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Abstract. The divide-and-conquer principle is a majoi paradigm of
algorithms design. Corresponding cost functions satisfy recurrences that
directly reflect the decomposition mechanism used in the algorithm.
This work shows that periodicity phenomena, often of a fractal nature,
are ubiquitous in the performances of these algorithms. Mellin transforms
and Dirichlet series are used to attain precise asymptotic estimates. The
method is illustrated by a detailed average case, variance and distribution
analysis of the classic top-down recursive mergesort algorithm.
The approach is applicable to a large number of divide-and-conquer
recurrences, and a general theorem is obtained when the partitioning-
merging toll of a divide-and-conquer algorithm is a sublinear function.
As another illustration the method is also used to provide an exact anal-
ysis of an efficient maxima-finding algorithm.

Many algorithms are based on a recursive divide-and-conquer strategy. Ac-
cordingly, their complexity is expressed by recurrences of the usual divide-and-
conquer form [10]. Typical examples are heapsort, mergesort, Karatsuba's multi-
precision multiplication, discrete Fourier transforms, binomial queues, sorting
networks, etc. It is relatively easy to determine general orders of growth for
solutions to these recurrences as explained in standard texts, see the "master
theorem" of [10, p. 62]: if for example

In = fin/2j + ffn/21 + en 	 (1)

and en = 0(n) then fn = 0(n log n) while if en = 0(72 1 ') for some e > 0 then
en = 0(n). However, a precise asymptotic analysis is often appreciably more
delicate.

At a more detailed level, divide-and-conquer recurrences tend to have so-
lutions that involve periodicities, many of which are of a fractal nature. It is
our purpose here to discuss the analysis of such periodicity phenomena while fo-
cussing on the analysis of the standard top-down recursive mergesort algorithm.
We will show for example that the average number of comparisons performed
by mergesort satisfies

U(n) = n lg n nB(1g n) 0(n1/2),

while the variance is of the form nC(1g n) 0(n' 12 ): B(u) and C(u) are both
periodic functions that are fractal-like and which are everywhere continuous but
not differentiable at a dense set of points on the line.

Our approach consists in introducing for this range of problems techniques
- Mellin transforms, Dirichlet series, and Perron's formula - that are borrowed
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from classical analytic number theory [4]. These techniques lead to exact analy-
ses. For example, we find exact formulas for the functions B(u) and C(u) above.
They are of a very wide applicability in this range of problems, a fact that we
demonstrate by applying the techniques to the analysis of a maxima finding
algorithm in multidimensional space.

The general character of the results attained is attested by Theorem 9. This
theorem gives the precise asymptotic form of solutions to divide and conquer
recurrences of the form (1), when the partitioning (or dually merging) cost is
sublinear.

This paper is only an extended abstract of a full article [15].

1 Mergesort

First, we recall the schema of the Mergesort algorithm.

Algorithm MergeSort (a[l 71]) ;
• MergeSort(a[1.. Ln/2.1]) ;
• MergeSort(a[Ln/2j + 1 ..n]) ;
• Merge(a[1.. [72/2.1] , a[Ln/2 .1 + 1 .. n]);

Let T(n) denote the worst time cost measured in the number of comparisons
that are required for sorting n elements by the MergeSort procedure, and let
U(n) be the corresponding average cost. We have

T(n) =	 + n — 1,	 U(n) = U(1. -1; j)-1- U(1 1-22-1) + n — -y7, (2)

for n > 2, with T(1) = U(1) = 0, and 77, = 	 +4--114. This results from
the cost of merging two files of size a and b which is

a 
a + b — 1 and a + b

b	 1	 a-}- 1'
in the worst case and average cases respectively (see [19, p. 165] for a fuller
description of recursive mergesort and [18, ex. 5.2.4-2] for a derivation of the
average case cost of merging).

The precise behavior of T(n) is essentially known. The main term is n Ig n
and T(n) also contains a simple periodic function in lgn E. log 2 n. (Recall the
usual notation for fractional parts, {u} = u— Ltd .) The periodicities are apparent
from Fig. 1 with "cusps" whenever lg n is an integer.

Theorem 1. The worst case cost T(n) satisfies

T(n) = n lg n + nA(lg n) + 1,
where A(u) is the periodic function

A(u) = 1 — {u} — 21-10.

