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A b s t r a c t .  We consider the largest degrees that occur in the decomposi- 
tion of polynomials over finite fields into irreducible factors. We expand 
the range of applicability of the Dickman function as an approximation 
for the number of smooth polynomials, which provides precise estimates 
for the discrete logarithm problem. In addition, we characterize the dis- 
tribution of the two largest degrees of irreducible factors, a problem 
relevant to polynomial factorization. As opposed to most earlier treat- 
ments, our methods are based on a combination of exact descriptions by 
generating functions and a specific complex asymptotic method. 

1 Introduction 

The security of many applications in public-key cryptography relies on the com- 
putational intractability of finding discrete logarithms in finite fields. Examples 
are the Diffie-Hellman key exchange scheme [7], E1 Gamal's cryptosystem [8], and 
pseudorandom bit generators [3,10]. On the other hand, algorithms for comput-  
ing discrete logarithms in finite fields depend on finding polynomials with all 
of their irreducible factors with degree not greater than certain bound m - -  
such polynomials tha t  are the analogue of highly composite numbers are called 
smooth polynomials. Thus quantitative characterizations of smoothness in ran- 
dom polynomials over finite field are of relevance to cryptographic attacks; see 
[14-16]. 

In different contexts, like computer algebra and error-correcting codes, knowl- 
edge of the distribution of the largest irreducible factor of a random polynomial 
over a finite field permits us a fine tuning of the stopping conditions in polyno- 
mial factorization algorithms. 

In this paper, we give a unified t reatment  of the asymptotic enumeration 
of smooth polynomials over finite fields and quantify precisely the distribution 
of largest irreducible factors. The results are expressed in terms of a familiar 
number-theoretic function, the Dickman function, that  is already known to un- 
derlie the study of numbers with no primes larger than m; see [5, 6]. Our ap- 
proach starts with an exact representation of enumeration problems by means 
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of combinatorial generating functions. From there, we develop dedicated con- 
tour integration methods that  are in the spirit of analytic number theory but  
have quite a different technical flavour since power series are used instead of 
Dirichlet series. Such an approach is of general applicability and Gourdon [11] 
introduced it in order to study the size of the largest cycle in random permu- 
tations (where nonconstructive Tauberian methods had been previously used), 
as well as largest components in several decomposable combinatorial structures, 
like random mappings. 

The results on smooth polynomials are presented in Section 2. The number of 
m-smooth polynomials of degree n over lFq has already been considered in the lit- 
erature. Odlyzko [15] provides an asymptotic estimate when n --+ oc for the case 
q = 2 and n 1/1~176 < m < n 99/l~176 using the saddle point method. This generalizes 
to any prime power q; see [13]. Car [4] has given an asymptotic expression for 
this number in terms of the Dickman function, but  Car's estimates only hold for 
m large with respect to n, typically m > c n log log n~ log n. Finally, Soundarara- 
jan [17] completes the full range 1 _< m < n by giving more precise boundaries. 
He uses the saddle point method for, logn/loglogn < m < 3nloglogn/logn 
while the cases of very small and very large m with respect to n are covered 
through the use of recurrences As a consequence of a large intermediate range 
and due to the intricate saddle point expressions, some of the quantitat ive esti- 
mates obtained earlier fail to be transparent.  In addition, Soundararajan shows 
that  the Dickman function approaches the number of smooth polynomials when 
m ~ vfn logn.  We extend this range to m > (1 + ~) (logn) 1/k, for a positive 
integer constant k. 

The methods we introduce here follow a clear thread that  enables us to ex- 
pand the range where the Dickman function approximates the number of smooth 
polynomials. For instance, it can be applied to the enumeration of "semismooth" 
polynomials over finite fields that  are defined by constraints on the degrees of 
several of their largest irreducible factors. (These are the equivalent for polyno- 
mials of the semismooth integers defined by Bach and Peral ta  [2].) We illustrate 
this fact by treating in some detail the joint distribution of the largest two irre- 
ducible factors, a problem that  is again of relevance for polynomial factorization 
algorithms. 

Throughout  this paper, we take a field ]Fq of fixed cardinality q; it seems pos- 
sible to obtain similar results uniformly on q. Asymptotic estimates are expressed 
as functions of the degree n of the polynomials considered. 

2 S m o o t h  p o l y n o m i a l s  

The Dickman function plays a central r61e in our results on smooth polynomials. 
This classical number-theoretic function describes the distribution of the largest 
prime divisor of a random integer [5, 6]. A survey on this topic is due to Hilde- 
brand and Tenenbanm [12]. Our general reference for this paper is Tenenbaum's 
book [18]. 
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Def in i t ion  1. The Dickman function, p(u), is the unique continuous solution 
of the difference-differential equation 

p(u) = 1  O < u < l, 
up'(u) = - p ( u -  1) u > 1. 

