
Combinatorics, Probability and Computing (2004) 13, 577–625. c© 2004 Cambridge University Press

DOI: 10.1017/S0963548304006315 Printed in the United Kingdom

Boltzmann Samplers

for the Random Generation

of Combinatorial Structures

P H I L I P P E D U C H O N,1 P H I L I P P E F L A J O L E T,2

G U Y L O U C H A R D3 and G I L L E S S C H A E F F E R4

1 LaBRI, Université de Bordeaux I, 351 Cours de la Libération, F-33405 Talence Cedex, France

(e-mail: duchon@labri.fr)

2 Algorithms Project, INRIA-Rocquencourt, F-78153 Le Chesnay, France

(e-mail: Philippe.Flajolet@inria.fr)

3 Université Libre de Bruxelles, Département d’informatique,

Boulevard du Triomphe, B-1050 Bruxelles, Belgique

(e-mail: louchard@ulb.ac.be)

4 Laboratoire d’Informatique (LIX), École Polytechnique, 91128 Palaiseau Cedex, France

(e-mail: Gilles.Schaeffer@lix.polytechnique.fr)

Received 1 January 2003; revised 31 December 2003

This article proposes a surprisingly simple framework for the random generation of com-

binatorial configurations based on what we call Boltzmann models. The idea is to perform

random generation of possibly complex structured objects by placing an appropriate

measure spread over the whole of a combinatorial class – an object receives a probability

essentially proportional to an exponential of its size. As demonstrated here, the resulting

algorithms based on real-arithmetic operations often operate in linear time. They can be

implemented easily, be analysed mathematically with great precision, and, when suitably

tuned, tend to be very efficient in practice.

1. Introduction

In this study, Boltzmann models are introduced as a framework for the random generation

of structured combinatorial configurations, such as words, trees, permutations, constrained

graphs, and so on. A Boltzmann model relative to a combinatorial class C depends on

a real-valued (continuous) control parameter x > 0 and places an appropriate measure

that is spread over the whole of C. This measure is essentially proportional to x|ω| for an

object ω ∈ C of size |ω|. Random objects under a Boltzmann model then have a fluctuating

size, but objects with the same size invariably occur with the same probability. In particular,

a Boltzmann sampler (i.e., a random generator that produces objects distributed according

578 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

Table 1.

Preprocessing memory Preprocessing time Time per generation

O(n) large integers O(n2) or O(n1+ε) O(n log n)

to a Boltzmann model) draws uniformly at random an object of size n, when the size of

its output is conditioned to be the fixed value n.

As we demonstrate, Boltzmann samplers can be derived systematically (and simply) for

classes that are specified in terms of a basic collection of general-purpose combinatorial

constructions. These constructions are precisely the ones that surface recurrently in modern

theories of combinatorial analysis [4, 28, 30, 60, 61] and in systematic approaches to

random generation of combinatorial structures [29, 51]. As a consequence, one obtains with

surprising ease Boltzmann samplers covering an extremely wide range of combinatorial

types.

In most of the combinatorial literature so far, fixed-size generation has been the standard

paradigm for the random generation of combinatorial structures, and a vast literature

exists on the subject. There, either specific bijections are exploited or general combinatorial

decompositions are put to use in order to generate objects at random based on counting

possibilities – the latter approach has come to be known as the ‘recursive method’,

originating with Nijenhuis and Wilf [51], then systematized and extended by Flajolet,

Zimmermann and Van Cutsem in [29]. In contrast, the basic principle of Boltzmann

sampling is to relax the constraint of generating objects of a strictly fixed size, and prefer

to draw objects with a randomly varying size. As we shall see, normally, one can then tune

the value of the control parameter x in order to favour objects of a size in the vicinity

of a target value n. (A ‘tolerance’ of, say, a few per cent on size of the object produced

is likely to cater for many practical simulation needs.) If the tuning mentioned above is

not sufficient, one can always pile up a rejection method to restrict further the size of the

element drawn. In this way, Boltzmann samplers may be employed for approximate-size

as well as fixed-size random generation.

We propose Boltzmann samplers as an attractive alternative to standard combinatorial

generators based on the recursive method and implemented in packages like Combstruct

(under the computer algebra system Maple) and CS (under MuPAD). The algorithms

underlying the recursive method necessitate a preprocessing phase where tables of integer

constants are set up, then they appeal to a boustrophedonic strategy in order to draw a

random object of size n. In the abstract, the integer-arithmetic complexities attached to

the recursive method and measured by the number of (large) integer-arithmetic operations

are as shown in Table 1. The integer-based algorithms require the costly maintenance

of large tables of constants (in number O(n)). In fact, they effect arithmetic operations

over large multiprecision integers, which themselves have size O(n) (in the unlabelled

case) or O(n log n) (in the labelled case); see [29]. Consequently, the overall Boolean

complexities involve an extra factor of O(n) at least, leading to a cost measured in

elementary operations that is quadratic or worse. (The integer-arithmetic time of the

preprocessing phase could in principle be decreased from O(n2) to O(n1+ε) thanks to the

Boltzmann Samplers for Random Generation 579

Table 2.

Preprocessing memory Preprocessing time Time per generation

O(1) real constants ‘small’ ≈ O((log n)k) O(|ω|) [‘free’ gen. of ω]

O(n) [with tolerance]

recent work of van der Hoeven [65], but this does not affect our basic conclusions.) An

alternative, initiated by Denise, Dutour and Zimmermann [12, 13], consists in treating

integers as real numbers and approximating them using real arithmetics (‘floating point’

implementations), possibly supplementing the technique by adaptive precision routines. In

the case of real-based algorithms, the Boolean as well as practical complexities improve,

and they become fairly well represented by the data of Table 1, but the memory and

time costs of the preprocessing phase remain fairly large, while the time per generation

remains inherently superlinear.

As we propose to show, Boltzmann algorithms can well be competitive when compared

to combinatorial methods: Boltzmann samplers only necessitate a small fixed number of

low precision real constants that are normally easy to compute while their complexity is

always linear in the size of the object drawn. Accordingly, uniform random generation

of objects with sizes in the range of millions is becoming a possibility, whenever the

Boltzmann framework is applicable. The price to be paid is an occasional loss of certainty

in the exact size of the object generated, typically, a tolerance on sizes of a few percents

should be granted; see Table 8 in Section 8. Table 2 summarizes the complexities of

Boltzmann generators, measured in real-arithmetic operations. The preprocessing memory

is O(1), meaning that only a fixed number of real-valued constants are needed, once the

control parameter x is fixed. The vague qualifier ‘small’ attached to preprocessing time

refers to the fact that implementations are based on floating point approximations to

exact real number arithmetics, in which case, typically, the preprocessing time is likely to

be a small power of log n. (That this preprocessing is practically feasible and of a very low

complexity should at least transpire from the various examples given, but a systematic

discussion would carry us too far away from our main objectives.1) As regards the time

consumed by random generation per se, it is invariably proportional to the size of the

generated object ω when a Boltzmann sampler operates ‘freely’, equipped with a fixed

value of parameter x: see Theorems 3.1 and 4.1 below. The generation time is O(n) in a

very large number of cases, whenever a tolerance is allowed and sizes in an interval of

the form [n(1 − ε), n(1 + ε)] are accepted: see Theorems 6.1–7.3 for detailed conditions.

As regards random generation, the ideas presented here draw their origins from many

sources. First the recursive method of [29, 51] served as a key conceptual guide for

delineating the types of objects that are systematically amenable to Boltzmann sampling.

Ideas from a statistical physics point of view on combinatorics, of which great use was

made by Vershik and his collaborators [10, 67], then provided crucial insight regarding the

1 The primary goal of this article is practical algorithmic design, not complexity theory, although a fair amount

of analysis, by necessity, enters into the discussion.

580 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

new class of algorithms for random generation that is presented here. Another important

ingredient is the collection of rejection algorithms developed by Duchon, Louchard and

Schaeffer for certain types of trees, polyominoes, and planar maps [17, 45, 56]. There

are also similarities to the technique of ‘shifting the mean’ (see Greene and Knuth’s

book [33, pp. 78–80]) as well as the theory of large deviations [11] and ‘exponential

families’ of probability theory – we have benefited from discussions with Alain Denise on

these aspects. Finally, the principles of analytic combinatorics (see [28]) provide essential

clues for deciding situations in which the algorithms are likely to be efficient. Further

connections are discussed at the end of the next section.

Plan of this study. Boltzmann models and samplers are introduced in Section 2. Boltzmann

models exist in two varieties: the ordinary and the exponential models. Ordinary models

serve for combinatorial classes that are ‘unlabelled’, the corresponding samplers being

developed in Section 3, where basic construction rules are described. Section 4 proceeds

in a parallel way with exponential models and ‘labelled’ classes. Some of the complexity

issues raised by Boltzmann sampling are examined in Section 5. There it is shown that,

at least in the idealized sense of exact real-number computations, a Boltzmann sampler

suitably equipped with a fixed (and small) number of driving constants operates in time

that is linear in the (fluctuating) size of the object it produces.

Sections 2 to 5 develop Boltzmann samplers that operate freely under the sole effect

of the defining parameter x. We examine next the way the control parameter x can be

tuned to attain objects at or near a target value: this is the subject of Section 6, where

rejection is introduced and a technique based on the pointing transformation is developed.

Section 7 describes two types of situation where the basic Boltzmann samplers turn out

to be optimized by assigning a critical value to the control parameter x. Section 8 offers

a few concluding remarks.

An extended abstract summarizing several of the results described here has been

presented at the ICALP’2002 Conference in Malaga [18].

2. Boltzmann models and samplers

We consider a class C of combinatorial objects of sorts, with | · | the size function mapping

C to Z�0. By Cn is meant the subclass of C comprising all the objects in C having size n,

and each Cn is assumed to be finite. One may think of binary words (with size defined as

length), permutations, graphs and trees of various types (with size defined as number of

vertices), and so on. Any set C endowed with a size function and satisfying the finiteness

axiom will henceforth be called a combinatorial class.

The uniform probability distribution over Cn assigns to each γ ∈ Cn the probability

PCn
{γ} = 1/Cn,

with Cn := card(Cn). Exact-size random generation means the process of drawing uni-

formly at random from the class Cn. We also consider (see Sections 6 and 7 for a

description of various strategies) random generation from ‘neighbouring classes’, CN

where N may not be totally under control, but should still be in the vicinity of n,

Boltzmann Samplers for Random Generation 581

namely, in some interval (1 − ε)n � N � (1 + ε)n, for some ‘tolerance’ factor ε > 0; this is

called approximate-size (uniform) random generation. It must be stressed that, even under

approximate-size random generation, two objects of the same size are invariably drawn

with the same probability.

Definition. The Boltzmann models of parameter x exist in two varieties, the ordinary

version and the exponential version. They assign to any object γ ∈ C the following

probability:

ordinary/unlabelled case: Px(γ) =
1

C(x)
· x|γ| with C(x) =

∑
γ∈C

x|γ|,

exponential/labelled case: Px(γ) =
1

Ĉ(x)
· x

|γ|

|γ|! with Ĉ(x) =
∑
γ∈C

x|γ|

|γ|! .

A Boltzmann sampler (or generator) ΓC(x) for a class C is a process that produces objects

from C according to the corresponding Boltzmann model, either ordinary or exponential.

The normalization coefficients are nothing but the values at x of the counting generating

functions, respectively of ordinary type (OGF) for C and exponential type (EGF) for Ĉ:

C(z) =
∑
n�0

Cnz
n, Ĉ(z) =

∑
n�0

Cn
zn

n!
.

Coherent values of x defined to be such that 0 < x < ρC (or ρĈ), with ρf the radius of

convergence of f, are to be considered. The quantity ρf is referred to as the ‘critical’ or

‘singular’ value. (In the particular case when the generating function C(x) still converges

at ρC , one may also use the limit value x = ρC to define a valid Boltzmann model; see

Section 7 for uses of this technique.)

For reasons which will become apparent, we have introduced two categories of models,

the ordinary and exponential ones. Exponential Boltzmann models are appropriate for

handling labelled combinatorial structures, while ordinary models correspond to unlabelled

structures of combinatorial theory.2 In the unlabelled universe, all elementary components

of objects (‘atoms’) are indistinguishable, while in the labelled universe, they are all

distinguished from one another by bearing a distinctive mark, say one of the integers

between 1 and n if the object considered has size n. Permutations written as sequences of

distinct integers are typical labelled objects while words over a binary alphabet appear as

typical unlabelled objects made of ‘anonymous’ letters, say {a, b} for a binary alphabet.

For instance, consider the (unlabelled) class W of all binary words, W = {a, b}�. There

are Wn = 2n words of length n and the OGF is W (z) = (1 − 2z)−1. The probability

assigned by the ordinary Boltzmann model to any word w is x|w|(1 − 2x). There, the

coherent values of x are all the positive values less than the critical value ρW = 1
2
. The

probability that a word of length n is selected is (2x)n(1 − 2x), so that the Boltzmann

2 This terminology is standard in combinatorial enumeration and graph theory; see, e.g., the books of Bergeron,

Labelle and Leroux [4], Goulden and Jackson [30], Harary and Palmer [34], Stanley [60, 61] and Wilf [69]

or the preprints by Flajolet and Sedgewick [28].

582 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

model of binary words is logically equivalent to the following process: draw a random

variable N according to the geometric distribution of parameter 2x; if the value N = n is

obtained, draw uniformly at random any of the possible words of size n. For the labelled

case, consider the class K of all cyclic permutations, K = {[1], [1 2], [1 2 3], [1, 3, 2], . . . }.

There are Kn = (n− 1)! cyclic permutations of size n over the canonical set of ‘labels’

{1, . . . , n}. The EGF is

K̂(z) =
∑
n�1

(n− 1)!
zn

n!
=

∑
n�1

zn

n
= log

1

1 − z
. (2.1)

The probability of drawing a cyclic permutation of some fixed size n is then

1

log(1 − x)−1

xn

n
, (2.2)

a quantity defined for 0 < x < ρK̂ = 1. (This is known as the ‘logarithmic series distri-

bution’; see Section 4). As in the case of binary words, the Boltzmann model can thus

be realized by first selecting size according to the logarithmic series distribution, and

then by drawing uniformly at random a cyclic permutation of the chosen size. We are

precisely going to revert this process and show that, in many cases, it is of advantage to

draw directly from a Boltzmann model (Sections 3 to 5), and from there derive random

generators that are efficient for a given range of sizes (Sections 6 and 7).

The size of the resulting object under a Boltzmann model is a random variable denoted

throughout by N. By construction, the probability of drawing an object of size n is, under

the model of index x,

Px(N = n) =
Cnx

n

C(x)
, or Px(N = n) =

Cnx
n

n!Ĉ(x)
, (2.3)

for the ordinary and exponential model, respectively. The law is well quantified by the

following lemma. (See, e.g., Huang’s book [37] for similar calculations from the statistical

mechanics angle.)

Proposition 2.1. The random size of the object produced under the ordinary Boltzmann

model of parameter x has first and second moments satisfying

Ex(N) = x
C ′(x)

C(x)
, Ex(N

2) =
x2C ′′(x) + xC ′(x)

C(x)
. (2.4)

The same expressions are valid, but with Ĉ replacing C , in the case of the exponential

Boltzmann model. In both cases, the expected size Ex(N) is an increasing function of x.

