~~~~~~~-of-constant" method). 

LEMMA 8. 
quadtree of size n. The P, satisfy the recurrence 

Let P, denote the expected internal path length in a d-dimensional 

where the summation is over all sequences (11, 1 2 ,  . . . , Id)  with the condition 9 being 
n > 11 2 12 2 * * *  2 l d - 1  2 1, = k. 
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The generating function P(z) = x n , O  p,z" satisfies the integral equation 

Z 
P(z) = + 2dJd- 'IP(z), 

(1 - z)2 
(42) 

where the operators I, J are defined by 

PROOF. The quantity n,,k represents the probability that the first root subtree 
has size k. The term (n(1, + l) . . . (Id-l  + 1))-' gives the probability that the root 
splits the file into ( I I ,  n - 1 ,  - 1) elements according to the first dimension, and 
the 1, elements are themselves split into ( 1 2 ,  1, - 1 2 )  according to the next 
dimension, etc. The complete justification by means of integral calculations is 
entirely similar to that of Lemma 3. The translation to generating functions from 
there is immediate. 

We make a digression at this stage regarding splitting probabilities. The 
probability nn,,k that a tree of size n has its first root-subtree of size k (see (41)) 
admits alternative forms. One of them involves generalized harmonic numbers 
and it extends the case d = 2 of (15); for d = 3, for instance, we find 

I n 1  

A concise form valid for all d 2 2 is 

(7- l ) j  

j =  0 (k  + j + l)d' 

This form is also discussed by Laforest in her thesis together with related results 
of interest [24]. The equivalence between the various forms relies on elementary 
properties of generalized harmonic numbers. (A somewhat related problem of 
geometric probabilities is discussed in [7].) Binomial expressions (in the style of 
Proposition 1) of full splitting probabilities are available in all cases. 

THEOREM 4. 
quadtree of size n satisfies 

The expected cost CAd) of a fully specijied search in a d-dimensional 

(43) 
(lo: 

+ n2 cos(2nld) - 2 2 
d 

Clp) = - log n + A, + O 

for some real constant A d .  

PROOF. The rough idea of the proof is that (42) behaves as a perturbation of a 
simpler equation that can be solved explicitly. This fact relies on the observation 
that the two functionals If(z) and Jf(z) act as ''singularity transformers" (around 
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the singularity z = 1) in a similar way, as far as main orders of growth are 
concerned. The proof proceeds in three steps. 

(A) Consider first the sirnplijed homogeneous equation in which J is replaced by I.  

(44) y(z) - 2dIdy(z) = 0. 

If we try a solution of the form (1 - z)-’, we find the condition 

d (45) a - 2d = 0, 

which is the indicia1 equation associated with (44). Equation (44) is in fact an Euler 
equation; it has exact solutions of the form ( j  = 0, . . . , d - 1) 

(B) The simplijied 
imates” the original 

(47) 

Standard resolution 

2 ixld yj(z) = (1 - with u) = e . 

inhomogeneous equation associated with (44) which “approx. 
equation (42) is 

Z 
g(z) - 2dIdg(z) = 

(1 - $ 2 .  

techniques are best expressed in terms of systems rather than 
equations, a viewpoint that we now adopt. 

have an equivalent system 
Equation (47) can be split using intermediate variables, and, e.g., for d = 3, we 

g2 - 219, = 0, 9, - 219, = 0, 
(1 - z)2’ 91 - 2192 = 

with g(z) gl(z). By differentiation, we are thus led to the vectorial system 

with g = (si, . . . , gd)T the unknown vector, and g(z) = gl(z). The matrix A involved 
in the singular part is such that $A is a circular permutation matrix, 

!dA)i, j = 6 j ,  1 +imodd, 

with the Kronecker symbol. Finally, 

( 1 + z )  - _  d z w = (wl, 0,. . . , O)T with wl(z) = - 
(1 - z ) ~  dz (1 - z ) ~  (49) 
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A fundamental matrix W for the system is by definition a nonsingular d x d 
matrix that satisfies the homogeneous matrix system 

d 1 - w = -  A . W .  