Proof. It is easy to check , that

T(n) = El-1g ni = n rig nl — 2 fign1 + 1.

k=1
(See [17, p. 400], where a closely related function is discussed.) The statement then
follows from writing fig nl = Ig n 1 — {lg n}, for any n not a power of 2. q .
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Fig. 1. The fluctuation in the worst case behavior of Mergesort, in the form of the
coefficient of the linear term, -:7 [T(n) — n lg n], as a function of lg n :-_--_-- log 2 n for
n = 32 .. 256. From Theorems 1 and 2, the periodic function involved, A(u), fluctu-
ates in [-1,-0.91392,] with mean value ao = —0.94269.

Knuth analyzes a bottom up version of Mergesort in the average case (Algo-
rithm L, see [18, 5.2.4 and 5.2.4-13]), when n is power of 2. Knuth's analysis is
also valid for top down recursive Mergesort in this special case. When n = 2k,
the recurrence for U(n) can be unfolded to derive U (2k ) = n lg n + #71 + o(n)
where 13 = — 7 i >o 211+1 = —1.26449 97803.

For general n, no such formula is known. (See however Equation (13) at the
end of Section 4 for some related analyses.) In what follows we will outline an ap-
proach that permits the analysis of mergesort type recurrences and demonstrate
it by analyzing U(n).

2 The Mergesort Recurrences

n=1

The coefficients of Dirichlet series can be recovered by an inversion formula
known as the Mellin—Perron formula which belongs to the galaxy of methods
relating to Mellin transform analysis.

Lemma 2 (Mellin—Perron). Assume the Dirichlet series W(s) converges ab-
solutely for J(s) > 2. Then,

n 13-Fi00	 ds 
W(s)ni 	= E(n — k)wk.

2ir	 s(s + 1)
k=1

We approach the analysis of T(n) and U(n) via the computation of some asso-
ciated Dirichlet series.

Let {WO be a sequence of numbers. The Dirichlet generating function of wn
is defined to be	 00

w ( s ) = E Wn .
ns

n-1

(3)

The proof is based on contour integration and the residue theorem; see [4, p. 243]
for a closely related result in the context of classic analytic number theory. An
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iterated sum n-1	 n-1 k

n — k ) wk E
k=1	 k=1 1=1

of coefficients of a Dirichlet series is thus expressible by an integral applied to
the series itself.

In order to recover the mergesort quantities T(n) and U(n), we will determine
the Dirichlet series of their second differences. Then we will use the Mellin-Perron
formula to derive an integral representation of the given quantity. We conclude by
evaluating the integral via the residue theorem. As in other Mellin type analyses,
this provides an asymptotic expansion for the quantities of interest.

This technique, which is familiar from analytic number theory, is analogous
to a common technique in combinatorial counting. In the latter case, generating
functions are ordinary, their singularities play a crucial role, and the asymptotic
bC)avior of the coefficients of the power series is found by utilizing the Cauchy
integral formula.

Consider the general divide-and-conquer recurrence scheme

fn = An/2J + ffn/21 + en,	 (4)
for n > 2, where en is a known sequence and fn is the sequence to be analyzed.
An initial condition fixing the value f i is also assumed. In order to make the
notation unambiguous we formally set e 0 = fo = e 1 = 0. The functions T(n) and
U(n) both satisfy this scheme: for T(n), en = n — 1 and for U(n), en = n — -yr,.
Take the backward differences Vfn = .fn —	 and Ven = en — en _ i and
then the double differences (forward of backward) AV fn = V f,n+i — Vfn and
AVen = Ven + i —Ven. Working through the details we find

AVf2rn = zWfm+ AVee92n1+1

	

LIVf 2m+1	 AV rn

for m > 1, with ZAVf = f2 — 2h = e 2 = ZIVei
Define the Dirichlet generating function corresponding to

W(s) =	 40fn	 (6)
n3

n=1

Then, from (5), multiplying to n by n- 3 , summing over n, and solving for W(s),
we attain the explicit form

00
W(s) =

I  (AV/ E 	 n

	

1 — 26	ns	 (7)
n=2

Since Enk : 11 (n k ) AVik = fn — nfi the Mellin-Perron formula yields a direct
integral representation of fn :
Lemma 3. Consider the recurrence

fn = f[n/ 2J	 ffn/21	 en,

given.and en = 0(n). The solution. satisfies

"(s)n3	 ds

	2zr	 1 — 2- 3 s(s 1)f = nfi +

where E(s) = n &—	 •

AO'

,
e„„ 0,,,41) -2-m 4 (44-0 )

.A.,„.