Proof. Under the ordinary Boltzmann model, the probability generating function of N is∑
n

Px(N = n)zn =
C(xz)

C(x)
,

by virtue of (2.3). The result then immediately follows by differentiation setting z = 1:

Ex(N) =

(
∂

∂z

C(xz)

C(x)

)
z=1

, Ex(N(N − 1)) =

(
∂2

∂z2

C(xz)

C(x)

)
z=1

.

Boltzmann Samplers for Random Generation 583

Figure 1. Size distributions under Boltzmann models for various values of parameter x. From top to bottom: the

‘bumpy’ type of set partitions (Example 5), the ‘flat’ type of surjections (Example 6), and the ‘peaked’ type of

general trees (Example 2)

The very same calculation applies to exponential Boltzmann models, but with the EGF

Ĉ then replacing the OGF C .

The mean size Ex(N) is always a strictly increasing function of x as soon as the class C
contains at least two elements of different sizes. Indeed, by a trite calculation we verify

the identity

x
d

dx
Ex(N) = Vx(N),

where V denotes the variance operator. Since the variance of a nondegenerate random

variable is always strictly positive, the derivative of Ex(N) is positive and Ex(N) is in-

creasing. (This property is in fact a special case of Hadamard’s convexity theorem.)

For instance, in the case of binary words, the coherent choice x = 0.4 leads to a size

with mean value 4 and standard deviation about 4.47; for x = 0.49505, the mean and

standard deviation of size become respectively 100 and 100.5. For cyclic permutations,

we determine similarly that the choice x = 0.99846 leads to an object of mean size equal

to 100, while the standard deviation is somewhat higher than for words, being equal to

234. In general, the distribution of random sizes under a Boltzmann model, as given by

(2.3), strongly depends on the family under consideration. Figure 1 illustrates three widely

differing profiles: for set partitions, the distribution is ‘bumpy’, so that a choice of the

appropriate x will most likely generate an object close to the desired size; for surjections

584 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

(whose behaviour is analogous to that of binary words), the distribution becomes fairly

‘flat’ as x nears the critical value; for trees, it is ‘peaked’ at the origin, so that very small

objects are generated with high probability. It is precisely the purpose of later sections

(Sections 6 and 7) to recognize and exploit the ‘physics’ of these distributions in order to

deduce efficient samplers for exact and approximate size random generation.

Relation to other fields. The term ‘Boltzmann model’ comes from the great statistical

physicist Ludwig Boltzmann, whose works (together with those of Gibbs and Maxwell)

led to the following principle: Statistical mechanical configurations of energy equal to E in

a system have a probability3 of occurrence proportional to e−βE . If one identifies size of a

combinatorial configuration with energy of a thermodynamical system and sets x = e−β ,

then what we term the ordinary Boltzmann models become the usual model of statistical

mechanics. The counting generating function in the combinatorial world then coincides

with the normalization constant in the statistical mechanics world, where it is known

as the partition function – the Zustandsumme, often denoted by Z . (Note: In statistical

mechanics, β = 1/(kT) is an inverse temperature. Thus situations where x → 0 formally

correspond to low temperatures or ‘freezing’ and give more weight to small structures,

while x → ρ− corresponds to high temperatures or ‘melting’, that is, to larger sizes of the

combinatorial configurations being generated.)

Exponential weights of the Boltzmann type are naturally essential to the simulated

annealing approach to combinatorial optimization. In the latter area, for instance, Fill

and Huber [22] have shown the possibility of drawing at random independent sets of

graphs according to a Boltzmann distribution, at least for certain values of the control

parameter x = e−β . Closer to us, Compton [7, 8] has made an implicit use of what we call

Boltzmann models for the analysis of 0–1 laws and limit laws in logic; see also the account

by Burris [6]. Vershik has initiated in a series of papers (see [67] and references therein)

a programme that can be described in our terms as first developing the probabilistic

study of combinatorial objects under a Boltzmann model and then ‘returning’ to fixed

size statistics by means of Tauberian arguments of sorts. (A similar description can be

applied to Compton’s approach; see especially the work of Milenkovic and Compton [50]

for recent developments in this direction.) As these examples indicate, the general idea of

Boltzmann models is certainly not new, and, in this work, we may at best claim originality

for aspects related to the fast random generation of combinatorial structures.

3. Ordinary Boltzmann generators

In this section and the next one, we develop a collection of rules by which one can

assemble Boltzmann generators from simpler ones. The combinatorial classes considered

are built by means of a small set of constructions that have wide expressive power. The

3 Distributions of the type e−βE play an important rôle in the study of point processes and they tend to be

known to probabilists under the name of ‘Gibbs measures’.

Boltzmann Samplers for Random Generation 585

language in which classes are specified is in essence the same as the one underlying the

recursive method [29]: it includes the constructions of union, product, sequence, and, in

the labelled case treated in the next section, the additional set and cycle constructions.

For each allowable class, a Boltzmann sampler can be derived in an entirely systematic

(and even automatic) manner.

A combinatorial construction builds a new class C from structurally simpler classes

A,B, in such a way that Cn is determined from smaller objects, that is, from elements

of {Aj}nj=0, {Bj}nj=0. The unlabelled constructions considered here are disjoint union

(+), Cartesian product (×), and sequence formation (S). We define these in turn and

concurrently build the corresponding Boltzmann sampler ΓC for the composite class C,

given random generators ΓA,ΓB for the ingredients and assuming the values of intervening

generating functions A(x), B(x) at x to be real numbers which are known exactly.

Finite sets. Clearly if C is finite (and in practice small), one can generate a random

element of C by selecting it according to the finite probability distribution defined by the

Boltzmann model: if F = {ω1, . . . , ωr}, then one selects fj with probability proportional

to z|fj |. Thus, drawing from a finite set is equivalent to a finite probabilistic switch.

Drawing from a singleton set is then a deterministic procedure which directly outputs the

object in question. In particular, in what follows, we make use of the singleton classes,

1 and Z, formed respectively of one element of size 0 (analogous to the empty word of

formal language theory) and of one element of size 1 that can be viewed as a generic

‘atom’ out of which complex combinatorial structures are formed.

Disjoint union. Write C = A + B if C is the union of disjoint copies of A and B, with

size on C inherited from A,B. By disjointness, we have Cn = An + Bn, so that

C(z) = A(z) + B(z). (3.1)

Consider a random element of C under the Boltzmann model of index x. Then, the

probability that this random element is some α ∈ A is

PC,x(α) ≡ x|α|

C(x)
=

x|α|

A(x)
·
(
A(x)

C(x)

)
.

The Boltzmann model corresponding to C(x) is then a mixture of the models associated

to A(x) and B(x), the probability of selecting a particular γ in C being

PC,x(γ ∈ A) =
A(x)

C(x)
, PC,x(γ ∈ B) =

A(x)

C(x)
.

Given a generator for a Bernoulli variable Bern(p) defined by

Bern(p) = 1 with probability p, Bern(p) = 0 with probability 1 − p,

two Boltzmann samplers ΓA(x),ΓB(x), and the values of the OGFs A(x), B(x), a

586 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

Boltzmann sampler ΓC for class C = A + B is simply obtained by the procedure

function ΓC(x : real); {generates C = A + B}
let pA := A(x)/(A(x) + B(x));

if Bern(pA) then return(ΓA(x)) else return(ΓB(x)) fi; end.

We abbreviate this construction as(
Bern

(
A(x)

C(x)

)
−→ ΓA(x) | ΓB(x)

)
, (3.2)

where (X −→ f | g) is a shorthand notation for: ‘if the random variable X is 1, then

execute f, else execute g.’ More generally, if X ranges over a finite set with r elements

endowed with a probability measure, p1, . . . , pr , we shall use the extended notation

(Bern(p1, . . . , pr−1) −→ f1 | . . . | fr) (3.3)

to represent the corresponding r-fold probabilistic switch.

Cartesian product. Write C = A × B if C is the set of ordered pairs from A and B, and

size on C is inherited additively from A,B. Generating functions satisfy

C(z) = A(z) · B(z) since C(z) =
∑

〈α,β〉∈A×B

z|α|+|β|. (3.4)

A random element of γ ∈ C with γ = (α, β) then has probability

PC,x(γ) ≡ x|γ|

C(x)
=

x|α|

A(x)
· x

|β|

B(x)
. (3.5)

It is thus obtained by forming a pair 〈α, β〉 with α, β drawn independently4 from the

Boltzmann models ΓA(x),ΓB(x):

function ΓC(x : real); {generates C = A × B}
return(〈ΓA(x),ΓB(x)〉) {independent calls}.

We shall abbreviate this schema as

ΓC(x) =
(
ΓA(x); ΓB(x)

)
,

which can be read either as functionally producing a pair, or as sequential execution of

the two procedures. We shall also use the natural extension (f1; . . .; fr) when r-tuples are

involved.

Sequences. Write C = S(A) if C is composed of all the finite sequences of elements of A
(with size of a sequence additively inherited from sizes of components). The sequence

class C is also the solution to the symbolic equation C = 1 + A × C (with 1 the empty

sequence), which only involves unions and products and is reflected by the relation

between OGFs: C = 1 + AC . Consequently,

C(z) =
1

1 − A(z)
. (3.6)

4 The independence of elements of Cartesian products under Boltzmann models expressed by (3.5) constitutes

the critical property that eventually gives rise to efficient random generators.

Boltzmann Samplers for Random Generation 587

This gives rise to two logically equivalent designs for a ΓC sampler:

(i) the recursive sampler,

function ΓC(x : real); {generates C = S(A)}
if Bern(A(x)) then return(ΓA(x), ΓC(x)) {recursive call}
else return(1).

(ii) the geometric sampler,

function ΓC(x : real); {generates C = S(A)}
draw k according to Geom(A(x));

return the k-tuple 〈ΓA(x), . . . ,ΓA(x)〉 {k independent calls}.

The recursive sampler for sequences is built from first principles (union and product rules).

It might in principle loop for ever. However, by design, it repeatedly draws a Bernoulli

random variable until the value 0 is attained. Thus, the number of components generated is

a geometric random variable with rate A(x), where, we recall, X is geometric of rate λ if

P(X = k) = (1 − λ)λk.

For coherence to be satisfied, we must have A(x) < 1. Then, the recursive sampler halts

with probability 1 since the expected number of recursive calls is finite and equal to

(1 − A(x))−1. This discussion justifies the geometric generator, which unwinds the recursion

of the basic recursive sampler using a generator Geom(λ) for the geometric variable of

parameter λ.

In what follows, we use the notation

(Y =⇒ f) (3.7)

to mean: the random variable Y is drawn; if the value Y = y is returned, then y

independent calls, f1, . . . , fy are launched. The scheme giving the sequence sampler for

C = S(A) is then simply:

ΓC(x) = (Geom(A(x)) =⇒ Γ(x)).

Recursive classes. As suggested by the sequence construction, recursively defined classes

admit generators that call themselves recursively. In essence, a specification by means of

constructors is ‘well founded’ if it builds larger objects from eventually strictly smaller

ones (see the discussion in [27] for more). An equivalent condition, when no recursion

is involved, is that the sequence (and, for exponential Boltzmann models below, set, and

cycle) operations are never applied to classes that contain objects of size 0. For recursive

structures this is a testable property akin to ‘properness’ in the theory of context-free

grammars. (A context-free grammar is proper if the empty word is not generated with

infinite multiplicity.) This well-foundedness condition also guarantees that the equations

defining generating function equations are well posed and contracting in the space of

formal power series endowed with the standard metric, dist(f, g) = 2− val(f−g); accordingly,

iteration provides a geometrically converging approximation scheme that makes it possible

to determine generating function values for all coherent values of x (by analyticity and

588 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

Table 3. The inductive rules for ordinary Boltzmann samplers.

Construction Generator

singleton C = {ω} ΓC(x) = ω

union C = A + B ΓC(x) =
(
Bern

(A(x)
A(x)+B(x)

)
−→ ΓA(x) | ΓB(x)

)
product C = A × B ΓC(x) =

(
ΓA(x); ΓB(x)

)
sequence C = S(A) ΓC(x) =

(
Geom(A(x)) =⇒ ΓA(x)

)

dominated convergence). See [27, 29] for a detailed discussion of this topic and the

corresponding decision procedures.

Theorem 3.1. Define as specifiable an unlabelled class that can be finitely specified (in a

possibly recursive way) from finite sets by means of disjoint unions, Cartesian products, and

the sequence construction. Let C be an unlabelled specifiable class and let x be a coherent

parameter in (0, ρC). Assume as given an oracle that provides the finite collection of exact

values at a coherent value x of the generating functions intervening in a specification of

a class C. Then, the Boltzmann generator ΓC(x) assembled from the definition of C by

means of the four rules summarized in Table 3 has a complexity measured in the number of

(+,−,×,÷) real-arithmetic operations that is linear in the size of its output object.

Proof. For a coherent value of size, the expectation of size is finite, so that, in particular,

size is finite with probability 1. Given a specification Σ for C, each object ω admits a

unique parse tree (or syntax tree) τ[ω] relative to Σ. For well-founded specifications, this

parse tree τ is of a size linear in the size of the object produced. We shall see later

(Lemma 5.1) that in the real-arithmetic model a Bernoulli choice can be effected with

complexity O(1) and a geometric random variable which assumes value k can be generated

at cost O(k + 1). From this fact, the total cost of a Boltzmann sampler is of the form

O

 ∑
ν∈τ[ω]

(deg(ν) + 1)

,
where the summation ranges over all the nodes ν of tree τ, and deg(ν) is the outdegree of

node ν. Since, for any tree τ, we have
∑

ν 1 = |τ| and
∑

ν deg(ν) = |τ| − 1, the total cost is

linear in the size of τ, hence linear in the size of ω. The statement follows.

Given results of this and the previous section, we can compile automatically specific-

ations of combinatorial classes into Boltzmann samplers. The only piece of auxiliary

data required is a table of constants representing the values of the ordinary generating

functions associated with the subclasses that intervene in a specification. These are finite

in number and computable.

In the examples that follow, we enlarge the expressivity of the specification language

by allowing constructions of the form

SΩ(A) = {〈α1, . . . , αr〉 | αj ∈ A, r ∈ Ω}, (3.8)

Boltzmann Samplers for Random Generation 589

where Ω ⊂ N is either a finite or a cofinite subset of the integers. If Ω is finite, this

construction reduces to a disjunction of finitely many cases and the corresponding sampler

is obtained by Bernoulli trials. If Ω is cofinite, we may assume without loss of generality

that Ω = {n � m0} for some m0 ∈ N, in which case the construction S�m0
(A) reduces to

Am0 × S(A).

Example 1 (Words without long runs). Consider the collection R of all binary words

over the alphabet A = {a, b} that never have more than m consecutive occurrences of

any letter (such consecutive sequences are also called ‘runs’ and intervene at many places

in statistics, coding theory, and genetics). Here we regard m as a fixed quantity. It is not

a priori obvious how to generate a random word in R of length n: a brutal rejection

method based on generating random unconstrained words and filtering out those that

satisfy the condition R will not work in polynomial time since the constrained words

have an exponentially small probability. On the other hand, any word decomposes into a

sequence of alternations also called its core, of the form

(aa · · · a | bb · · · b) (aa · · · a | bb · · · b) · · · (aa · · · a | bb · · · b), (3.9)

possibly prefixed with a header of b s and postfixed with a trailer of a s. In symbols, the

set W of all words is expressible by a regular expression, written in our notation

W = S(b) × S(aS(a)bS(b)) × S(a).