In order to prove our main result we need the following lemma that deals 
with the crucial technicality of approximating the required generating functions. 
An essential r61e is played by the exponential integral function E that is defined 
a s  

f a  ~176 e - s  E(a) = - -  ds. 
8 

L e m m a  1. The remainders of the logarithm series, 

z k 
r m ( z )  = u  

k~>m 

are approximable in terms of the exponential integral as 

where the big-Oh error term is uniform with respect to h, for ~(h) > 0 and 
I (h)l < - .  

PROOF. When ~(h) > 0, we have 

f h + ~ ( ~ )  f+~176 s  rm(e -h) = e -ku du = Jh ~--~-u  du = e-" ds. 
h e s/m -- 1 

This can be written in terms of the function r = x x and the exponential 
eZ--1 

integral as 

rm(e -h) = E(mh) + Rm(mh), 

where we only need to observe that 

Rm(u) l f~ +~ ( m  s-  ) = - -  e - ' r  ds, 
m 

1 1 ( r  1 )__ lr  
m(e'/m - 1) = m s - ~  m s" 

(1) 

Finally, the analyticity of r in Izl < 2~r implies that Rm(u) = O(1/m) uni- 
formly for ~(u) > 0 and I~(u)l _< m~r. [] 

Theorem 1. The number of m-smooth polynomials of degree n over Fq satisfies 

n n 

where p is the Dickman function. 
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PROOF. Let Z be the collection of all monic irreducible polynomials in Fq,  and 
[w] the degree of w E iT. The collection of monic polynomials with all irreducible 
factors with degree smaller than or equal to m can be symbolically written as 

S i n =  H (1 + w + w  2 +...)= H ( 1 - w ) - l "  
~ez, I~l<m ~ez, I~l<m 

Let z be a formal variable. The substitution w ~-~ z I~l gives rise to the generating 
function Sin(z) of m-smooth polynomials 

SIn(Z)---- H (1-- Z'W]) -1= fi ( l ' - - ~ I "  
~EZ, I~l_<m k=a ~,1-- z k ]  " 

In this context, the generating function of polynomials over Fq  is 

f i (  1 ) I1' 1 
P(z)  = ~ = 1 -  qz" k=l 

The number of m-smooth polynomial of degree n over lFq is given by Cauchy's 
coefficient formula 

1 ~cSm(z  ) dz Nq(~,m) = [z"lSm(z) = ~ z -+ l '  

where the contour C is chosen to be z = e -1/n+w, -~r < 0 < lr. The change of 
variable z = e -h /"  within the integral provides z n = e -1+in~ Thus, h = 1 - inO,  
and the limits of integration are (1 + ni~r, 1 - n i t ) .  Therefore, 

1 f 1-n'" ( 1 )  dh 
Nq(n,m)  = ~ri Jl+ni,~ Sm(e-h/n)  - e~-h" (2) 

An equivalent expression for Sin(z) that  makes explicit the singularity at z = 1/q 
can be obtained by taldng the logarithm and inverting summations. Indeed, 
considering r ~  ] (z) = ~t~>rn IkzkJ, we have 

,~l(z) r~ 1(=) ) 
Sin(z) = P(z)  H (1 - zk) '~ - 1 _r~](z  ) 2 3" 1 --qz  exp . . . . .  . 

k>m 
The last equality holds since 

) 
k>m 

= exp - ~ _  I~ z~ + -~ -  + - 5 -  + . . .  
k>m 

= e ~ p  _ ~ 1 ( ~ )  _ - - - 7 - -  - - - 5 - - ' "  " 
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Now, the estimate kIk = qk + O(qk/2) gives 

= + 

k>rn 

1 
for Izl < - ,  

q 

and, 

o( 1 ) 
[z[~_l/q qmG--1) for j > 2. 

The estimate of the remainders rm of the logarithm given in Lemma 1 applied 
to Sin(z) entails 

Sm ( e-~--~ ) = e-E(mh)+O(1/m)l - e -h ' (3) 

where we may disregard the error term in the exponent since it is of smaller 
order than the one in the statement of the theorem. 

_ _  m Substituting this estimate in (2) yields, for # - W, 

Nq(n,m) = qn 1 fl+~i~ e-E(.h)+OO/m)eh dh. 
Jl--niTr n(1 - -  e - h ~  n) 

Set r - 1 1 that is an analytic function in [z I < 27r. We can express 1--e - z  Z ' 
the above number in terms of r as follows. First, 

1 1 ( r  = 1 r  1 
n(1 - e -h/n) - n n -h" 

Second, 

n (1 - -e -h /n  ) - -  h §  + 0  . 