dz 1 - 2  

One such matrix is obtained directly by adapting the solutions (46) of the scalar 
Euler equation: 

In other word, this fundamental matrix decomposes into the product of a (Discrete 
Fourier Transform!) Vandermonde matrix and a diagonal matrix of singular parts: 

The inhomogeneous system (48) is then solved by the matrix form of the 
variation-of-constant method [19, p. 991, now that all solutions to the homogen- 
eous equation are known. The classical formula reads 

(5 1) g(z) = W(Z) * W-'(0) g(0) + W(z) W-'( t )  * ~ ( t )  d t .  

The matrix W is nonsingular since the Vandermonde matrix R is itself nonsingular. 
Computing the inverse W - ' reduces to the corresponding problem for the special 
matrix R, and we find 

A little computation using the forms (52) and (50), the cost function w(z) in (49), 
and the initial value g(0) E 0 inside the variation-of-constant formula (51) shows 
that the solution to (47) satisfies 

where 

(53) R(z) = 0((1 - z ) - ~ ~ )  as z -+ 1 
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for some explicitly computable constant C'. The logarithm occurs in the integral 
of (51) because of ''resonances'' between the homogeneous solution (1 - z)-2 

its counterpart (1 - z ) ~  inside W-') and the inhomogeneous term O((1 - z)-2). 

the factor 2/d then arises as the product of the coefficient l/d present in W - l  ani  
the coefficient 2 of the inhomogeneous term, 

Thus we are able to determine ultimately the leading coefficient 2/d because the 
treatment of (48) could be made explicit enough. 

(C)  We finally return to the exact equation satisfied by P(z): 

(54) 
Z 

f(z) - 2dJd-'If(z) = 
(1 - z)2' 

Let g(z)  be the solution to the approximate inhomogeneous equation (47) which 
is described by (53). The induced equation for h(z) = f(z) - g(z) is such that 
its homogeneous part is that of the original equation while we attain a reduction 
in order of growth for the inhomogeneous term. More precisely, substituting 
f = g + h inside (54) and subtracting the equation satisfied by g, we find 

(55 )  h(z) - 2dJd-11h(~) = 2d[Jd-1 - Id-']Ig(z). 

The right-hand side U(z)  is found to satisfy U(z )  = 0(( 1 - 2)- log( 1 - 2)) as z + 1 
by repeated integration. 

The homogeneous equation corresponding to (55) has the same indicia1 equation 
as the approximate equation (44), namely, ad - 2d = 0. We are thus in a situation 
similar to our previous paragraph, except that the inhomogeneous term is now 
small. 

Thus, the solution to (55) satisfied by the difference h(z) is a sum of a general 
homogeneous solution which is by necessity of the form 

C"(1 - z ) -2  + O((1 - z)-20)  

and of a particular inhomogeneous solution, given by the variation-of-constant 
method, which is found to be of the same asymptotic order as U(z), so that 

(56) h(z) = C"(1 - 2)- + O((1 - z ) -2w)  + 0((1 - z)-1 log(1 - 2)). 

Altogether, we have thus found from (53) and (56) that 

+ O(( 1 - 2) -  2w) 
1 C 

log - + 2 1  
P(2) = g(2)  = - 

d (1 - z)2 ' 1 - 2 (1 - 2)2 
(57) 

+ O(( 1 - 2)- ' log(1 - 2)) 
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for some constant C. The singular expansion of P(z) has been completed. From 
there, the behavior of P,, hence that of Clp) = P,/n, follows by direct singularity 
analysis [ 141. 