The decomposition was customized to serve for R: simply replace any internal aS(a) by

S1 . . m(a) and any bS(b) by S1 . . m(b), where S1 . . m means a sequence of between 1 and m

elements, and adapt accordingly the header and trailer:

R = S�m(b) × S(S1 . . m(a)S1 . . m(b)) × S�m(a).

The composition rules given above give rise to a generator for R that has the following

form: two generators that produce sequences of a s or b s according to a truncated

geometric law; a generator for the product C := (S1 . . m(a)S1 . . m(b)) that is built according

to the product rule; a generator for the sequence D := S(C) constructed according to the

sequence rule. The generator finally assembled automatically is

ΓR(x) = (X =⇒ b); ΓCore(x); (X ′ =⇒ a),

ΓCore(x) =
(

Geom
(
x2(1 − xm)2

(1 − x)2

)
=⇒

(
(Y =⇒ a); (Y ′ =⇒ b)

))
X,X ′ ∈ Geom

�m
(x), Y , Y ′ ∈ Geom

1 . . m
(x).

Observe that a table of only a small number of real-valued constants rationally related

to x and including

c1 = x, c2 = C(x) = x2(1 − xm)2(1 − x)−2,

needs to be precomputed in order to implement the algorithm.

590 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

Here are three runs of the sampler ΓR(x) for m = 4 produced with the coherent value

x = 0.5 (the critical value is ρR
.

= 0.51879), of respective lengths 124 (truncated), 23, and

35, with the coding a =�, b = :

�� · · ·

�����������������������
�����������������������������������

With this value of the parameter, the mean size of a random word produced is about

27. The distribution turns out to be of the ‘flat’ type, as for surjections in Figure 1. We

shall see later in Section 7 that one can design optimized samplers for such types of

distributions. The technique applies to any language composed of words with excluded

patterns, meaning words that are constrained not to contain any of a finite set of words

as factor. (For such a language, one can specifically construct a finite automaton by way

of the Aho–Corasick construction [1], then write the automaton as a linear system of

equations relating specifications, and finally compile the set of equations into a recursive

Boltzmann sampler.) More generally, the method applies to any regular language: it

suffices to convert a description of the language into a deterministic finite automaton and

apply the recursive construction of a sampler, or alternatively to obtain an unambiguous

regular expression and derive from it a nonrecursive sampler based on the geometric law.

The next set of examples is relative to structures that satisfy nonlinear recursive

descriptions of the context-free type.

Example 2 (Rooted plane trees). Take the class B of binary trees defined by the recursive

specification

B = Z + (Z × B × B),

where Z is the class comprising the generic node. The generator ΓZ is deterministic and

consists simply of the instruction ‘output a node’ (since Z is finite and in fact has only

one element). The Boltzmann generator ΓB calls ΓZ (and halts) with probability x/B(x)

where B(x) is the OGF of binary trees,

B(x) =
1 −

√
1 − 4x2

2x
.

With the complementary probability corresponding to the strict binary case, it will make a

call to ΓZ and two recursive calls to itself. In shorthand notation, the recursive sampler is

ΓB(x) =
(

Bern
(

x
B(x)

)
−→ Z |

(
Z; ΓB(x); ΓB(x)

))
.

In other words: the Boltzmann generator for binary trees as constructed automatically from

the composition rules produces a random sample of the branching process with probabilities

(x
B(x)

, xB(x)2

B(x)
). Note that the generator is defined for x < 1/2 (the radius of convergence

of B(x)), in which case the branching process is subcritical, so that the algorithm halts

in finite expected time, as it should. Only two constants are needed for implementation,

namely x and the quadratic irrational x
B(x)

.

Unbalanced 2–3 trees in which only external nodes contribute to size are similarly

produced by U = Z + U2 + U3. Figure 2 displays such a tree for the value of the

Boltzmann Samplers for Random Generation 591

Figure 2. Random unbalanced 2–3 trees of 173 and 2522 nodes (in total) produced by a critical

Boltzmann sampler

parameter x set at the critical value ρU = 5
27

. (This critical value can be determined by

methods exposed in Section 7.) In this case, the branching probabilities for a nullary,

binary, and ternary node are found to be, respectively,

p0 =
5

9
, p2 =

1

3
, p3 =

1

9
,

and these three constants are the only ones required by the algorithm. A typical run of

30 Boltzmann samplings produces trees with total number of nodes equal to

3, 6, 1, 1, 6, 7, 33, 1, 1, 1, 9, 1, 1, 3, 1, 3, 169, 1881, 1, 54, 6, 1, 1, 3, 3746, 1, 1, 1, 1, 1, (3.10)

which empirically gives an indication of the distribution of sizes (it turns out to be of

the peaked type, like in Figure 1, bottom). We shall see later in Section 7 that one can

actually characterize the profile of this distribution (it decays like n−3/2) and put to good

use some of its features.

Unary-binary trees (also known as Motzkin trees) are defined by V = Z(1 + V + V2).

General plane trees, G, where all degrees of nodes are allowed, can be specified by the

grammar

G = Z × S(G),

with OGF G(z) = (1 −
√

1 − 4z)/2. Accordingly, the automatically produced sampler is

ΓG(x) = (Z; (Geom(G(x)) =⇒ ΓG(x))),

which corresponds to the well-known fact that such trees are equivalent to trees of a

branching process where the offspring distribution is geometric.

592 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

Figure 3. A random connected non-crossing graph of size 50

Example 3 (Secondary structures). This example is inspired by works of Waterman et al.,

themselves motivated by the problem of enumerating secondary RNA structures [36, 62].

To fix ideas, consider rooted binary trees where edges contain 2 or 3 atoms and leaves

(‘loops’) contain 4 or 5 atoms. A specification is W = (Z4 + Z5) + (Z2 + Z3)2 × (W ×
W). A Bernoulli switch will decide whether to halt or not, two independent recursive

calls being made in case it is decided to continue, with the algorithm being sugared with

suitable Bernoulli draws. Here is the complete code:

ΓA(x) =
(
Bern

(
x4

x4 + x5

)
−→ Z4 | Z5

)
,

ΓB(x) =
(
Bern

(
x2

x2 + x3

)
−→ Z2 | Z3

)
,

let p = (x4 + x5)/W (x) = 1
2
(1 +

√
1 − 4x8(1 + x)3),

ΓW (x) =
(
Bern(p) −→ ΓA(x) | ΓB(x); ΓW (x); ΓB(x); ΓW (x)

)
.

The method is clearly universal for this entire class of problems.

Example 4 (Non-crossing graphs). Consider graphs which, for size n, have vertices at

the nth roots of unity, vk = e2ikπ/n, and are connected and non-crossing in the sense that

no two edges are allowed to meet in the interior of the unit circle; see Figure 3 for a

random instance. The generating function of such graphs was first determined by Domb

and Barrett [15], motivated by the investigation of certain perturbative expansions of

statistical physics. Their derivation is not based on methods conducive to Boltzmann

sampling, though. On the other hand, the planar structure of such configurations entails

a neat decomposition, which is described in [24]. At the top level, consider the graph

as rooted at vertex v0. Let vi and vj be two consecutive neighbours of v0; the subgraph

induced on the vertex set {vi, vi+1, . . . , vj} is either a connected graph of D or is formed of

two disjoint components containing vi and vj respectively. Also, if v
 is the first neighbour

of v0 and vm is the last neighbour, there are two connected components on {v1, . . . , v
}
and on {vm, . . . , vn−1} respectively. The grammar for connected non-crossing graphs is then

a transcription of this simple decomposition, although its detail is complicated as care

must be exercised to avoid double counting of vertices. The class of all such connected

Boltzmann Samplers for Random Generation 593

non-crossing graphs is denoted by X and the grammar is

X = Z + Z × E, E = X × S(E + X × (1 + E)) × X.

We find that E(z) = −1 +X(z)/z, while X(z) is a branch of the algebraic function defined

implicitly by

X3 +X2 − 3zX + 2z2 = 0,

and the critical value (the upper limit of all coherent values) is ρX = 1
18

√
3
.

= 0.09622. The

Boltzmann sampler compiled from the specification is then of the global form

ΓX(x) =
(

Bern
(

x
X(x)

)
−→ Z | Z; ΓE(x)

)
,

ΓE(x) =
(
ΓX(x);

(
Geom(E(x) +X(x)(1 + E(x))) =⇒

(
(· · ·)

))
; ΓX(x)

)
.

The algorithm needs the parameter x, the cubic quantity y = X(x) and a small number of

quantities that are all rationally expressed in terms of x and y. For instance, the coherent

choice x = 0.095 which is close to the critical value ρX , leads to X(x)
.

= 0.11658. There

is then a probability of about 1
7000

to attain a graph of size exactly 50; one such graph

drawn uniformly at random is represented in Figure 3.

In the last three cases (trees, secondary structures, and non-crossing graphs), the profile

of the Boltzmann distribution resembles that of general trees in Figure 1. Optimized

algorithms adapted to such tree-like profiles are discussed in Sections 6 and 7, where it is

shown that random generation can be achieved in linear time provided a fixed nonzero

tolerance on size is allowed. The method applies to any class that can be described

unambiguously by a context-free grammar.

4. Exponential Boltzmann generators

We consider here labelled structures in the precise technical sense of combinatorial

theory [4, 28, 30, 34, 60, 61, 69]. A labelled object of size n is then composed of n

distinguishable atoms, each bearing a distinctive label that is an integer in the interval [1, n].

For instance, the class K of labelled circular graphs, where cycles are oriented in some

conventional manner (say, positively) is

K =

{ �1 , ��
��

�

�1
�2 , ��

��
�

�1
�2 �3 , ��

��
�

�1
�3 �2 , . . .

}
.

Clearly, there are Kn = (n− 1)! labelled objects of size n � 1, and the corresponding

exponential generating function K̂(z) has been determined in (2.1). In what follows, we

focus on generating the ‘shape’ of labelled objects – for instance, the shape of an n-cyclic

graph would be a cycle with n anonymous dots placed on it. The reason for doing so is

that labels can then always be obtained by superimposing a random permutation5 on the

unlabelled nodes. Note, however, that the unlabelled (ordinary) and labelled (exponential)

5 Drawing a random permutation of [1, n] only necessitates O(n) real operations [39, p. 145].

594 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

Boltzmann models assign rather different probabilities to objects: in the unlabelled case,

there would be only kn ≡ 1 object of size n, with OGF k(x) = x/(1 − x) so that the

distribution of component sizes is geometric, while in the labelled case, the logarithmic

series distribution (2.2) occurs.

Labelled combinatorial classes can be subjected to the labelled product defined as

follows: if A and B are labelled classes, the product C = A �B is obtained by forming

all ordered pairs 〈α, β〉 with α ∈ A and β ∈ B and relabelling them in all possible

order-consistent ways. Straight from the definition, we have a binomial convolution Cn =∑n
k=0

(
n
k

)
AkBn−k, where the binomial takes care of relabellings. In terms of exponential

generating functions, this becomes

Ĉ(z) = Â(z) · B̂(z).

As in the ordinary case, we proceed by assembling Boltzmann generators for structured

objects from simpler ones.

Disjoint union. The unlabelled construction carries over verbatim to this case to the

effect that, for labelled classes A,B,C satisfying C = A + B, EGFs are related by

Ĉ(z) = Â(z) + B̂(z), and the exponential Boltzmann sampler for C is

ΓC(x) =
(

Bern
(

Â(x)

Â(x) + B̂(x)

)
−→ ΓA(x) | ΓB(x)

)
.

Labelled product. The Cartesian product construction adapts to this case with minor

modifications: to produce an element from C = A �B, simply produce a pair by the

Cartesian product rule using values Â(x), B̂(x):

ΓC(x) = (ΓA(x); ΓB(x)).

Complete by a randomly chosen relabelling if actual values of the labels are needed.

Sequences. In the labelled universe, C is the sequence class of A, written C = S(A) if

and only if it is composed of all the sequences of elements from A up to order-consistent

relabellings. Then, the EGF relation

Ĉ(x) =
∑
k�0

Â(x)k =
1

1 − Â(x)

holds, and either of the two constructions of the generator ΓC from ΓA given in Section 3

is applicable. In particular, the nonrecursive generator is

ΓC(x) = (Geom(Â(x)) =⇒ ΓA(x)),

where the stenographic convention of (3.7) is employed.

Sets. This is a new construction that we did not consider in the unlabelled case. The class

C is the set-class of A, written C = P(A) (P is reminiscent of ‘powerset’) if C is the

quotient of sequences, C = S(A)/ ≡, by the relation ≡ that declares two sequences as

equivalent if one derives from the other by an arbitrary permutation of the components.

Boltzmann Samplers for Random Generation 595

It is then easily seen that the EGFs are related by

Ĉ(x) =
∑
k�0

1

k!
Â(x)k = eÂ(x),

where the factor 1/k! ‘kills’ the order present in k-sequences.

The Poisson law of rate λ is classically defined by

P(X = k) = e−λ λ
k

k!
.

On the other hand, under the exponential Boltzmann, the probability for a set in C to

have k components in A is

1

Ĉ(x)

1

k!
Â(x)k = e−Â(x) Â(x)k

k!
,

that is, a Poisson law of rate Â(x). This gives rise to a simple algorithm for generating

sets (analogous to the geometric algorithm for sequences):

ΓC(x) =
(
Pois(Â(x)) =⇒ ΓA(x)

)
.

Cycles. This construction, written C = C(A), is defined like sets but with two sequences

being identified if one is a cyclic shift of the other. The EGFs satisfy

Ĉ(x) =
∑
k�1

1

k
Â(x)k = log

1

1 − Â(x)
,

where the factor 1/k ‘converts’ k-sequences into k-cycles. The log-law of rate λ < 1, an

‘integral’ of the geometric law also known as the logarithmic series distribution, is the law

of a variable X such that

P(X = k) =
1

log(1 − λ)−1

λk

k
.

(This is the same as in equation (2.2); the distribution occurs in statistical ecology and

economy and forms the subject of Chapter 7 of [38].) Then cycles under the exponential

Boltzmann model can be drawn like in the case of sets upon replacing the Poisson law

by the log-law:

ΓC(x) =
(
Loga(Â(x)) =⇒ ΓA(x)

)
.

These constructions are summarized in Table 4.

For reasons identical to those that justify Theorem 3.1, we have the following.