(5)

wn = AVfn,

for n > 2, with fi
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(The growth condition on en ensures existence of associated Dirichlet series
when l(s) > 2, in accordance with the conditions of Lemma 1.)

3 Worst Case of Mergesort

As an application of Lemma 3 we quickly sketch how it can be used to derive
an alternate expression involving a Fourier series for the value T(n), the worst
case number of comparisons performed by mergesort.

Theorem 4. The worst case cost T(n) satisfies

T(n) = n lg n nA(1g n) + 1
_where A(u) is a periodic function with mean value ao —	 — log2

—0.94269 50408, and A(u) has the explicit Fourier expansion, A(u)
Ekez ake2ikru, where, for k E Z \ {0},

1	 1	 2ikr
ak —	 with Xk =log 2 Xk (Xk + 1)	 log 2

The extreme values of A(u) are

1 + log log 2

Proof. We apply Lemma 3 with fn = T(n). For this case we have en = n — 1 and
= 0 so AV'e l = e2 = 1 and AVen = 0 for all n > 2. Thus ,F,(s) = 1 and

fn	 1	
3 + i	 n s

ds 
=	 (8)

n	 2ir /3 _i. 1 — 2- 8 s(s + 1).
We can evaluate this integral using residue computations. Fix a < —1. Let R > 0

and 1" be the counterclockwise contour around r1 U T2 U r3 U r4 where
P1 = {3+ iy : lyl< R},	 r2 = fx + iR : a < x < 31,	 (9)
r3 =	 + iy : lyj <	 r4 = X iR : a < x < 3).

(We further assume that R is of the form (2j + 1)w/log 2 for integer j, so that the
contour passes halfway between poles of the integrand.) Set I(s) =  21_, 

.0+1)
	 be

the kernel of the integral in (8). Letting R T oo we find that	 fri I(s) ds becomes

the integral in (8), I fr3 I(s)dsi and fr. I(s)dsi are both 0 (1/R2 ) and
a-ioo

I(s)ds	 I(s)ds < 4n*.
Ig	 fa+ico

The residue theorem therefore yields that Ain equals 0(na ) plus the sum of the
residues of I(s) inside F.

We can actually do better. Since I(s) is analytic for all s with 92(s) < —1 we may
let a go to —oo getting progressively smaller and smaller error terms. This shows that
Ain is exactly equal to the sum of the residues of I(s) inside r. The singularities of
I(s) are

1. A double pole at s = 0 with residue lg n + z —lag 2

2. A simple pole at s = —1 with residue .;;.
3. Simple poles at s = 2kir I log 2, k E Z \ 101 with residues ake2ik'ign.

Thus, as promised, we have shown that T(n) = n lg n + nA(lg n) + 1. q .

= —0.91392, and — 1.
log 2
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We note that a computation of the Fourier series of A(u) directly from The-
orem 1 is also feasible and in fact yields the Fourier series derived in the last
theorem (providing a convenient check on the validity of the theorem). However,
the calculations performed above are needed in the analysis of the average case
behavior in the next section.

4 Average Case of Mergesort

We now proceed with the main purpose of this paper, the analysis of the average
number of comparisons performed by mergesort, U(n).

IS 74

iFig. 2. The fluctuation in the average case behavior of Mergesort, graphing the
coefficient of the linear term, -4-[U (n) — n lg n], using a logarithmic scale for
n = 32..256. From Theorem 3, the periodic function involved, B(u), fluctuates in
[-1.26449, —1.24075] with mean value bo = —1.24815.

Theorem 5. N. Let e > 0. The average case cost U(n) of Mergesort satisfies

U(n) = n Ig n + nB(lg n) + 0 (n e ) ,

where B(u) is periodic with period 1 and everywhere continuous but non-
differentiable at every point u = {lg n}. Furthermore, B has an explicit Fourier
expansion.

(ii). The mean value b 0 = —1.24815 20420 99653 88489 . . . of B(u) is

1	 1	 1 00

E
2 	 log 	 + 1)

2 — log 2 log 2 n.,=1 (m + 1)(m. + 2) g	 2m ) •

B(u) = EkEz bk e 2ik' where b0 is as above and the other Fourier coef-
ficients of B(u) are, for k E Z {0},

b	 1 1 W(Xk)	 where 
xk	 2ikir

k	
w

- log 2 xk (xk + 1)	 log 2

W (s ) = E (m + 1)(m + 2) 1. (2m) 8	+ 1)3 1 •

00

	

2 	 r	 1

tn=i

and
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This Fourier series is uniformly convergent to B(u).
(iv). The extreme values of B(u) are

/3 = -1.26449 97803... and - 1.24075 0572 ± 10-9.