We note that the main term of (2/d)logn in Theorem 4 was determined 
independently by Devroye and Laforest [SI, [9] using probabilistic methods; they 
also showed that the distribution of costs is concentrated around the mean. Using 
techniques of [16], Flajolet and Lafforgue have shown that the distribution of 
costs is actually Gaussian in the limit. 

At this point, it is worth summarizing the asymptotic process that we have 
employed here. Given a differential equation (or some equivalent integral form) 
of order d,  

(58) w-(z) = w(z), 
with f(z) the unknown function, we first determine the allowable growths for the 
solutions to the homogeneous equation Yf = 0, by substituting the form (1 - z)-"; 
this leads to a polynomial equation for a, the indicial equation. 

In the generic" case (no repeated roots, no roots differing by an integer), a 
collection of d different solutions to the homogeneous equation of the form 
( j  = 1, ..., d) 
(59) ?(z) = (1 - z ) - a j A j ( Z ) ,  

with A j  analytic at 1, is obtained. 
A particular solution to the inhomogeneous solution is obtained by the 

variation-of-constant method. It is composed of the sum of a finite number of 
elements of the form 

B(z)(l - z)-" 1; C(t)(l - t)Pw(t) dt 

for some analytic functions B, C and numbers a, that satisfy the indicial equation. 
Complete solutions can then be composed from homogeneous solutions (59) 

and inhomogeneous forms (60). The dominant asymptotic behavior near a singu- 
larity can then be found by inspection. For instance, in the path-length analysis, 
the indicial equation is ad - 2d = 0; 'the dominant exponent is a = 2, which 
corresponds to the fact that all homogeneous solutions grow at most like (1 - z ) - ~ .  
Given some inhomogeneous term w(z) corresponding to a basic cost function in 
the ODE, the variation-of-constant method provides a solution with dominant 
asymptotic growth of the form 

1 r z  I 
- (1 - z ) - ~  J (1 - t ) 2 ~ ( t )  d t .  
d . o  

Concerning path length, it is the case that everything is driven by the inhomogen- 
eous term. 

lo In other cases, integral powers of logarithmic terms appear that complicate the picture without 
altering it in an essential way. 
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This general discussion serves us for treating partial-match queries (where 
homogeneous terms are found to predominate). 

LEMMA 9. Let Q, represent the expected number of node traversals in a partial- 
match query of a random d-dimensional quadtree containing n points. Then Qo = 0 
and, for n 2 1, the Q, satisfy the recurrence 

k = O  

with 

where the summation takes place over all sequences ( 1 1 ,  1,, . . . , Id )  satisfying the 
condition 2' above. 

The generating function Q(z) = Q,z" satisJes the integral equation 

PROOF. The lemma provides the basic recurrences that hold true for higher- 
dimensional partial-match search. Its proof is a direct adaptation of the methods 
employed for the computation of geometric probabilities in Section 2, see especially 
Lemma 4. 

THEOREM 5. 
quadtree of size n, with s coordinates specijed, satisjies asymptotically 

The expected cost Q;*d) of a partial-match query in a d-dimensional 

for some constant Y s , d  # 0 and a the root between 1 and 2 of the equation 

ad-y, + 1)" = 2d. 

In  other words, we have 

Q f * d )  
ys, n1- sld + W d )  9 

where the function e(x) is dejned as the solution 0 < 8 < 0.07 of the equation 

(65) (e + 3 - Xy(e + 2 - x ) ~ - ~  - 2 = 0. 



495 Analytic Variations on Quadtrees 

PROOF. We only briefly sketch it since we described the general asymptotic 
process in great length earlier, and since the analytic behavior of our generating 
functions is akin to what we find for k-d trees (for example, the indicial equation 
is identical). 