Theorem 4.1. Define as specifiable a labelled class that can be finitely specified (in a

possibly recursive way) from finite sets by means of disjoint unions, Cartesian products,

as well as the sequence, set and cycle constructions. Let C be a labelled specifiable class

and x be a coherent parameter in (0, ρC). Assume as given an oracle that provides the finite

collection of exact values at a coherent value x of the generating functions intervening

in a specification of a class C. Then, the Boltzmann generator ΓC(x) assembled from the

596 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

Table 4. The inductive rules for exponential Boltzmann samplers

Construction Generator

singleton C = {ω} ΓC(x) = ω

union C = A + B ΓC(x) =
(
Bern

(Â(x)

Â(x)+B̂(x)

)
−→ ΓA(x) | ΓB(x)

)
product C = A �B ΓC(x) =

(
ΓA(x); ΓB(x)

)
sequence C = S(A) ΓC(x) =

(
Geom(Â(x)) =⇒ ΓA(x)

)
set C = P(A) ΓC(x) =

(
Pois(Â(x)) =⇒ ΓA(x)

)
cycle C = C(A) ΓC(x) =

(
Loga(Â(x)) =⇒ ΓA(x)

)

definition of C by means of the six rules of Table 4 has a complexity measured in the number

of (+,−,×,÷) real-arithmetic operations that is linear in the size of its output object.

(We also allow constructions SΩ,PΩ,CΩ as in (3.8); in this case, the random variable

of geometric, Poisson, or logarithmic type should be conditioned to assume its values in

the set Ω.)

As in the unlabelled case, Boltzmann samplers can be compiled automatically from

combinatorial specifications. There is here added expressivity in the specification language,

thanks to the inclusion of the Set and Cycle constructions. In the examples that follow,

we omit the hat-marker ‘f̂’, whenever the exponential/labelled character of the model is

clear from the context.

Example 5 (Set partitions). A set partition of size n is a partition of the integer interval

[1, n] into a certain number of nonempty classes, also called blocks, the blocks being by

definition unordered between themselves. Let P�1 represent the powerset construction

where the number of components is constrained to be � 1. (This modified construction is

easily subjected to random generation by using a truncated Poisson variable K , where K

is conditioned to be � 1.) The labelled class of all set partitions is then definable as

S = P(P�1(Z)), where Z consists of a single labelled atom, Z = {1}. Observe that the

EGF of S is the well-known generating function of the Bell numbers, S(z) = ee
z−1. By

the composition rules, we get a random generator as follows. Choose the number K of

blocks as Poisson(ex − 1). Draw K independent copies X1, X2, . . . , XK from the Poisson law

of rate x, but each conditioned to be at least 1. In symbols:

ΓS(x) =
(

Pois(ex − 1) =⇒
(

Pois
�1

(x) =⇒ Z
))
.

What this generates is in reality the ‘shape’ of a set partition (the number of blocks (K)

and the block sizes (Xj)), with the ‘correct’ distribution. To complete the task, it suffices

to transport this structure on a random permutation of the integers between 1 and N,

where N = X1 + · · · +XK .

The process markedly differs from the classical algorithm of Nijenhuis and Wilf [51]

that requires tables of large integers. It is related to a continuous model devised by

Boltzmann Samplers for Random Generation 597

Figure 4. A random partition obtained by the Boltzmann parameter of parameter x = 6, here of size n =

2356 and comprising 409 blocks: (left) the successive block sizes generated, (right) the block sizes in sorted

order

Vershik [67] that can be interpreted as generating random set partitions based on

S(x) = ex/1! · ex2/2! · ex3/3! · · · ,

i.e., by ordered block lengths, as a potentially infinite sequence of Poisson variables of

parameters x/1!, x2/2!, and so on.

Figure 4 represents a random set partition produced by the Boltzmann model of

parameter x = 6. This particular object has size n = 2356, the expected size being Ex(N) =

2420 for this value of the parameter. The closeness between the observed size and its

mean value agrees with the concentration that is perceptible on Figure 1. In addition, the

Boltzmann model immediately provides a simple heuristic model of partitions of large

size. Objects of size ‘near’ n, are produced by the value xn defined by xne
xn = n, that is,

xn ≈ log n− log log n. Then, the number of blocks is expected to be about exn ≈ n/(log n).

This number being large, and individual blocks being generated by independent Poisson

variables of parameter xn, we expect, for large n, the sorted profile of blocks (Figure 4,

right) to converge to the histogram of the Poisson distribution of rate xn. As shown by

Vershik [67], this heuristic model is indeed a valid asymptotic model of partitions of large

sizes.

Example 6 (Random surjections, or ordered set partitions). These may be defined as

functions from [1, n] to [1, n] such that the image of f is an initial segment of [1, n]

(i.e., there are no ‘gaps’). For the class Q of surjections we have Q = S(P�1(Z)). Thus a

random generator for Q is

ΓQ(x) =
(

Geom(ex − 1) =⇒
(

Pois
�1

(x) =⇒ Z
))
.

In words: first choose a number of components given by a geometric law and then launch

a number of Poisson generators conditioned to be at least 1.

598 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

Set partitions find themselves attached to a compound (Poisson◦Poisson) process,

whereas surjections are generated by a compound (Geometric◦Poisson) process (with

suitable dependencies on parameters). This reflects the basic combinatorial opposition

between freedom and order (for blocks). Here are two more examples.

Example 7 (Cycles in permutations). This corresponds to P = P(C�1(Z)) and is obtained

by a (Poisson◦Log) process:

ΓP (x) =
(
Pois(log(1 − x)−1) =⇒ (Loga(x) =⇒ Z)

)
.

This example is related to the Shepp–Lloyd model [57] that generates permutations by

ordered cycle lengths, as a potentially infinite sequence of Poisson variables of parameters

x/1, x2/2, and so on. The interest of this construction is to give rise to a number of

useful particularizations. For instance derangements (permutations such that σ(x)
= x)

are produced by P = P(C�2(Z)); involutions (permutations such that σ ◦ σ(x) = x) are

given by P = P(C1 . . 2(Z)).

Example 8 (Assemblies of filaments). Imagine assemblies of linear filaments floating

freely in a liquid. We may model these as sets of sequences, F = P(S�1(Z)). The EGF

is exp(z
1 − z

). The random generation algorithm is a compound of the form (Poisson◦
Geometric), with appropriate parameters:

ΓF(x) =
(

Pois
(

x
1 − x

)
=⇒

(
Geom

�1
(x) =⇒ Z

))
.

The corresponding counting sequence, 1, 1, 3, 13, 73, 501, . . . , appears as A000262 in

Sloane’s encyclopedia [58]. This example is closely related to linear forests and posets as

described in Burris’s book (see [6], pp. 23–24 and Chapter 4).

At this stage, it may be of interest to note that many classical distributions of probability

theory can be retrieved as (size distributions of) Boltzmann models associated to simple

combinatorial games. Consider an unbounded supply of distinguishable (i.e., labelled)

balls. View an urn as an unordered finite collection of balls (P(Z)) and a stack as

an ordered collection of balls (S(Z)). The geometric and Poisson distributions arise as

the size distributions of the stack and the urn. If, by an exclusion principle, an urn

is only allowed to contain 0 or 1 ball (1 + Z), then the family of all basic Bernoulli

distributions results. If m urns or stacks are considered, then the distributions are Poisson

or negative binomial, respectively, and, with exclusion, we get in this way the binomial

distributions corresponding to m trials. If balls and urns are taken to be indistinguishable,

we automatically obtain Vershik’s model of integer partitions [67], which is an infinite

product of geometric distributions of exponentially decaying rates. (The recent work by

Milenkovic and Compton [50] discusses exact and asymptotic transforms associated to

several such distributions.) For similar reasons, the two classical models of random graphs

due to Erdős and Rényi are related to one another by ‘Boltzmannization’. A large number

of examples along similar lines could clearly be listed.

Boltzmann Samplers for Random Generation 599

5. The realization of Boltzmann samplers

In this section, we make explicit the way Boltzmann sampling can be implemented and

sketch a discussion of the main complexity issues involved. Broadly speaking, samplers

can be realized under two types of computational models corresponding to computations

carried out over the set R of real numbers or the set S = {0, 1}N of infinite-length binary

strings. (In the latter case, only finite prefixes are ever used.) These are the real-arithmetic

model, R, which is the one considered here and the bit string model (or Boolean model),

S, whose algorithms will be described in a future publication. The ‘ideal’ real-domain

model R comprises the elementary operations +,−,×,÷ each taken to have unit cost.

By definition, a Boltzmann sampler requires as input the value of the control parameter x

that defines the Boltzmann model of use. As seen in previous sections, it also needs the

finite collection of values at x of the generating functions that intervene in a specification,

in order to drive Bernoulli, geometric, Poisson, and logarithmic generators. We assume

these values to be provided by what we call the (generating function) ‘oracle’:

oracle

x � C(x), . . .

sampler

ΓC(x)
�

Such constants need only be precomputed once; they can be provided by a multiprecision

package or a computer algebra system used as co-routine. Here we take these constants

as given, noting that the corresponding power series expansions at 0 are computable in

low polynomial complexity (this is, e.g., encapsulated in the Maple package Combstruct;

see [27, 29] for the underlying principles) so that values of the generating functions of

constructible classes strictly inside their disc of convergence are computable real numbers

of low polynomial-time complexity.

It remains to specify fully generators for the probabilistic laws Geom(λ), Pois(λ), Loga(λ),

as well as the Bernoulli generator Bern(p), where the latter outputs 1 with probability p

and 0 otherwise. What is assumed here is a random generator ‘uniform()’ that produces

at unit cost a random variable uniformly distributed over the real interval (0, 1).

Bernoulli generator. The Bernoulli generator is simply

Bern(p) := if uniform() � p then return(1) else return(0) fi.

This generator serves in particular to draw from unions of classes.

Geometric, Poisson, and logarithmic generators. For the remaining laws, we let pk be the

probability that a random variable with the desired distribution has value k, namely,

Geom(λ) : pk = (1 − λ)λk, Pois(λ) : pk = e−λ λ
k

k!
, Loga(λ) : pk =

1

log(1 − λ)−1

λk

k
.

The general scheme that goes well with real-arithmetic models is the sequential algorithm:

U := uniform(); S := 0; k := 0;

while U < S do S := S + pk; k := k + 1; od;

return(k).

600 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

Table 5.

Geom(λ) Pois(λ) Loga(λ)

p0 = (1 − λ) p0 = e−λ p1 = 1/(log(1 − λ)−1)

pk+1 = λpk pk+1 = λpk
1

k+ 1 pk+1 = λpk
k

k+ 1 .

This scheme is nothing but a straightforward implementation based on inversion of

distribution functions (see [14, Section 2.1] or [39, Section 4.1]). For the three distributions

under consideration, the probabilities pk can themselves be computed recurrently on the

fly as in Table 5. (Such principles also apply to constructions modified by a constraint on

the number of components; e.g., to generate a Pois�1(λ) random variable, initialize the

generator with p1 = (eλ − 1)−1 and k = 1.)

Observe that the transcendental values in Table 5 (like e−λ) are in the present context

already provided by the oracle. For instance, if one has to generate sets corresponding

to C = P(A), then the generator for sets, Pois(A(x)) =⇒ ΓA(x), requires the knowledge of

e−A(x), which is none other than 1/C(x). Under the model that has unit cost for the four ele-

mentary real-arithmetic operations, the sequential generators thus have a useful property.

Lemma 5.1. For either of the geometric, Poisson, or logarithmic generators, a random

variable with outcome k is drawn with a number of real-arithmetic operations which is

O(k + 1).

This lemma completes the justification of Theorems 3.1 and 4.1.

In practice, one may realize approximately a Boltzmann sampler by truncating real

numbers to some fixed precision, say using floating point numbers represented on 64 bits

or 128 bits. The resulting samplers operate in time that is linear in the size of the object

produced, though they may fail (by lack of digits in values of generating functions, i.e.,

by insufficient accuracy in parameter values) in a small number of cases, and accordingly

must deviate (slightly) from uniformity. Pragmatically, such samplers are likely to suffice

for many simulations.

A sensitivity analysis of truncated Boltzmann samplers would be feasible, though

rather heavy to carry out. One could even correct perfectly the lack of uniformity by

appealing to an adaptive precision strategy based on guaranteed multiprecision floating

point arithmetic – e.g., double the accuracy of computations when more digits are needed.

In case of floating point implementations of the recursive method, such ideas are discussed

in Zimmermann’s survey [71], and the reader may get a feeling of the type of analysis

involved by referring to the works of Denise, Dutour and Zimmermann [12, 13]. In a

companion paper, we shall explore another route and describe purely discrete Boltzmann

samplers which are solely based on binary coin flips in the style of Knuth and Yao’s

work [40] and have the additional feature of ‘automatically’ detecting when accuracy is

insufficient.

Boltzmann Samplers for Random Generation 601

6. Exact-size and approximate-size sampling

Our primary objective in this article is the fast random generation of objects of some

large size. In this section and the next one, we consider two types of constraints on size.

• Exact-size random sampling, where objects of C should be drawn uniformly at random

from the subclass Cn of objects of size exactly n.

• Approximate-size random sampling, where objects should be drawn with size in an

interval of the form I(n, ε) = [n(1 − ε), n(1 + ε)], for some quantity ε � 0 called the

(relative) tolerance. In applications, one is likely to consider cases where ε is a small

fixed number, like 0.05, corresponding to an uncertainty on sizes of ±5%. Though size

may fluctuate (within limits), sampling is still unbiased6 in the sense that two objects

with the same size are drawn with equal likelihood.

The conditions of exact and approximate-size sampling are automatically satisfied if one

filters the output of a Boltzmann generator by retaining only the elements that obey the

desired size constraint. (As a matter of fact, we have liberally made use of this feature

in previous examples, e.g., when selecting the trees of Figure 2 to be large enough.) Such

a filtering is simply achieved by a rejection technique. The main question then becomes:

‘When and how can the rejection strategy be reasonably efficient?’

The major conclusion of this section is that in many cases, including all the examples

seen so far, approximate-size sampling is achievable in linear time under the (exact)

real-arithmetic model. In addition, the constants appear to be not too large if a

‘reasonable’ tolerance on size is accepted. Precisely, we develop analyses and optimizations

corresponding to the three common types of distributions exemplified in Figure 1.

• For size distributions that are ‘bumpy’, the straight rejection strategy succeeds with

high probability in one trial, hence the linear-time complexity of approximate-size

Boltzmann sampling results (Section 6.1).

• For size distributions that are ‘flat’, the straight rejection strategy succeeds in O(1)

trials on average, a fact that again ensures linear-time complexity when a nonzero

tolerance on size is allowed (Section 6.2).

• For size distributions that are ‘peaked’ (at the origin), the technique of pointing may

be used to transform automatically specifications into equivalent ones of the flat type

(Section 6.3).

6.1. Size-control and rejection samplers

The basic rejection sampler denoted by µC(x; n, ε) uses a Boltzmann generator ΓC(x) for

the class C and is described as follows, for any x with 0 < x < ρC , n a target size and

ε � 0 a relative tolerance:

function µC(x; n, ε);

{Returns an object of C of size in I(n, ε) := [n(1 − ε), n(1 + ε)]}

6 Objects drawn according to an approximate-size sampler are thus always uniform conditioned on their size.

We do not however impose conditions on the sizes of the objects drawn, so that the objects returned are not

in general uniform over the set of all objects having size in I(n, ε).

602 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

repeat γ := ΓC(x) until |γ| ∈ I(n, ε);

return(γ); end.

The rejection sampler µC depends on a parameter x that one may choose arbitrarily

amongst all coherent values. It simply tries repeatedly until an object of satisfactory size

is produced. The case ε = 0 then gives exact-size sampling.