Thus, 

Nq(n,m)=qn 1 ] e_E(t~h) q- q-O ehdh. 
2"~i J l _ i n  ~ n 

We treat separatedly the three integrals. The fact that e -E(z) is bounded in 
the domain ~(z) _> 0 (see [1], w 5.1) entails that the contribution of the big-Oh 
term in the integral is O(logn/m). Then, an integration by parts gives also a 
small contribution of order O(log n/n) for the term containing r Finally, 
we have 

Nq(n,m) = qn 1 / -h eh dh + O 
J 1 --in~r 

We write 

f rl+iOOe_E(l~h) f 1 l+in~e--E(l~h) e h dh = 1 ] -~ e h d h -  ] e--E(~h) 
27ri J l - - i n ~  h ~ i  J l - i o o  j E  h 

- -  e h d h ,  
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where the integration domain s is the union of the two semi-vertical lines defined 
by N(h) = 1, [~(h)[ > nrr. The last integral is O(1/n)  as can be checked by 
partial  integration. Therefore, 

( el-Pi~176 ( l ~ ) )  
1 ] -~ e h d h + O  . (4) g (n'm) = qn 

To conclude the proof, it remains to show that  the above integral is p(n /m) .  The 
Laplace transform ~(s) of the Dickman function satisfies (see [18], w p. 373) 
s ~(s) = e -E(s). Thus, 

e ~ dv. (5) 

We now relate Equations (4) and (5). The change of variable #h  = v in (4) 
implies 

1 

27ri 

- -  ]fl-t-i~176 eh dh._.~ 1 fl+ioo (e-E(v)~ev/ijd v 

1 re+i~176 ( ~ )  = e vn/m dv 
2?ri j 1-ioo 

: 

The theorem follows since p(u) < 1 / F ( u + l )  for all u > 0 ([18], w p. 366). [] 
The previous theorem shows that  when m / l o g  n -~ oc, the number of smooth 

polynomials is given asymptotically by the Dickman function. In the sequel, we 
extend the range of applicability of Theorem 1 to sublogarithmic values of m 
with respect to n. 

Note that  we can restrict our attention to m < n since the case m = n 
corresponds to the well-known enumeration of irreducible polynomials. 

T h e o r e m  2. Let m < n, and k a positive integer such that k m <  n and 
mk / logn -+ oo. Then, the number of m-smooth polynomials of degree n over 
]F q satisfies 

N q ( n , m ) = q n p ( n )  ( l + o ( l - ~ ) ) ,  

where p is the Dickman ]unction. 

PROOF. We use the same notation of Theorem 1, and only show the case k -- 2. 
Using (1) as the estimate of the remainders of the logarithm, Equation (3) 

can be writ ten as ( ~ )  e--E(~h)-n'~(~h) 
Sm = 1 - e -h  (6) 

Integrating Rm (ph) by parts yields 

. m ( . h )  i = - -  e -S r  ds m h 
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Thus, 

--_ 1 _ r  e -s  + r e -S ds 
rn m h 

R 2  (ph) = l--~e-2~h~/,2 ( h ) + o (e-2~h / m  3) 
m 2 ~ 

Expanding e -R-(~h) in (6), we have 

e -m~(~'h) 1 l r  l e  -~h 
n(1 - e-h~ ") = -h + -n h m  r n m  

Arguments similar to the ones employed in the previous theorem lead to the 
conclusion that 

(In order to improve on the error estimate, it would suffice to consider successive 
terms in the expansion of e--Rm(~h).) I"1 

3 D i s t r i b u t i o n  o f  l a r g e s t  d e g r e e s  o f  f a c t o r s  

The distribution of the largest degree among the irreducible factors of a random 
polynomial over ]Fq underlies many problems dealing with polynomials over finite 
fields. An instance is in the factorization problem. The joint distribution of the 
two largest degrees D~ ], Din 2] of the distinct factors of a random polynomial of 
degree n in lFq provides the halting condition for the distinct-degree factorization 
stage; see [9]. 

We first investigate the distribution of the largest degree D~ ] which is of 
independent interest. The same analysis techniques are then applied in order to 
produce the joint distribution of D~ ], D~ ]. 

3.1 Largest degree of  factors 

The following theorem gives a local distribution for the largest degree D~ ] of a 
random polynomial of degree n. We only sketch the proof since it is similar to 
that of Theorem 1. 