Proof. The proof follows the paradigm laid down by Theorem 5. We first use Lemma
3 to derive an integral form for fn = U(n) and then use residue analysis to evaluate
the integral.

For fr, = U(n) we are given fi = 0 and 4Ve i = e 2 = 1. We are also given that for
all m > 0

E
( m + 1 )( m + 2) [(2m)8 (2m + 1)8

s ) .	 	 + 	 1 w( 2	 -1

m.1
converges absolutely and is 0(1) on any imaginary line R(s) = a > -1 + e. Lemma 3
therefore tells us that

L' . 
2nrn	

f3i-ioo

1 - 2- 8 s(s+ 1)
n s 	 ds	 3+ 1 / -1') nsW(s) 

.	
ds 

(11)
1

3—ioo	 2zr J3-i00 1 — 2 	 s(s -I- 1).
The first integral on the right-hand side was already evaluated during the proof of

Theorem 4 and shown to be equal to 1g n -I- A(Ig n) + 1 where A(u) = Ek ak2ik".
The second integral can be evaluated using similar techniques (details omitted).
Differentiability properties and numerical estimates are discussed below. q .

Non Differentiability. There is an interesting decomposition of the periodic part
of the average case behavior B(u) in terms of the periodic part of the worst case
A(u). Define first

A*(u) = A(u) - ao, B*(u) = B(u) - bo,

both functions having mean value 0. By exchanging summations, we find
00

B* (u) - A* (u) =	 Om A* (u - lg m),
rt-1

where the orn are the coefficients of the Dirichlet series W(s) = Em>2* ••
2 

= (m + 1)(m + 2) =

This unusual decomposition (12) explains the behavior of U(n) in Fig. 2.
First, A(u) and A*(u) have a cusp at u = 0, where the derivative has a finite
jump. The function B* (u) is A* (u) to which is added a sum of pseudo-harmonics
A* (u - lg m) with decreasing amplitudes Om . The harmonics corresponding to
m = 2, 4, 8 are the same as those of A* (m) up to scaling, and their presence
explains the cusp of B*(u) at u = 0 which is visible on the graph of Fig. 2.
We also have two less pronounced cusps at {lg 3} = 0.58 and at {lg = 0.32
induced by the harmonics corresponding to in = 3 and m. = 5. More generally,
this decomposition allows us to prove the following property: The function B(u)
is non differentiable (cusp-like) at any point of the form u = lg(p/2r ). Stated
differently, B(lg v) has a cusp at any dyadic rational v = p/2r.

ee2m+1 == 22mm --- A-4- 1177:7+2

2m
(10)

and thus
-ZAVe2m =	

2 
(m + 1)(m + 2) = AVe2m+1•

Summing over all m we may write _.77.(s) = AVei E: 2 41741/n = 1 + C(s) where
00

(12)
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Numerical Computations. These have been carried out with the help of the Maple
system. The computation of the mean value bo to great accuracy can be achieved
simply by appealing to a general purpose series acceleration method discussed
by Vardi in his entertaining book [21]. We have V(0) = E m7=1 0(1/m), for some
function 0(y) analytic at the origin. Such sums can be transformed into fast
converging sums involving the Riemann zeta function, O(s) = E„, n- 8 . In this
way, we evaluate W'(0) to 50 digits in a matter of one minute of computation
time.
Extreme values. Regarding the computation of extreme values of B(u) accu-
rately, the approach via the Fourier series does not seem to be practicable, since
the Fourier coefficients only decrease as 0(k- 2 ). Consider instead the sequence
U(a2k ) for some fixed integer a. By unwinding the recurrence, we find

k- 1
1 

U(a2k ) = ak2k + 2k U(a) — 02k
a2i + 1i=o

Rewriting U(a2 k ) in terms of n = a2 k , and taking care of the error terms yields
for these particular values of n,

00
U (n) = nlgn P(a)n	

U(a)
o(n) where 0(a) =	 1g a — E  

2=o a
.
1
 1 

. (13)
1  +

This formula is a real formula that generalizes the one given by Knuth for the
average case, when n = 2k . Comparing with Theorem 3, we find that

f3(a) = B(Ig a).
The computation of [3(a) for all values a in an integer interval like [2 15 ..
(again in a matter of minutes) then furnishes the values of B with the required
accuracy.