The outcome of a basic Boltzmann sampler has a random size N whose distribution is

described by Proposition 2.1. We have

Ex(N) = ν1(x), Ex(N
2) = ν2(x), Ex(N

2) − Ex(N)2 = σ(x)2,

where σ represents standard deviation, with

ν1(x) := x
C ′(x)

C(x)
, ν2(x) := x2C

′′(x)

C(x)
+ x

C ′(x)

C(x)
, σ(x) =

√
ν2(x) − ν1(x).

If x stays bounded away from the critical value ρC , then ν1(x) remains bounded, so

that the object drawn is likely to have a small size (on average and in probability). Thus,

values of x approaching the critical value ρ ≡ ρC have to be considered. Introduce the

Mean Value Condition as

Mean Value Condition: lim
x→ρ−

ν1(x) = +∞. (6.1)

(This condition is satisfied in particular when C(ρ−) = +∞.) Then a ‘natural tuning’ for

the rejection sampler consists in adopting as control parameter x the value xn that satisfies

xn is the root in (0, ρ) of n = x
C ′(x)

C(x)
, (6.2)

which is uniquely determined. We then have the following.

Theorem 6.1. Let C be a combinatorial class and let ε be a fixed (relative) tolerance on

size. Assume the Mean Value Condition (6.1) and the following Variance Condition:

Variance Condition: lim
x→ρ−

σ(x)

ν1(x)
= 0. (6.3)

Then, the rejection sampler µC(xn; n, ε) equipped with the value x = xn implicitly determined

by (6.2) succeeds in one trial with probability tending to 1 as n → ∞. In particular, if C is

specifiable, then the overall cost of approximate-size sampling is O(n) on average.

Proof. This is a direct consequence of Chebyshev’s inequalities.

The mean and variance conditions are satisfied by the class S of set partitions

(Example 5, observe concentration on Figure 1, top) and the class F of assemblies

of filaments (Example 8 and Figure 5). In effect, for set partitions, S, the exponential

generating function is entire, which corresponds to ρ = +∞. We find

ν1(x) = xex, σ(x)2 = x(x+ 1)ex, (6.4)

while xn determined implicitly by the equation xne
xn = n satisfies

xn ∼ log n− log log n. (6.5)

Boltzmann Samplers for Random Generation 603

Figure 5. A random assembly of filaments of size n = 46299 produced by the exponential Boltzmann sampler

tuned to x50000
.

= 0.9952 (left) and its filaments presented in increasing order of lengths (right)

Table 6.

n xn N (batch of 10 runs) Nmin–Nmax

50 0.85857 61, 80, 62, 13, 32, 65, 21, 34, 67, 16 13 – 80

500 0.95527 647, 426, 323, 752, 599, 457, 505, 318, 358, 424 318 – 752

5, 000 0.98585 4575, 4311, 4419, 4257, 4035, 4067, 4187, 4984, 4543, 5035 4035 – 5035

These quantities are most easily interpreted when expressed in terms of n itself,

ν1(xn) = n, σ(xn) ∼
√
n log n,

as follows straightforwardly from (6.4) and (6.5).

For assemblies of filaments, F, one finds ρ = 1 and ν1(x) = x
(1 − x)2 , so that xn has value

xn = 1 +
1

2n
−

√
1 + 4n

2n
∼ 1 − 1√

n

and σ(xn) ∼
√

2n. For various values of n, Table 6 shows the sizes of objects drawn

in batches of 10 runs and the interval in which sizes are found to lie. The fact that

concentration of distribution improves with larger values of n is perceptible on such data.

This feature in turn implies sampling in linear time, as soon as a positive tolerance on

size is granted.

Exact-size sampling. The previous discussion calls for investigating conditions under

which exact-size generation is still reasonably efficient. The smooth aspect of the ‘bumpy’

curves associated with set partitions suggests the possibility that, in such cases, there exists

a local limit distribution for sizes, as x → ρ, implying an expected cost of O(nσ(xn)) for

exact-size sampling. It turns out that a sufficient set of complex-analytic conditions can be

stated by borrowing results from the theory of admissibility, an area originally developed

for the purpose of estimating asymptotically Taylor coefficients of entire functions. This

theory was started in an important paper of Hayman [35] and is lucidly exposed in

604 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

Odlyzko’s survey [52, Section 12]. A function is said to be H-admissible if, in addition to

the mean value condition (6.1) and the variance condition (6.3), it satisfies the following

two properties.

• There exists a function δ(x) defined for x < ρ with 0 < δ(x) < π such that, for |θ| <
δ(x) as x → ρ−,

f(xeiθ) ∼ f(x)eiaθ− 1
2 bθ

2

, a = ν1(x), b = σ2(x).

• Uniformly as x → ρ−, for δ(x) � |θ| � π,

f(xeiθ) = o

(
f(x)

σ(x)

)
.

These conditions are the minimal ones that guarantee the applicability of the saddle-

point method to Cauchy coefficient integrals. They imply, in particular, knowledge of the

asymptotic form of the coefficients of f, namely,

fn ≡ [zn]f(z) ∼ f(xn)√
2πxnnσ(xn)

, n → ∞.

We state the following.

Theorem 6.2. Consider a class C whose generating function f(z) satisfies the complex-

analytic conditions of H-admissibility. Then exact size rejection sampling based on µC(xn;

n, 0) succeeds in a mean number of trials that is asymptotic to
√

2πσ(xn).

In particular, if C is specifiable, then the overall cost of exact-size sampling is O(nσ(xn)) on

average.

Proof. This is a direct adaptation of one of Hayman’s estimates, see Theorem I of [35]

(specialized in the notation of [35] as r → xn, n �→ m),

fmx
m
n

f(xn)
∼ 1√

2πσ(xn)
exp

(
− (m− n)2

2σ(xn)2
+ o(1)

)
,

uniformly for all m as xn → ρ. This last equation means generally that the distribution of

size values m is asymptotically normal as xn → ρ−, that is, as n → ∞. The specialization

m = n gives the statement.

Hayman admissibility is easily checked to be satisfied by the EGFs of set partitions and

assemblies of filaments. There results that exact size sampling has the following costs:

set partitions: O(n3/2
√

log n); assemblies: O(n3/2).

Another result of Hayman states that, under H-admissibility, standard deviation is smaller

than the mean, σ(xn) = o(n) (see Corollary I of [35]), so that exact-size generation by

Boltzmann rejection is necessarily subquadratic (o(n2)).

The usefulness of Hayman’s conditions devolves from a rich set of closure properties:

under mild restrictions, admissible functions are closed under sum (f + g), product (fg),

Boltzmann Samplers for Random Generation 605

and exponentiation (ef). An informally stated consequence is then: For classes whose

generating function is ‘dominated’ by an exponential, i.e., the ‘principal’ construction is of the

set type, approximate-size generation is of linear time complexity and exact-size generation

is of subquadratic complexity. Here are a few more examples.

• Statistical classification theory superimposes a tree structure on objects based on a

similarity measure (e.g., the number of common phenotypes or genes). In this context,

the value of a proposed classification tree may be assessed by comparing it to a

random classification tree (structural properties should be substantially different in

order for the classification to be likely to make sense). Such comparisons in turn

benefit from random generation algorithms, a point originally made by Van Cutsem

and collaborators [63, 64]. For instance, hierarchies are labelled objects determined by

H = Z + P�2(H),

and they correspond to Schröder’s systems of combinatorial theory [9, pp. 223–224].

Hierarchies with a bounded depth of nesting are of interest in this context, and their

EGFs

ez − 1, z + ee
z−1 − ez, ez+e

ez−1−ez − 1 − ee
z−1 + ez, . . . ,

are all admissible, hence amenable to the conclusions of Theorem 6.2.

• Similar comments apply to labelled trees (Cayley trees, T = Z �P(T)) of bounded

height, with the sequence of EGFs starting as

z, zez, zeze
z

, zeze
zez

, . . . ,

and to ‘superpartitions’ obtained by iterating the construction P�1:

ee
z−1 − 1, ee

ez−1−1 − 1, ee
ee
z−1−1−1 − 1,

where, e.g., the number sequence (1, 3, 12, 60, 358, . . .) associated to the second case is

A000258 of Sloane’s EIS [58]. Related structures are of interest in finite model theory;

see [68] for an introduction.

• Admissibility also covers generating functions of the type eP (z), with P a polynomial

with nonnegative coefficients. This includes permutations with sizes of cycles con-

strained to be in a finite set Ω, for instance involutions (I = P(C1,2(Z)), the solutions

of σd = Id in the symmetric group, and permutations whose longest cycle is at most

some fixed value m.

The conditions of Theorem 6.1 are not satisfied by words without long runs (Example 1),

surjections (Example 6, observe the lack of concentration on Figure 1, middle), and

permutations (Example 7), although they fail by little, since the mean and standard

deviation, ν1(x) and σ(x), happen to be of the same order of magnitude. They fail more

dramatically for binary trees (Example 2 and Figure 1, bottom), secondary structures

(Example 3), and non-crossing graphs (Example 4), where the ratio σ(x)/ν1(x) now tends

to infinity, in which case sizes produced by Boltzmann models exhibit a high dispersion.

As discussed in the next two subsections and in Section 7, such situations can, however,

be dealt with.

606 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

6.2. Singularity types and rejection samplers

It is possible to discuss at a fair level of generality cases where rejection sampling is

efficient. The discussion is fundamentally based on the types of singularities that the

generating functions exhibit. This is an otherwise well-researched topic as it is central to

asymptotic enumeration [26, 28, 52].

Definition. A function f(z) analytic at 0 and with a finite radius of analyticity ρ > 0 is

said to be ∆-singular if it satisfies the following two conditions.

(i) The function admits ρ as its only singularity on |z| = ρ and it is continuable in a

domain

∆(r, θ) = {z | z
= ρ, |z| < r, arg(z − ρ)
∈ (−θ, θ)},

for some r > ρ and some θ satisfying 0 < θ < π
2
.

(ii) For z tending to ρ in the ∆ domain, f(z) satisfies a singular expansion of the form

f(z) ∼
z→ρ

P (z) + c0(1 − z/ρ)−α + o((1 − z/ρ)−α), α ∈ R \ {0,−1,−2, . . . },

where P (z) is a polynomial. The quantity −α is called the singular exponent of f(z).

For reasons argued in [27], all the generation functions associated with specifiable

models in the sense of this article are either entire or, else, they have dominant singularities

which are isolated, hence they satisfy continuation conditions similar to (i). Condition (ii)

is also granted in a large number of cases. Here, words without long runs, surjections, and

permutations (Examples 1, 6 and 7) have generating functions with a polar singularity,

corresponding to the singular exponent −1. Trees, secondary structures, and non-crossing

graphs (Examples 2, 3 and 4), which are recursively defined, have singular exponent 1
2
;

see [24, 49] and Section 8 below. Many properties go along with the conditions of

Definition 6.2. Most notably, the counting sequence associated with a generating function

f(z) that is ∆-singular systematically obeys an asymptotic law:

[zn]f(z) ∼ c0

Γ(α)
ρ−nnα−1, (n → ∞). (6.6)

(This results from the singularity analysis theory exposed in [26, 28, 52].)

Returning to random generation, we have the following.

Theorem 6.3. Let C be a combinatorial class such that its generating function is ∆-singular

with an exponent −α < 0. Then the rejection sampler µC(xn; n, ε) corresponding to a fixed

tolerance ε > 0 succeeds in a number of trials whose expected value is asymptotic to the

constant

1

ξα(ε)
, where ξα(ε) =

αα

Γ(α)

∫ ε

−ε
(1 + s)α−1e−α(1+s) ds.

If C is specifiable, approximate-size Boltzmann sampling based on µC(xn; n, ε) has cost that

is O(n); exact-size sampling has cost O(n2).

Boltzmann Samplers for Random Generation 607

Table 7.

ε = 0.2 ε = 0.1 ε = 0.05 ε = 0.01

−α = −2 4.619 9.236 18.47 92.36

−α = − 3
2 5.387 10.80 21.61 108.0

−α = −1 6.750 13.56 27.17 135.9

−α = − 1
2 9.236 20.61 41.30 206.6

Table 7 shows the numerical values of the expected number of trials (1/ξα(ε)) for various

values of the singular exponent −α and tolerance ε. For instance a tolerance of ±10% is

likely to necessitate about 10 trials when −α is −2 or − 3
2
, while this number doubles for

the singular exponent − 1
2
.

Proof. The rejection sampler used with the value x has a probability of success in one

trial equal to

Px(|N/n− 1| � ε),

which is to be estimated. The inverse of this quantity gives the expected number of trials.

Functions that are ∆-singular are closed under differentiation, since, by elementary com-

plex analysis, asymptotic expansions valid in sectors can be subjected to differentiation [54,

p. 9]. Consequently, we have

ν1(x) ∼
x→ρ−

αx/ρ

1 − x/ρ
→ ∞,

which verifies the mean value condition, whereas a similar calculation shows σ(x) to be

of the same order as ν1(x) and the variance condition is not satisfied. The strong form of

coefficient estimates in (6.6) then entails

Px(N = m) ∼ 1

Γ(α)

mα−1|x/ρ|m
(1 − x/ρ)−α , (6.7)

for x → ρ− and m → ∞.

Now tune the rejection sampler at the value x = xn, so that ν1(xn) = n. We have

xn ∼ ρ

(
1 − α

n

)
.

Then, setting m = tν1(xn) = tn transforms the estimate (6.7) into

Px(N = �tn�) ∼ 1

Γ(α)

tα−1etn log(1−(α/n))

α−αn

∼ 1

nΓ(α)
ααtα−1e−αt, (6.8)

uniformly for t in a compact subinterval of (0,∞). This is exactly a local limit law for

Boltzmann sizes in the form of a Gamma distribution [21, p. 47].

608 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

Cumulating the estimates in the formula above, we find (by Euler–MacLaurin summa-

tion)

Pxn (|N/n− 1| � ε) ∼ αα

Γ(α)

∫ ε

−ε
(1 + s)α−1e−α(1+s)ds, (6.9)

which gives the value ξα(ε) of the statement. Linearity for the cumulated size then follows

from the moderate dispersion of sizes induced by the relation σ(x) = Θ(ν1(x)).

The argument adapts when ε is allowed to tend to 0. In this case, as seen directly

from (6.8), the success probability of a single trial is asymptotic to

2
(αe)α

Γ(α)
ε,

with the inverse of this quantity giving the mean number of trials. In particular, if the

target size lies in a fixed-width window around n (ε = O(1/n)), which covers exact-size

random sampling, then a random generation necessitates O(n) trials, corresponding to an

overall complexity that is O(n2) under the real-arithmetic model.

Given the polar singularity involved, Theorem 6.3 applies directly to words without

long runs (Example 1), surjections (Example 6), and cycles in permutations (Example 7).