Theorem 5. The largest degree D~ l among the irreducible factors of a random 
polynomial of degree n over ]Fq satisfies 
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where f ( p )  = p ( 1 / #  - 1) is a variant of the Dickman funct ion;  alternatively 

1 f l+ ioo  e_E(t~h) e (1-#)h dh. (7) 
f(/~) = ~ J l - i ~  h 

PROOF. The generating function of the class of m-smooth polynomials is 

k=l 

Thus, the generating function of polynomials for which D~ ] -- m is 

Lra(Z) = Sin(z)  - S m - t ( z )  = Sin(z)  (1 - (1 - zm)l '~) . (8) 

The probability we are interested in is then given by the Cauchy formula 

qn -- 27ri Lm zn+l '  

where the contour C is chosen to be z = e -1/n+ia, -~r </9 < 7r. As in Theorem 1, 
the change of variable z = e -h/n within the integral gives 

1 f l+n'~ ( - ~ )  = Lm ehdh.  
Pr(D~] m ) =  ~ i  al_nilr n 

Using the estimate in (3) for Sin(z)  and (8), we obtain 

Lm = 1 - e -h  m (9) 

The estimate of Lm in (9) yields, for/z = m, 

Pr(D~ ] = m ) -  1 1 fl+ni~r e-E(#h)+O(i /m)e( l_#)hdh" 
m 27ri Jl-ni~ n(1 -- e-h~ n) 

A similar argument to the one employed in Theorem 1 completes the proof. [] 

3.2 Joint distribution of  the two largest degrees of  factors 

The method used to prove the previous theorem generalizes to the joint distri- 
bution of the two largest degrees D~ ], D~ ] of distinct irreducible factors of a 
random polynomial of degree n in ]Fq[x]. In the context of the general factor- 
ization algorithm, this study appears naturally when analyzing the early-abort 
stopping rule during the distinct-degree factorization stage; see [9]. 

The joint distribution of the largest two irreducible factors is also related to 
semismooth polynomials. Bach and Peralta [2] define and study the asymptotics 
of semismooth integers. An integer n is semismooth with respect to y and z 
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if nl  < y and n2 ~ z for ni the i th largest prime factor of n. Analogously, a 
polynomial f of degree n over ]Fq is a semismooth polynomial with respect to 
ml  and m2, ml  _> m2, if DIn 1] _< ml and DIn 2] < m2. 

The next theorem provides the asymptotics for the joint distribution of the 
two largest degrees among the distinct irreducible factors of a random polynomial 
over ]Fq. (A similar result holds for the case when repetitions of factors are 
allowed.) 

T h e o r e m  4. The two largest degrees D~ ] and Din 2] of the distinct factors of a 
random polynomial of degree n in lFq satisfy 

(i) for O <_ m <_ n, 

_ ~ g ~  + O , 

where gl (#) is expressed in terms of the exponential integral E as 

1 f l + i ~  e-E(.h/2) 
gl (#) = ~ / a  1-io~ h e (1-t~)h dh; 

( i i )  f o r  0 < m~ < m l  < n,  

Pr(D~ ] = m l , D ~  ] = m2) -- - -  
~lm2 

1 (ml ~2)  f logn ~ 
g: ~, +okmlml], 

where g2(#1,#2) is 

f l + i ~  e-E(~2a) e (1-~l-~2)a dh. 1 

PROOF. We only sketch the proof. With the same notations as in the proof of 
the previous theorem, the generating function of polynomials for which D~ ] -- m 
and DIn 2] _< m/2  is 

Irazm (10) 
L m ( z )  = SLm/2  J ( z )  1 - z m" 

The generating function of polynomials with D[n] = ml  and D[2 n] = m2, m2 < 
ml is 

Lml,~2 (z) = Lm2 (z) _rm_~ zff~' (11) 
1 - z ml " 

The behavior of the n th  coefficient of the generating functions in (10) and (11) 
is then extracted like in Theorem 3. We briefly demonstrate the process for the 
generating function of (11). 

The estimate in (9) for Lm2 (z) and (11) entails 

(e_~q h) e-~(~2h)+~ e-m,h e-~,h 
L m l , m 2  ~ 1 -- e - h  m 2  m l  
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Plugging this est imate in the Cauchy integral yields, for #1 = - ~ ,  #2 = ~ ,  

1 fl+ni~re-E(~2h)+O(1/m2) 
m l m 2 P r ( n ~  ] = ml,n[2n ] = m2) = ~ Jl- ,u~ - ~ =  e_--_-~/n) e (1 - " ' -~2)hdh .  

An argument  once more similar to the one in Theorem 1 completes the proof. [] 
We note tha t  it is possible to generalize the above theorem to the joint 

distr ibution of the j t h  largest distinct irreducible factors. 
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