From these estimates, Mergesort has been found to have an average case com-
plexity about n lg n — (1.25 ± 0.01)n o(n).
This is not far from the information theoretic lower bound,

lg n! = n lg n — n Ig e o(n) = n lg n — 1.44n + o(n).

5 Variance of Mergesort

The cost of Mergesort is the sum of the costs of the individual merges, which are
independent random variables with a known distribution. Merging two files of
size m and 72 costs m+ n — S, where the random variable S has distribution [18,

m+( mn-s)	 (m-f-z-s)

PrIS > s} = 

	

	 .	 (14)
("2-71")

Then, the variance V(n) of Mergesort applied to random data of size n is a
solution to the another divide—and—conquer recurrence. Applying Lemma 3 we
find:

Theorem 6. The variance of the MergeSort algorithm. applied to data of size n

216]

p. 620]

satisfies	 V (n) = n• C(log2 n) + o(n),
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where C(u) is a continuous periodic function with period 1 and mean value

co	
1	 2m(5m2 + 10m + 1)  lo 2m + 1 

— log 2 ml.fi (m + 1)(m + 2) 2 (m + 3) 2 g 2m

which evaluates to co Re, 0.34549 95688 .

Like the function B(u) that describes the fluctuation of the average cost the
function C(u) is continuous but non-differentiable with cusps at the logarithms
of dyadic rationals, a dense set of points. Numerically, its range of fluctuation is
found to lie in the interval [0.30, 0.36].

Fig.3. The clearly fractal fluctuation in the best case behavior of Mergesort, graph-
ing the coefficient of the linear term 7-[Y(n) — a n lg n] using a logarithmic scale for
n = 256 ..1024.

6 Best Case of Mergesort

The best case of a merge occurs each time all elements in the larger file dominate
the largest element of the smaller file. Thus, the quantity Y(n) representing the
smallest number of comparisons—the best case—of mergesort satisfies the divide
and conquer recurrence:

Y ( 71 ) = Y (1.2D+ Y (1- 21) + I.2 J•
	 (15)

Let v(n) denote the sum of the digits of n represented in binary, for instance
v(13) = v([1101] 2) = 3. Then by comparing recurrences, we find that

Y(n) = E v (m) .	 (16)
m<n

Equation (16) has been already noticed by several authors (see, e.g., [3]). The
function Y(n) has been studied by Delange [11] using elementary real analysis.
It can also be subjected to the methods of this paper (see [16] for a discussion
of exact summatory formula), and one gets:
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Theorem 7. The best case cost Y(n) satisfies
1

Y(n) = –
2

n lg n nD(Ig n),

where D(u) has Fourier coefficients do = lg \Fr —

1 	 C(Xic) dk = —	
1)' 

k � 0, Xk = 2ikr
log 2 Xk(Xk + 1)	 log 2 •

Delange already proved that the periodic function D(n) is continuous but
nowhere differentiable.

Fig. 4. The histogram of the exact probability distribution of the comparison cost of
Mergesort for n = 1010 and its fitting Gausian curve.

7 Distribution of Mergesort

The distribution of the cost of mergesort is computable exactly, as well as nu-
merically using the resources of computer algebra systems. The probability gen-
erating function of the single merge intervening in the sorting of n elements is
found from (14). The probability generating function of the cost of merge sort
then satisfies the divide–and–conquer product recurrence,

Fn(Z) = fl ( Z) 	 1-0 (')	 (4.1 L	 -I-	 (•	 /2 J ' Ern /21 •	 -	 t	 '
Unwinding the recurrence yields

En(z) = IJ .7n(Z),

m-<n

the summation being taken over the multiset of all m that appear as subfile sizes
in mergesorting n elements. For instance:

223 = 4.23 '	 ' 61 • a • 6 • 	' a •

For n = 100, the mergesort comparison costs lie in the interval [316..573]
with mean value 541.84. The standard deviation is 5.78, and Figure 4 shows
the histogram of the distribution computed from these formulae. The numerical

122,1	 t

21o1g 2	
1
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data strongly suggest convergence to a Gaussian law with matching mean and
variance that is also plotted on the same diagram.