Example 9 (Mappings with degree constraints). By a mapping of size n is meant here a

function from [1, n] into [1, n]. (Obviously, there are nn of these.) We fix a finite set Ω and

restrict attention to degree-constrained mappings f such that for each x in the domain,

the cardinality of f(−1)(x) lies in Ω. (In the combinatorics literature, such mappings are

surveyed in [2, 25].) For instance, in a finite field, a nonzero element has either 0 or 2

predecessors under the mapping f; x �→ x2, so that (neglecting one exceptional value) a

quadratic function may be regarded as an element of the set of mappings constrained

by Ω = {0, 2}. Mappings are of interest in computational number theory as well as in

cryptography [55], and the eighth Fermat number, F8 = 228

+ 1 was first factored by

Brent and Pollard [5] in 1981 by means of an algorithm that precisely exploits statistical

properties of degree-constrained mappings.

As is well known, a mapping can be represented as a directed graph (Figure 6) where

each vertex has outdegree equal to 1, while, by the degree constraint, indegrees must lie

in Ω. Then the graph of a mapping is made of components, where each component is made

of a unique cycle on which trees are grafted (see, e.g., [4] for this classical construction).

With PΩ representing the set construction with a number of elements constrained to lie

in Ω, the class M of Ω-constrained mappings is

M = P(C(U)), U = Z �PΩ−1(T), T = Z �PΩ(T).

There T is the class of rooted labelled trees with outdegrees in Ω, U is the class of trees

grafted on a cycle, which are such that their root degree must lie in Ω − 1.

Let φ(y) :=
∑

ω∈Ω y
ω/ω!. The EGF of trees, T , is implicitly defined by T = zφ(T)

and we have U = zφ′(T). It was first established by Meir and Moon [49] that the

EGF T (z) has systematically a singularity of the square root type (corresponding to

‘failure’ in the implicit function theorem; see also Lemma 7.2 below). Precisely, we have

Boltzmann Samplers for Random Generation 609

Figure 6. A random ternary map (Ω = {0, 3}) of size 846 produced by Boltzmann sampling

T (z) ∼ τ− c
√

1 − z/ρ as z → ρ, where ρ ≡ ρT is given by ρ = τ/φ(τ) and τ is the positive

root of φ(τ) − τφ′(τ) = 0. Hence the EGF of constrained mappings satisfies, as z → ρ,

M(z) ∼ 1

1 − ρφ′(τ− c
√

1 − z/ρ)
∼ d√

1 − z/ρ
,

for some d > 0. In view of this last expansion, Theorem 6.3 directly applies. Approximate-

size random generation of Ω-constrained mappings is thus achievable in linear time.

6.3. The pointing operator

In this section we further enlarge the types of structures amenable to fast Boltzmann

sampling. As a by-product, we are able to lift the restriction −α < 0 in Theorem 6.3, thus

bringing in its scope trees, secondary structures, and non-crossing graphs (Examples 2, 3

and 4) whose singularity is known [24, 49] to be of the square root type, i.e., α = 1
2
.

Given a combinatorial class C, we define the class

C• = {(γ, i) | γ ∈ C, i ∈ {1, . . . , |γ|}}, equivalently, C•
n � Cn × {1, . . . , n},

of pointed objects. Pointing is for instance studied systematically in [4, Section 2.1]. Objects

in C• may be viewed as standard objects of C with one of the atoms distinguished by the

mark ‘•’. From the definition, we have |C•
n| = n|Cn|, and the GF of the class C• is

C•(z) = z
d

dz
C(z),

regardless of the type of C(x) (ordinary or exponential). Pointing can then be viewed as a

combinatorial lifting of the usual operation of taking derivatives in elementary calculus.

Since any non-pointed object of C gives rise to exactly n pointed objects, random sampling

can be equally well be performed on Cn or C•
n: it suffices to ‘forget’ the pointer in an

object produced by a sampler of C•
n to obtain an object of Cn. (Only the distributions of

sizes under ΓC and ΓC• are different.)

The pointing operator • is related to an operator studied systematically by Greene [32]

(his ‘box’ operation) and it plays a central rôle in the recursive method (where it has

been used under the name of ‘Theta operator’). For Boltzmann sampling, pointing can

610 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

be used in conjunction with the previously defined operators +,× and �,S,P,C in either

the labelled or unlabelled universe.

Lemma 6.4. Let C be a specifiable unlabelled or labelled class (in the sense of Theorem 3.1

or 4.1). Then the class C• is also specifiable, i.e., it admits a specification without the pointing

operator •.

Proof. First, for a finite class C, the class C• is also finite and can be represented (and

sampled) explicitly. Next, the pointing operator admits composition rules with all the

other operators; in the labelled case, we have
(A + B)• = A• + B•, (A �B)• = A• �B + A �B•,

(SA)• = SA �A• �SA, (CA)• = A• �SA,

(PA)• = A• �PA.

(6.10)

In the unlabelled case, the first three rules apply, upon changing the labelled product ‘�’

into the Cartesian product ‘×’. These rules are a combinatorial analogue of the usual

differentiation rules, and have a simple interpretation: e.g., pointing at a sequence ((SA)•)

implies pointing at a component (A•), which breaks the chain and individuates a left

(SA) and a right (SA) subsequence.

Consider now a specification of the class C = F1 in the form of a system,

S = {Fi = Φi(Z; F1, . . . ,Fm), i = 1, . . . , m},

where Fi are auxiliary classes and the Φi are functional terms involving finite classes and

the standard operators (without pointing). Then, we can build a specification of the class

C• in the form of a derived system,

S′ = S ∪ {F•
i = Ψi(Z; F1, . . . ,Fm,F•

1, . . . ,F•
m), i = 1, . . . , m},

where the functionals Ψi do not involve the pointing operator ‘•’: Ψi is obtained from Φ•
i

by application of the derivation rules until the pointing operator is applied to variables

only. In the derived specification, each F•
i is treated as a new variable, thereby leading to

a complete elimination of the pointing operator within constructions.

Our interest in pointing lies in the following two observations.

• If a class C has a generating function C(z) that is ∆-analytic with exponent −α, then

the generating function zC ′(z) of the class C• is also ∆-analytic and has an exponent

−α− 1, which is smaller.

• Uniform sampling in Cn is equivalent to uniform sampling in C•
n. As a consequence,

the sampler µC•(x; n, ε) is a correct approximate-size sampler for the class C (upon

removing the mark).

Let µC•k(x; n, ε) denote the rejection sampler of the class derived from C by k successive

applications of the pointing operator. The last two observations immediately lead to an

extension of Theorem 6.3.

Boltzmann Samplers for Random Generation 611

Theorem 6.5. Let C be a combinatorial class such that its generating function is ∆-singular

with any exponent −α
= {0, 1, . . . }. Let α+ = max(0, �−α�) be the integral positive part of

−α, and let α0 = α+ α+ be its fractional part. Then the rejection sampler µC•α+(xn; n, ε)

corresponding to a fixed tolerance ε > 0 succeeds in a number of trials whose mean is

asymptotic to the constant 1
ξα0 (ε)

. In particular, if C is specifiable, the total cost of the rejection

sampler µC•α+(xn; n, ε) is O(n) on average.

As an illustration of Theorem 6.5, we examine the internal workings of the algorithm

that results for the class B of binary trees, taken here for convenience as

B = Z + (B × B),

so that only external nodes contribute to size. The pointed class satisfies

B• = Z• + (B• × B) + (B × B•),

which completely defines it in terms of B and itself. Accordingly, the Boltzmann samplers

for B and B• are defined by the system of simultaneous equations{
ΓB(x) =

(
Bern(p0) −→ Z | (ΓB(x); ΓB(x))

)
ΓB•(x) =

(
Bern(p1, p2) −→ Z• | (ΓB•(x); ΓB(x)) | (ΓB(x); ΓB•(x))

)
where

p0 =
2x

1 −
√

1 − 4x
, p1 =

√
1 − 4x, p2 =

1

2
− 1

2

√
1 − 4x,

and the notation (3.3) for probabilistic switches is employed.

Random generation of a tree of size near n is achieved by a call to ΓB•(xn). For large n,

the quantity xn is very close to the critical value ρ = 1
4
. Thus, ΓB• generates a terminal

node with a small probability (since p1 ≈ 0), and, with high probability, ΓB•(xn) triggers

a long sequence of calls to ΓB, which itself produces each time a near-critical tree (since

p0 ≈ 1
2
) . In particular, the ‘danger’ of generating small trees is automatically controlled

by ΓB•. Observe that a sampler formally equivalent to ΓB•(x) (by recursion removal)

is then as follows: generate a long random branch (with randomly chosen (1
2
, 1

2
) left or

right branchings) and attach to it a collection of (near) critical trees.7 For instance, here

are the sizes observed in runs of 20 calls, one relative to ΓB equipped with the value

x500 = 0.2499997495, the other to ΓB• equipped with x′
500 = 0.2497497497:

2, 1, 4, 5, 4, 1, 1, 1, 1, 1, 1, 1, 56, 1, 1, 7, 2, 1, 2, 2

831, 6, 76, 120, 1, 532, 15, 7, 11, 68, 99, 45, 1176, 12, 94, 81, 784, 3393, 21, 493.

(See also (3.10) for more extensive data that are similar to the first line.) While the

parameters are chosen in each case such that the resulting object has expected size n = 500,

it is clear that the ΓB• sampler gets a better shot at the target.

7 This construction is akin to the ‘size-biased’ Galton–Watson process exposed in [47]. It is interesting to note

that we are here led naturally to it by a systematic use of formal transformations.

612 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

Pointing also constitutes a valuable optimization whenever structures are driven by a

cycle construction. Define a function f to be logarithmic if it is continuable in a ∆-domain

and satisfies

f(z) = c log
1

1 − z/ρ
+ O(1), z → ρ.

This may somehow be regarded as the limit case α → 0 of a singular exponent −α. As

Table 7 suggests, the efficiency of rejection deteriorates in this case: singularity analysis

may be used to verify that σ(xn) = n
√

log n, so that approximate-size is of superlinear

complexity, namely O(n
√

log n). This problem is readily fixed by pointing. If C = C(A),

then the transformation rules of (6.10) imply that we can alternatively generate a sequence,

which is amenable to straight rejection sampling in linear time, since its generating function

now has a polar-like singularity (with exponent −α = −1). For instance, the class K of

connected mappings is defined by

{K = C(T), T = Z �P(T)}.

The derived specification for K• is then

{K• = T• �S(T), T = Z �P(T), T• = Z• �P(T) + Z �P(T) �T•},

with non-terminals K•,T,T•. The generator ΓK• then achieves linear time sampling

for any fixed tolerance ε > 0. (Figure 6 has been similarly produced by pointing.)

This technique applies to plane trees and variants thereof (Example 2), secondary

structures (Example 3), and non-crossing graphs (Example 4). It also applies to all the

simple families of labelled nonplane trees, T = Z �PΩ(T) defined by restrictions on

node degrees (Example 9). In all these cases, linear-time approximate-size sampling is

granted by Theorem 6.5.

7. Singular Boltzmann samplers

We now discuss two infinite categories of models, where it is possible to place oneself

right at the singularity x = ρC in order to develop rejection samplers from Boltzmann

models. These ‘singular’ rejection generators are freed from the necessity to adapt the

control variable x to the target size n, thus making available implementations that only

need a fixed set of constants to be determined once and for all, this independently of the

value of n.

7.1. Singular samplers for sequences

The first type of singular generator we present is dedicated to the sequence construction:

define a sequence construction to be supercritical if C = S(A) and ρA > ρC (so that

A(ρ−
A) > 1)). Put otherwise, the generating function of components A(x) should cross

the value 1 before it becomes singular. The generating functions of C and A satisfy

C(z) = 1/(1 − A(z)), so that the supercriticality condition implies that A(ρC) = 1 and the

(dominant) singularity ρC of C(x) is a pole. (This notion of supercriticality is borrowed

from Soria [59] who showed it to be determinant in the probabilistic properties of

sequences.)

Boltzmann Samplers for Random Generation 613

Literally taken, the Boltzmann sampler ΓC of Section 3 taken with x = ρC loops forever

and generates objects of infinite size, as it produces a number of components equal to

a ‘Geom(1)’. This prevents us from using the rejection algorithm µC(x; n, ε) with x = ρ.

However, one may adapt the idea by halting execution as soon as the target size has been

attained. Precisely, the early-interrupt singular sequence sampler is defined as follows:

function σC(ρ; n); {Early-interrupt singular sequence sampler}
i := 0; repeat i := i+ 1; γi := ΓA(ρ) until |(γ1, . . . , γi)| > n;

return((γ1, . . . , γi)); end.

The principle of the algorithm can be depicted as ‘leapfrogging’ over n:

The singular early-interrupt sampler determined by the choice x = ρC has excellent prob-

abilistic and complexity-theoretic characteristics summarized in the following statement.

There, we assume without loss of generality that A(z) is aperiodic in the sense that the

quantity d := gcd{n | An
= 0} satisfies d = 1. (If d � 2, a linear change of the size functions

brings us back to the aperiodic case.)

Theorem 7.1. Consider a sequence construction, C = S(A) that is supercritical and aperi-

odic. Then the early-interrupt singular sequence generator, σC(ρC ; n) is a valid sampler for C.

It produces an object of size n+ O(1) in one trial with high probability. For a specifiable

class A, exact-size random generation in C is achievable from this generator by rejection in

expected time O(n).

Proof. Let Xn denote the random variable giving the size of the output of the early-

interrupt singular sequence generator with target size n. The analysis of Xn can be treated

by classical renewal theory [20, Section XIII.10], but we opt for a direct approach based

on generating functions, which integrates smoothly within our general formalism.

The bivariate (probability) generating function with variable z marking the target size

n and variable u marking the size Xn of the actually generated object is

F(z, u) :=
∑
n�1

∑
m�n

P(Xn = m) znum.

A trial decomposes into a sequence of samples of ΓA(ρ) ending by a sample that brings

the total over n, which implies

F(z, u) =
1

1 − A(ρzu)
L[A(ρzu)] =

z

1 − z

A(ρu) − A(ρzu)

1 − A(ρzu)
.

There L[f(z)] := z(f(1) − f(z))/(1 − z) is a linear operator, and, e.g.,

L
[

1

1 − zu

]
= z(u+ u2 + · · ·) + z2(u2 + u3 + · · ·) + z3(u3 + u4 + · · ·) + · · · ,

so that all powers of the form znu
 with
 � n are produced.

614 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

We check that F(z, 1) = z/(1 − z), as it should be. Next the expected size E(Xn) of the

output is given by the coefficient of zn in

∂

∂u
F(z, u)|u=1 =

z

1 − z

ρA′(ρ)

1 − A(ρz)

=
z

(1 − z)2
+
ρA′′(ρ)

2A′(ρ)
· z

1 − z
+ O(1) (z → 1).

This expansion at the polar singularity 1 then yields the expected ‘overshoot’:

E(Xn − n) = [zn]
∂

∂u
F(z, u)|u=1 − n =

ρA′′(ρ)

2A′(ρ)
+ O(1/n).

The second moment of the expected size of the output is similarly obtained via two

successive differentiations. A simple computation then shows the variance of the overshoot

to satisfy

E((Xn − n)2) − E(Xn − n)2 = O(1).