The linear integral equation (63) is equivalent to a differential equation of order 
d as seen by repeatedly taking derivatives: 

1 - 2  d2 1 - z  22 J1-'z(l - Z )  - (zQ(2)) - 2 d Q ( ~ )  = - J'-S 
IS+ 1 - d  

Z dz2 Z (1 - 2 ) 2 '  

where the diflerential operators I- and J- satisfy 

If we try to satisfy approximately the integral equation (63) or its equivalent 
differential form (66), by a function 1/(1 - z)a, we find the indicial equation 

(67) ad-yl + ay = 2d. 

By referring to the vectorial form of the equation that we obtain upon setting 

we check that (66) has a regular singularity at z ='l. 

form 
Thus, the homogeneous equation (66) has linearly independent solutions of the 

for j = 1, . . . , d, where the aj are roots of the indicial equation (67). A complete set 
of d solutions is obtained in this way provided that there are no repeated 
roots-this was established for all d in [lSJ-and that no roots differ by an 
integer-which was checked using computer algebra for all d I 10. Our discussion 
now assumes the latter property to be satisfied. (If not, the proof can be salvaged 
at the expense of some minor complications with logarithmic terms, see again 

Amongst the functions (68), it is the one with %(aj) maximal that gives the 
dominant contribution around z = 1. This corresponds to the unique solution a 
of the indica1 equation (67) that belongs to the real interval (1,2). 

~151.) 



P. Flajolet, G. Gonnet, C. Puech, and J. M. Robson 496 

A discussion that we omit (see Theorem 4)) based on the variation-of-constant 
method shows that, contrary to the case of a fully specified search, the inhomogen- 
eous terms introduce contributions that are asymptotically negligible at z = 1, 
being of order O((1 - z)- ' ) .  (The discussion can also be based on special solutions 
see additional remarks below.) 

We thus find for some constant C the estimate 

a d - y l  + ay = 2d, a € ( l ,  2). 
(1 - z)") QM - 

That asymptotic form is then transferred to Q, by the usual methods of singularity 
analysis, which provides 

The auxiliary fact that the coefficient C is nonzero may be established by the same 
argument as for k-d trees [l5, Lemma 51. Finally, the bounds on the correction 
function O(x) result from elementary real analysis. 

We conclude this section with some remarks on special solutions to our 
differential equations. 

First, the homogeneous differential equation (corresponding to the integral 
forms (19), (42)) satisfied by the path-length generating function P has a special 
solution, which for an arbitrary dimension d is 

1 + (2d - 2)2 
(1 - z)2 * 

P*(z) = 

This function P*(z) is the generating function for the number of leaves in quadtrees; 
for instance, when d = 2, its Taylor coefficient of rank n is 1 + 3n, which represents 
the number of leaves in any quaternary tree with n internal nodes. There is a 
reason for this particular solution: from its tree definition, P*(z) satisfies the 
modified integral equation 

P*(z) - 2dJd-11P*(~) = 1, 

hence also the associated homogeneous differential equation. This fact then 
"explains" the explicit elementary solution for path length (and similar parameters) 
in dimension 2, and in general it entails a reduction of order, so that the path-length 
generating function satisfies, furthermore, an equation of order d - 1 over C(x). 

Manuel Bronstein, in a private communication [ 6 ] ,  has found similar rational 
solutions for the inhomogeneous equations satisfied by the Q-functions. Using 
dedicated algorithms to compute rational solutions to linear ODES (see [SI) and 
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the Maple system for symbolic manipulations, Bronstein found the particular 
solutions 

1 1 
2d-“ - 1 z - 1 when s e d  - 1,  Qs*, d(Z)  = 

1 1 + (2d-2 - 1)z 
QZdz)  = 2d-2 when s = d - 1  2 - 1  

The combinatorial significance of these solutions does not, however, appear 
obvious to us at present. 

5. Conclusions. Multidimensional search problems may lead to intricate stochas- 
tic divide-and-conquer recurrences. As originally seen with k-d trees and further 
demonstrated here, a powerful method consists in studying these recurrences via 
generating functions. 