Actually, using Lyapounov's extensions of the central limit theorem [8,
p. 371] to sums of independent—but not necessarily identically distributed—
random variables, we find:

Theorem 8. The cost Xr, of Mergesort applied to random data of size n con-
verges in distribution to a normal variable,

Pr { Xn — U (n) <	 1 114 _
(n)	 Tr _ e 

e2/2 dt.

8 Maxima-Finding

The tools that we have developed in the preceding sections are very general and
can be used to analyze a large number of divide-and-conquer type algorithms.
The following theorem precisely quantifies the behaviour of most linearly growing
recurrences occurring in practice.

Theorem 9. Assume that for some e > 0 the series (En .6Ven • n') converges
absolutely. Then

fn = n.Q(1g n) 0(ni'),
where Q(u) is periodic and fractal, with mean value

001	 , n2 8
go = — E en log 	 )•log 2	 n2 _ 1

n=2

As an application of this theorem, we briefly sketch how to analyze the expected
running time of a maxima-finding algorithm. The interesting feature of this anal-
ysis is that the running time will grow as n(j(lg n) where Q(u) is a continuous,
fractal like function which is non differentiable. Thus here, unlike in the running
time of mergesort, the periodic term appears in the highest order asymptotics.

A d-dimensional point P = (pm,	 p(d) ) dominates a point Q
(g(1) , q(d) ) if P Q and pu ) > qu ) . A maximal element of a finite set

{/31, • • . , Pn} is a point in the set which is not dominated by any other point in
the set. Maximal elements are of interest for a variety of reasons and much work
has therefore been done on devising algorithms to identify them, e.g. [6] [7]. One
of these algorithms is the divide—and—conquer one discussed by [12]: given a set
of n points, split the set into two subsets of size ini2j, 172/21, recursively find
the maxima in each of the subsets and then determine the maxima of the entire
set by pairwise comparisons of all the maxima in the first subset to all of the
maxima in the second.

It is known [9] that if n points are drawn independently identically dis-
tributed (IID) from the uniform distribution over a hypercube or, in fact, from
any component-independent distribution then the expected number of the points
that will be maximal is

(d)
—

k d —1	 k3	 ka
E „di E kdi E E

kd_1.,	 kd_2=i	 k2=1	 ki=1



)Syd t	 Ash---=9 EX EX 4-EX , tE61%)
148 h	 tyvj	 {no	 ti

EN
pn(2)For example 	 = Hn = >k<n 1/k is the harmonic number. The average

running time of the divide-and-conquer maxima finding algorithm when run on
inputs chosen IID from a d-dimensional hypercube (or component independent
distribution) therefore satisfies f1 = 1 with

fn	
211(id1)/ 2 j ii (rdn)/ 21=	 /2J + fin/21	 (17)

for n > 2.
It is not difficult to see that 14d) = 0(10e-1 n) so we find automatically (as

is done in [12]) that fn = 0(n). Observe that this seemingly naive algorithm
has linear expected case, and thus beats a simple sweepline algorithm already in
dimension d = 2, the latter requiring sorting. Using the techniques introduced
earlier in this paper, we can go much further and derive the exact asymptotics
of fn.

Theorem 10. Let e > 0. The expected running time of the maxima finding algo-
rithm when run on inputs chosen IID from a d-dimensional hypercube satisfies

fn = nQ( 4) (1g n) + 0 (Tic)
where Q (d) (u) is a continuous, periodic, non-differentiable function with mean
value

00	 00q(cd) = 2 E 
( ► ) ) 2 log(1 — (2m) -2 ) .-1 + 2 E ti(rnd) /47,c0+1 logo — (2m + 1)-2)-1,

m=1	 m=1

and /.1.;(1) = [ei d– l 'xp(If H(11) + 2 H-(2)	 .).

With computer algebra, the mean values can be calculated to high accuracy
using relations between the Dirichlet series of generalized harmonic numbers and
derivatives of the Riemann Zeta function [5], as well as the techniques discussed
previously. For example, we have

(2)qo = 6.32527 ..., 	 = 21.64397 ..., q(04) = 76.77212 ....

Conclusion

Divide-and-conquer recurrences are naturally associated with Dirichlet series
that satisfy various sorts of functional relations (see also the case of 'automatic'
sequences in [1, 2, 13]) so that they can be proven to have continuations in the
whole of the complex plane. As we have seen here and as in [16], the Mellin-
Perron formula then allows us to recover asymptotic properties of the original
sequence with great accuracy, revealing periodicities and fractal behaviour for
these recurrences.
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