As a matter of fact, the discrete distribution of the overshoot is described by

P(Xn − n = m) = [znun+m]F(z, u) = [znum]
z

u− z

(
1 − 1 − A(ρu)

1 − A(ρz)

)
,

= [zn+m]
1

1 − A(ρz)
−

m−1∑

=0

[zn+
]
1

1 − A(ρz)
[um−
]A(ρu),

=

(
1

ρA′(ρ)
+ O(1/n)

)(
1 −

m−1∑

=0

P(N =
)

)

=
P(N � m)

E(N)
+ O(1/n),

where N denotes the random size of an element of A under the Boltzmann model of

parameter ρ and the two last estimates hold for n → ∞ uniformly in m. The distribution

of N has exponential tails (since ρ ≡ ρC lies strictly within the disc of convergence of

A(z)), and thus the probability of a large overshoot decays geometrically fast. This proves

that exact size n is attained in O(1) trials.

This theorem applies to ‘cores’ of words without long runs (equation (3.9) from

Example 1) and it can be adapted to yield a generator of the full set R. It applies

to surjections (Example 6), for which exact-size generation becomes possible in linear

time. It also provides a global setting for a variety of ad hoc algorithms developed by

Louchard [43, 44, 46] in the context of efficient generation of certain types (directed,

convex) of random planar diagrams known as ‘animals’ and ‘polyominoes’.

Example 10 (Coin fountains (O)). A fountain is formed by starting with a row of coins,

then stacking additional coins on top so that each new coin touches two in the previous

Boltzmann Samplers for Random Generation 615

row, for instance,

These configurations have been enumerated by Odlyzko and Wilf [53] and the counting

sequence starts as (A005169 of [58])

1, 1, 1, 2, 3, 5, 9, 15, 26, 45, 78, 135, 234, 406, 704, . . .

They correspond to Dyck paths (equivalently, Bernoulli excursions) taken according to

area but disregarding length. A decomposition by slices taken at an angle of 2
3
π (on the

example, this gives 1,2,2,2,1,2,3,1,1,2,3,3,4) is then expressed by an infinite specification

(not a priori covered by the standard paradigm):

S(ZS(Z2S(Z3S(· · ·)))).

The OGF is consequently given by the continued fraction (see also [23])

O(z) =
1

1 −
z

1 −
z2

1 −
z3

· · ·

.

At the top level, the singular Boltzmann sampler of Theorem 7.1 applies (write O = S(Q)

and O(z) = (1 − Q(z))−1), this even though O is not finitely specifiable. The root ρ of

Q(z) = 1 is easily found to 50D,

ρ
.

= 0.5761487691427566022978685737199387823547246631189

(see [53] for a transcendental equation satisfied by ρ that involves the q-exponential). The

objects of Q needed are then with high probability of size at most O(log n) (by general

properties of largest components in sequences [31]), so that they can be generated by

whichever subexponential method is convenient (e.g., Maple’s Combstruct) to the effect

that the overall (theoretical and practical) complexity remains O(n).

Precisely, the implementation runs like this. First define a family of finitely specifiable

approximants to Q, as follows:

Q[j] := ZS(Z2S(Z3S(· · · Zj−1S(Zj) · · ·))).

At any given time, the program operates with the class Q[d] of depth d: Q[d](z) and Q(z)

coincide until terms of order ν(d) =
(
d+1

2

)
− 1. The corresponding counts until ν(d) are

assumed to be available, together with the corresponding exact-size samplers for Q[d].

(It proves especially convenient here to appeal to algorithms based on the recursive

method as provided by Combstruct.) In this way, we ‘know’ how to sample from Q until

size ν(d), and from knowledge of the precise value of ρ, we also ‘know’ whenever a Q
component of size larger than ν(d) might be required. (If so, adaptively increase the value

of d and resume execution.) For instance, taking d = 4 (with ν = 9) already suffices in

616 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

92% of the cases to produce an element of ΓQ, while d = 20 (and ν = 104) suffices with

probability about 1 − 2 · 10−19 and is thus likely to cater for all simulation needs one

might ever have.

The resulting implementation constants are reasonably low, so that random generation

in the range of millions becomes feasible thanks to the singular Boltzmann generator.

Here is, for instance, a fragment of a random fountain of size 100,004 (n = 105) obtained

in this way (in only about a trillion clock cycles under Maple):

Dutour and Fédou [19] have previously employed an adaptation of the recursive method,

but it is limited to sizes perhaps in the order of a few hundreds.

Example 11 (Weighted Dyck paths and adsorbing staircase walks). In [48], Martin and

Randall examine (under the name of adsorbing walks) the generation of Dyck paths of

length 2n, where a path receives a weight proportional to λk if it hits the horizontal axis

k times. Their Markov chain-based algorithm has a high polynomial-time complexity,

perhaps as much as O(n10), if not beyond. In contrast, for λ > 2, a Boltzmann sampler

based on supercritical sequences has a complexity that is O(n), this even when exact-size

random generation is required. Precisely, let D be the class of Dyck paths defined by the

grammar D = 1+ ↗ D ↘ D with OGF D(z) = (1 −
√

1 − 4z)/(2z) (with z marking size

taken here to be half-length). One needs to generate objects from the weighted class E :=

S(↗ D ↘), viewed as weighted sequences of ‘arches’ with OGF (1 − zλD(z))−1, where

the coefficient λ takes the proper weighting into account. The sequence is supercritical

as soon as λ > 2, and the singular value of the Boltzmann parameter is found to be at

ρ = (λ− 1)/λ2. Then, the linear time generator is, for λ > 2:

let ρ := λ− 1
λ2 , Dk = 1

k+ 1

(
2k
k

)
;

repeat S := 0; repeat

generate K according to the distribution { λ− 1
λ
Dkρ

k}∞
k=0;

S := S + 2K + 2; draw at random from ↗ DK ↘; {e.g., in linear time}
until S � 2n; until S = 2n.

There, the last successful run should be returned. (The case where λ � 2 is easily treated

in linear time by direct combinatorics.) Figure 7 displays two such paths of length 500

(higher values of λ increase the number of contacts).

The book by van Rensburg [66] describes models similar to the last two (in the

context of critical phenomena in polymers and vesicles), a number of which are amenable

to efficient Boltzmann sampling as they correspond to combinatorial classes that are

specifiable.

Boltzmann Samplers for Random Generation 617

Figure 7. Weighted Dyck paths of length 500 corresponding to λ = 2.1 (left) and λ = 3.1 (right)

7.2. Singular samplers for recursive structures

Recursive structures tend to conform to a universal complex-analytic pattern correspond-

ing to a square root singularity, that is, a singular exponent −α = 1/2. This specific

behaviour may be exploited, resulting in another variety of singular samplers.

In the statement below, a recursive class C is defined as the component C = F1 of a

system of mutually dependent equations,

{F1 = Ψ1(Z; F1, . . . ,Fm), . . . ,Fm = Ψm(Z; F1, . . . ,Fm)},

where the Ψs are any functional term involving any of the basic constructors previously

defined (‘+’, ‘×’ or ‘�’, and S,P,C; pointing is not allowed here). The system is said

to be irreducible if the dependency graph between the Fj is strongly connected (every

non-terminal Fj depends on any other Fk). A class F is said to be of lattice type if the

index set of the nonzero coefficients of F(z) is contained in an arithmetic progression of

some ratio d, with d � 2. (The terminology is borrowed from classical probability theory.)

For instance, the class of ‘complete’ binary trees (F = Z + ZF2) only has objects of

size n = 1, 3, 5, 7, . . . , and is consequently lattice of ratio 2. Any lattice class is equivalent

to a non-lattice one, upon redefining size via a linear transformation.

Lemma 7.2. Consider a combinatorial class C defined by a recursive specification that is

irreducible and non-lattice. Then C(z) has a unique dominant singularity which is algebraic

and of the square root type, that is, with singular exponent −α = 1/2 in the notation of

Section 6.2.

Sketch of proof. The Fj(x) are implicitly defined by an image system F = Ψ[F]. The

Jacobian matrix of Ψ,

J(z) :=

(
∂

∂Fi
Ψj(F)

)
i,j

,

is at least defined near the origin. Let λ(z) be the spectral radius of J(z). For sufficiently

small positive x, the matrix J(x) is Perron–Frobenius by irreducibility. A local analysis

of the Drmota–Lalley–Woods type [16, 41, 70] based on ‘failure’ of the implicit function

theorem in its analytic version establishes the following: each Fj has a singularity at ρ

which is determined as the smallest positive root of det J(x) = 1, and the behaviour

of Fj there is of the square root type in a ∆-domain. The non-lattice assumption implies

618 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

that each Fj satisfies |F(z)| < F(|z|) for any z satisfying 0 < |z| < ρ and z
∈ R>0; by

domination properties of analytic functions with positive coefficients and matrices with

complex entries, this implies that λ(z) < λ(|z|), whence the fact that each Fj is analytic on

|z| = ρ, z
= ρ.

In view of Lemma 7.2, C(z) is ∆-singular with an expansion of the form

C(z) = C(ρ) − c0(1 − z/ρ)1/2 + O(1 − z/ρ), (7.1)

where C(ρ) > 0 and c0 > 0. Singularity analysis then implies that the coefficients are

asymptotically given by

[zn]C(z) =
c0

2
√
π
ρ−nn−3/2(1 + O(n−1)). (7.2)

(For details see [28, Chapter 8] and reference therein.) Consequently, the distribution of

sizes at the critical value x = ρ is of the form P(N = n) ∝ n−3/2, which means that it has

heavy tails. In particular, the expectation of size E(N) is infinite (this fact is well known

in the special case of critical branching processes). Such an observation precludes the use

of straight-rejection Boltzmann sampling.

The idea of an early interruption discussed in the previous section may be adapted and

extended. Consider in all generality a Boltzmann sampler ΓC(x) built according to the

design principles already exposed and let m be a ceiling (i.e., an upper bound) imposed on

the size of the required objects. It is possible to build a modification ΓC<m(x) of ΓC(x)

as follows: maintain a running count, implemented as a global counter K , of the number

of atoms produced at any given time during a partial execution of sampling by ΓC(x);

the counter is regularly incremented as long as K � m each time an atom is produced;

however, as soon as K exceeds m, execution is interrupted and the ‘undefined’ symbol ⊥
is returned. Then, rejection can be piled on top of this sampler, which corresponds to the

scheme:

function νC(x; n, ε); {Ceiled rejection sampler}
repeat γ := ΓC<m(x; n(1 + ε)) until (γ
=⊥) ∧ (|γ| � n(1 − ε));

return(γ); end.

This ceiling technique optimizes any Boltzmann sampler for any value of x. The choice

of the singular value x = ρ makes the algorithm well-behaved for recursive classes.

Theorem 7.3. Let C be a combinatorial class given by a recursive specification that is irre-

ducible and aperiodic. Then the singular ceiled rejection sampler νC(ρ; n, ε), corresponding

to a fixed tolerance ε > 0 succeeds in a number of trials whose expected value grows like

n1/2/ζ(ε) for a positive constant ζ(ε) given by (7.5) below.

Moreover, the cumulated size Tn of the generated and rejected objects during the call of

νC(ρ; n, ε) satisfies, as n → ∞,

E(Tn) ∼ n

ε

(
(1 − ε)1/2 + (1 + ε)1/2

)
(7.3)

Boltzmann Samplers for Random Generation 619

with its variance, σ2 = E(T 2
n) − E(Tn)

2, being

σ2 ∼ E(Tn)
2 +

n2

ε

(
1

3
(1 − ε)3/2 + (1 + ε)3/2

)
. (7.4)

Under these conditions, approximate-size sampling and exact-size sampling are of average-

case complexity respectively O(n) and O(n2).

Proof. Let C(x) be the generating function of C, and let C<n1 (x), C>n2 (x), C [n1 ,n2](x) be

the generating function for the subclass of those objects with size respectively strictly

less than n1 = (1 − ε)n, strictly greater than n2 = (1 + ε)n, and between n1 and n2. The

coefficients of C(z) are known from equation (7.2), so that ΓC(ρ) produces sizes according

to

P(N = k) ∼ c0

2C(ρ)
√
π
k−3/2.

For any ε > 0, the probability that a single trial (one execution of the repeat loop) of the

ceiled rejection sampler νC(ρ; n, ε) succeeds is obtained by summing over all values of k

in the interval [n(1 − ε), n(1 + ε)]. This probability thus decays like ζ(ε)n−1/2, where

ζ(ε) =
c0

5C(ρ)
√
π

((1 + ε)5/2 − (1 − ε)5/2). (7.5)

The expected number of trials follows.

Next, the probability generating function of the interruptive singular Boltzmann sampler

targeted at [n1, n2] is

F(u) =
∑
k

P(Tn = k) uk.

From the decomposition of a call to νC into a sequence of unsuccessful trials (contributing

to Tn) followed by a final successful trial (not contributing to Tn),

F(u) =

(
1 − 1

C(ρ)
(C<n1 (ρu) + C>n2 (ρ)un2)

)−1
C [n1 ,n2](ρ)

C(ρ)
.

(This is the cost in addition to the size of the last successful output, and it is assumed that

the generation of objects with size larger than n2 is interrupted at size n2.) The moments

of the cost are then given by

E(Tn) =
∂

∂u
F(u)|u=1, E(T 2

n) =
(u∂)2

∂u2
F(u)|u=1.

Taking partial derivatives, then specializing to u = 1, and observing that C(x) − C<n1 (x) −
C>n2 (x) = C [n1 ,n2](x), we get

E(Tn) =
ρC ′<n1 (ρ) + n2C

>n2 (ρ)

C [n1 ,n2](ρ)
,

E(T 2
n) =

ρ2C ′′<n1 (ρ) + n2(n2 − 1)C>n2 (ρ)

C [n1 ,n2](ρ)
+ 2 E(Tn)

2 + E(Tn).

620 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

The asymptotic expression for the coefficients of C(x) as given in (7.2) yields, by direct

Euler–MacLaurin summation:

ρC ′<n1 (ρ) ∼ 2c0n
1/2
1 , ρ2C ′′<n1 (ρ) ∼ 2c0

3
n

3/2
1 ,

C>n2 (ρ) ∼ 2c0n
−1/2
2 , C [n1 ,n2](ρ) ∼ 2c0εn

−1/2. (7.6)

The estimates (7.6) combine with the exact expressions of E(Tn) and E(T 2
n) to give the

values stated in (7.3) and (7.4).

For a relative tolerance ε = εn depending on n and tending to zero, the estimates become

E(Tn) ∼ 2n
ε

and σ ∼ E(Tn), which implies the quadratic cost of exact-size sampling.

The singular ceiled rejection sampler thus provides linear-time approximate-size random

generation for all the simple varieties of trees of Example 2, including binary trees, unary-

binary trees, 2–3 trees, and so on, for secondary structures (Example 3), and for non-

crossing graphs (Example 4). In all these cases, exact-size is also achievable in quadratic

time. The method does not require the pointing transformations of Section 6.3 and only

necessitates a fixed number of constants, themselves independent of the target value n.

The technique is akin to the ‘Florentine algorithm’ invented by Barcucci, Pinzani and

Sprugnoli [3] to generate prefixes of Motzkin words and some directed plane animals.

The cost analysis given above is related to Louchard’s work [45].

Note. Let T be a class of trees determined by restricting the degrees of nodes to

lie in a finite set Ω, that is, T = SΩ(T) or T = PΩ(T), depending on whether the

trees are embedded in the plane or not. The corresponding generating function satisfies

T (z) = zφ(T (z)) (see Example 9). For such trees, exact-size sampling can be performed in

time O(n3/2), as we now explain – this improves on the general bound O(n2) of Theorem 7.3.