Quite clearly, any suitably ‘‘additive’’ parameter of quadtrees in dimension 2 2 
can be analyzed by the methods described here. In order to support this claim we 
offer a final analysis, the search for records with smallest y-coordinate in a‘quadtree 
(lowest points). Concerning k-d trees, the analysis was given in Guibas’ problem 
in the Journal of Algorithms [ 181 for dimension d = 2, and it is discussed in Puech’s 
thesis [29] for all d 2 2. We obtain here: 

THEOREM 6. 
n internal nodes satisjies: 

For d = 2, exactly, 

The expected cost R, ofJinding the lowest point in a quadtree with 

1 + R, = f: (3(1 - f, 1 - k, with a = fi. 
k = O  

For d = 2, asymptotically, 

na - 1 with a = fi. 

For d > 2, asymptotically, 

R, - ydna- with a = 21id. 

PROOF. (Sketch!) For dimension 2, a search always descends in the two south 
subtrees. The recurrence is thus very similar to the one for partial match, see (18), 
except that the symmetry factor 2 in front of the sum is absent. This leads to an 
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equation for the generating function of costs which, for arbitrary dimension d 
reads > 

D 

R(z) = - + 2d-1Jd-11R(~).  
1 - z  

The indicia1 equation is then 

The hypergeometric solution for d = 2 is found to be 

1 F[-J2,1 - 4 2 ;  l ;z]  R(2) + - - - 
1 - z  (1  - z)J" 9 

from which the rest follows. In higher dimensions, the discussion is entirely similar 
to that of partial match. 

The techniques of this paper have been applied recently by Hoshi and Flajolet 
[20] to determine the storage occupation of paged quadtrees used as indexes for 
two-dimensional data. As a special case, the proportion of leaves in a randomly 
grown standard quadtree is asymptotically (4n2 - 39). These results have been in 
turn complemented by analyses of Labelle and Laforest [23] who employed a 
parallel recurrence approach in order to obtain the asymptotic proportion of nodes 
in a quadtree having one child as (24&3) - 156<(2) + 228). Finally, as mentioned 
earlier, see (24) and Section 4, the distribution of levels of nodes in quadtrees can 
be studied in a similar vein (by a method of ''regular perturbation") and proved 
to be Gaussian in the limit [12], which refines the concentration result of Devroye 
and Laforest [SI. 

We now have available a method of considerable generality that can be used 
to study a large number of linear recurrences" with variable coefficients, both in 
homogeneous and inhomogeneous' cases. 

It applies to many recurrences of the full history type with coefficients that are 
rational functions of n and k, which leads to linear differential equations with 
analytic coefficients. These ODES can be analyzed locally in the neighborhood of 
their singularities, using the classical results from the theory of linear differential 
equations. The singular expansions so obtained are then to be ''transferred'' back 
to the original number sequence, either by means of the method of singularity 
analysis in the case of regular singular points or by means of saddle-point methods 
in the case of irregular singularities (see, e.g., [ll] for an irregular singularity and 
an explicit generating function). 

l i  The proper class entertains close ties with the class of holonornic functions introduced by Zeilberger 
in a powerful approach [39]. 
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In both the regular and the irregular cases, everything rests on the fact that 
singularities have been classified [19], [35] and are formed of elements of one of 
two types; 

1 
1 - 2  

(72) R: (1 - z)-" logk - and I: (1 - 2)-" exp((1 - z ) - ~ / ~ ) .  

Methods of contour integration apply well here in this systematic context of 
isolated singularities (see, e.g., [14], [27], and references therein, or [32] for a 
survey). The induced asymptotic forms for the coefficients are of two corresponding 
types which are schematically 

(73) R': n a - l  logk n and 1': na' exp(nP"4'). 

The general method suggested by this discussion then constitutes an alternative 
to the direct treatment of recurrences by the theory of difference equations that 
was developed by G. D. Birkhoff, and is examined extensively by Wimp and 
Zeilberger in [37]. 
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