Indeed, in order to generate a tree of size n, it suffices to generate a
Lukasiewicz code of

length n, with steps in Ω − 1. By Raney’s conjugacy principle [42, Chapter 11] (also known

as Dvoretzky and Motzkin’s cycle lemma), this task itself reduces to generating at random

a lattice path of length n with steps in Ω − 1 and with final altitude −1. When one places

oneself right at the singular value ρ (for T (z)), the latter task is equivalent to sampling

from n independent random variables, having support Ω − 1 and probability generating

function ψ(z) = φ(ρz)/(zφ(ρ)), and conditioned to sum to the value −1. Rejection (on the

final value of the n-sum) achieves this in O(n1/2) trials, by virtue of the local limit theorem

for sums of discrete random variables. In this way, trees from any finitely generated family

of trees can be sampled in total time O(n3/2); equivalently, the technique makes it possible

to sample from any branching process (with finitely supported offspring distribution)

conditioned upon the size of the total progeny being n, this again in time O(n3/2).

8. Conclusions

As shown here, combinatorial decompositions allow for random generation in low

polynomial time. In particular, approximate-size random generation can often be effected

in linear time, using algorithms that suitably exploit the ‘physics’ of random combinatorial

Boltzmann Samplers for Random Generation 621

Table 8. The best strategies of the paper for Boltzmann sampling: rejection (Section 6.1, 6.2),

pointing (Section 6.3), singular sequence (Section 7.1), and singular ceiled (Section 7.2).

Structures Approximate size Exact size

1 runs R O(n) (reject.) O(n) (sing. seq.)

2 trees B O(n) (point.; sing. ceil.) O(n2) (point.; sing. ceil.); O(n3/2)

3 secondary structures W O(n) (point.; sing. ceil.) O(n2) (point.; sing. ceil.)

4 non-crossing graphs X O(n) (point.; sing. ceil.) O(n2) (point.; sing. ceil.)

5 set partitions S O(n) (reject.) O(n3/2
√

log n) (reject.)

6 surjections Q O(n) (reject.) O(n) (sing. seq.)

7 permutations P O(n) (reject.) O(n2) (reject.)

8 filaments F O(n) (reject.) O(n3/2) (reject.)

9 mappings M O(n) (point.) O(n2) (point.; sing. ceil.)

10 fountains O O(n) (reject.) O(n) (sing. seq.)

11 weighted Dyck E O(n) (reject.) O(n) (sing. seq.)

structures. Given the large number of combinatorial decompositions that have been

gathered over the past two decades (see, e.g., [4, 28, 30]) we thus estimate to well

over a hundred the number of classical combinatorial structures that are amenable to

efficient Boltzmann sampling. In contrast with the recursive method [13, 29, 51], memory

requirements are kept to a minimum since only a table of constants of size O(1) is required.

For the reader’s convenience, we gather in Table 8 the best strategies that have been

developed for each of the eleven pilot examples of this article. Naturally, a few of the

basic cases are beaten by special-purpose combinatorial generators – this happens for

permutations (P), binary trees (B), or mappings (M) and Cayley trees (T), where the

counting sequences admit of a product form and specific bijections may be exploited to

achieve exact-size sampling in linear time [51]. In such cases, however, the same complexity

estimates continue to hold when Boltzmann sampling is applied to a large number of

related classes, whereas dedicated combinatorial generators based on bijections generally

break down. For instance, Boltzmann algorithms for permutations can be adapted to

obtain derangements (P(C�2(Z)) and the like) and involutions (P(C1,2(Z)) and related

structures); the branching process algorithms deduced automatically for binary trees

apply equally well to unbalanced 2–3 trees (U = Z + U2 + U3) and to other families of

trees defined by degree restrictions; random mappings satisfying various constraints then

become amenable to Boltzmann sampling, and so on.

This article has shown that combinatorial samplers can be compiled automatically from

formal specifications (‘grammars’) describing combinatorial models. The process is an

efficient one as the program size of the sampler is derived by a single-pass linear-time

formal transformation. A general-purpose implementation would most conveniently be

developed on top of Maple’s Combstruct, as many functionalities are already available

there. As matter of fact, a prototype has been developed by Marni Mishna; together with

other experiments, it confirms the ease of implementation and the practical efficiency of

Boltzmann sampling for the random generation of many different types of combinatorial

structures.

622 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

In forthcoming works, we propose to demonstrate the versatility of Boltzmann sampling

for a number of simulation needs including:

• the extension of the set of allowed constructions, e.g., in the unlabelled case, sampling

for multisets (M, repetitions are allowed), powersets (P, no repetitions allowed), cycles

(C), and the substitution operation;

• multivariate extensions, meaning the sampling of configurations according to a

constraint on size and on an auxiliary parameter (e.g., words of some length containing

an unusual number of occurrences of a designated pattern);

• the realization of Boltzmann samplers using only discrete sources of randomness and

basic logical operations in the style of Knuth and Yao’s fundamental study [40] –

nearly linear Boolean (bit level) complexity still seems to be achievable in many cases

of practical interest.

Acknowledgements

The authors are grateful to Alain Denise, Bernard Ycart, Brigitte Vallée, Jim Fill,

Marni Mishna, Paul Zimmermann, and Philippe Robert for bibliographical suggestions,

programming ideas, as well as encouragements and architectural remarks. This work

was supported in part by the Alcom–FT Project IST-1999-14186 and by the IHRP

Programme (grant HPRN-CT-2001-00272: Algebraic Combinatorics in Europe) of the

European Union. Merci also to Gilles Kahn and INRIA for backing the Alcophys

Action under which some of these ideas were hatched and to CNRS (Gdr Alp and

Department Stic) for its sustained support of the French Group Aléa. Grazie mille finally

to Alberto del Lungo and Renzo Pinzani for kindly offering an occasion to expose an

early form of these ideas at the Gascom meeting, Siena, November 2001.

References

[1] Aho, A. V. and Corasick, M. J. (1975) Efficient string matching: An aid to bibliographic search.

Comm. Assoc. Comput. Mach. 18 333–340.

[2] Arney, J. and Bender, E. D. (1982) Random mappings with constraints on coalescence and

number of origins. Pacific J Math. 103 269–294.

[3] Barcucci, E., Pinzani, R. and Sprugnoli, R. (1994) The random generation of directed animals.

Theoret. Comput. Sci. 127 333–350.

[4] Bergeron, F., Labelle, G. and Leroux, P. (1998) Combinatorial Species and Tree-Like Structures,

Cambridge University Press, Cambridge.

[5] Brent, R. P. and Pollard, J. M. (1981) Factorization of the eighth Fermat number. Math. Comp.

36 627–630.

[6] Burris, S. N. (2001) Number Theoretic Density and Logical Limit Laws, Vol. 86 of Mathematical

Surveys and Monographs, AMS, Providence, RI.

[7] Compton, K. J. (1987) A logical approach to asymptotic combinatorics I: First order properties.

Adv. Math. 65 65–96.

[8] Compton, K. J. (1987) A logical approach to asymptotic combinatorics II: Second–order

properties. J. Combin. Theory Ser. A 50 110–131.

[9] Comtet, L. (1974) Advanced Combinatorics, Reidel, Dordrecht.

[10] Dembo, A., Vershik, A. and Zeitouni, O. (2000) Large deviations for integer partitions. Markov

Process. Related Fields 6 147–179.

[11] den Hollander, F. (2000) Large Deviations, AMS, Providence, RI.

Boltzmann Samplers for Random Generation 623

[12] Denise, A., Dutour, I. and Zimmermann, P. (1998) CS: a MuPAD package for counting and

randomly generating combinatorial structures. In Proc. 10th Conference on Formal Power Series

and Algebraic Combinatorics, FPSAC’98 , pp. 195–204.

[13] Denise, A. and Zimmermann, P. (1999) Uniform random generation of decomposable structures

using floating-point arithmetic. Theoret. Comput. Sci. 218 233–248.

[14] Devroye, L. (1986) Non-Uniform Random Variate Generation, Springer.

[15] Domb, C. and Barrett, A. (1974) Enumeration of ladder graphs. Discrete Math. 9 341–358.

[16] Drmota, M. (1997) Systems of functional equations. Random Struct. Alg. 10 103–124.

[17] Duchon, P. (2001) Relaxed random generation of trees. Algorithms Seminar, 05-11-01.

[18] Duchon, P., Flajolet, P., Louchard, G. and Schaeffer, G. (2002) Random sampling from

Boltzmann principles. In Automata, Languages, and Programming, 2002 (P. Widmayer et al.,

eds), Vol. 2380 of Lecture Notes in Computer Science, Springer, pp. 501–513.

[19] Dutour, I. and Fédou, J.-M. (1998) Object grammars and random generation. Discrete Math.

Theor. Comput. Sci. 2 47–61.

[20] Feller, W. (1968) An Introduction to Probability Theory and its Applications, 3rd edn, Vol. 1,

Wiley.

[21] Feller, W. (1971) An Introduction to Probability Theory and its Applications, Vol. 2, Wiley.

[22] Fill, J. A. and Huber, M. (2000) The randomness recycler: A new technique for perfect sampling.

In Proc. 41th Annual IEEE Symposium on Foundations of Computer Science, 2000, pp. 503–

511.

[23] Flajolet, P. (1980) Combinatorial aspects of continued fractions. Discrete Math. 32 125–161.

[24] Flajolet, P. and Noy, M. (1999) Analytic combinatorics of non-crossing configurations. Discrete

Math. (selected papers in honour of Henry W. Gould) 204 203–229.

[25] Flajolet, P. and Odlyzko, A. M. (1990) Random mapping statistics. In Advances in Cryptology:

Proc. Eurocrypt’89, Houtalen, Belgium, April 1989 (J.-J. Quisquater and J. Vandewalle, eds),

Vol. 434 of Lecture Notes in Computer Science, Springer, pp. 329–354. .

[26] Flajolet, P. and Odlyzko, A. M. (1990) Singularity analysis of generating functions. SIAM J.

Algebraic Discrete Methods 3 216–240.

[27] Flajolet, P., Salvy, B. and Zimmermann, P. (1991) Automatic average-case analysis of algorithms.

Theoret. Comput. Sci. 79 37–109.

[28] Flajolet, P. and Sedgewick, R. (2001) Analytic Combinatorics, book in preparation: Individual

chapters are available as INRIA Research Reports 1888, 2026, 2376, 2956, 3162, 4103 and

electronically from http://algo.inria.fr/flajolet/Publications/books.html.

[29] Flajolet, P., Zimmerman, P. and Van Cutsem, B. (1994) A calculus for the random generation

of labelled combinatorial structures. Theoret. Comput. Sci. 132 1–35.

[30] Goulden, I. P. and Jackson, D. M. (1983) Combinatorial Enumeration, Wiley, New York.

[31] Gourdon, X. (1998) Largest component in random combinatorial structures. Discrete Math.

180 185–209.

[32] Greene, D. H. (1983) Labelled formal languages and their uses. PhD thesis, Stanford University.

Available as Report STAN-CS-83-982.

[33] Greene, D. H. and Knuth, D. E. (1981) Mathematics for the Analysis of Algorithms, Birkhäuser,

Boston.

[34] Harary, F. and Palmer, E. M. (1973) Graphical Enumeration, Academic Press.

[35] Hayman, W. K. (1956) A generalization of Stirling’s formula. J. Reine Angew. Math. 196 67–95.

[36] Howell, J. A., Smith, T. F. and Waterman, M. S. (1980) Computation of generating functions

for biological molecules. SIAM J. Appl. Math. 39 119–133.

[37] Huang, K. (1987) Statistical Mechanics, 2nd edn, Wiley.

[38] Johnson, N. L. and Kotz, S. (1969) Discrete Distributions, Wiley.

[39] Knuth, D. E. (1998) The Art of Computer Programming, 3rd edn, Vol. 2, Seminumerical

Algorithms, Addison-Wesley.

624 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

[40] Knuth, D. E. and Yao, A. C. (1976) The complexity of nonuniform random number generation.

In Algorithms and Complexity: Proc. Sympos., Carnegie-Mellon Univ., Pittsburgh, PA, 1976 ,

Academic Press, New York, pp. 357–428.

[41] Lalley, S. P. (1993) Finite range random walk on free groups and homogeneous trees. Ann.

Probab. 21 2087–2130.

[42] Lothaire, M. (1983) Combinatorics on Words, Vol. 17 of Encyclopedia of Mathematics and its

Applications, Addison-Wesley.

[43] Louchard, G. (1996) Probabilistic analysis of some (un)directed animals. Theoret. Comput. Sci.

159 65–79.

[44] Louchard, G. (1997) Probabilistic analysis of column-convex and directed diagonally-convex

animals. Random Struct. Alg. 11 151–178.

[45] Louchard, G. (1999) Asymptotic properties of some underdiagonal walks generation algorithms.

Theoret. Comput. Sci. 218 249–262.

[46] Louchard, G. (1999) Probabilistic analysis of column-convex and directed diagonally-convex

animals II: Trajectories and shapes. Random Struct. Alg. 15 1–23.

[47] Lyons, R., Pemantle, R. and Peres, Y. (1995) Conceptual proofs of L logL criteria for mean

behavior of branching processes. Ann. Probab. 23 1125–1138.

[48] Martin, R. and Randall, D. (2000) Sampling adsorbing staircase walks using a new Markov

chain decomposition method. In Proc. 41st Annual IEEE Symposium on Foundations of Computer

Science, FOCS 2000 , pp. 492–502.

[49] Meir, A. and Moon, J. W. (1978) On the altitude of nodes in random trees. Canad. J. Math. 30

997–1015.

[50] Milenkovic, O. and Compton, K. J. (2002) Probabilistic transforms for combinatorial urn

models. Combin. Probab. Comput. 13 XX–XX.

[51] Nijenhuis, A. and Wilf, H. S. (1978) Combinatorial Algorithms, 2nd edn, Academic Press.

[52] Odlyzko, A. M. (1995) Asymptotic enumeration methods. In Handbook of Combinatorics

(R. Graham, M. Grötschel and L. Lovász, eds), Vol. II, Elsevier, Amsterdam, pp. 1063–1229.

[53] Odlyzko, A. M. and Wilf, H. S. (1988) The editor’s corner: n coins in a fountain. Amer. Math.

Monthly 95 840–843.

[54] Olver, F. W. J. (1974) Asymptotics and Special Functions, Academic Press.

[55] Quisquater, J.-J. and Delescaille, J.-P. (1990) How easy is collision search? Application to

DES. In Proc. EUROCRYPT’89 , Vol. 434 of Lecture Notes in Computer Science, Springer,

pp. 429–434.

[56] Schaeffer, G. (1999) Random sampling of large planar maps and convex polyhedra. In Proc.

31st Annual ACM Symposium on Theory of Computing, STOC’99; Atlanta, Georgia, May 1999,

ACM press, pp. 760–769.

[57] Shepp, L. A. and Lloyd, S. P. (1966) Ordered cycle lengths in a random permutation. Trans.

Amer. Math. Soc. 121 340–357.

[58] Sloane, N. J. A. (2000) The On-Line Encyclopedia of Integer Sequences. Published electronically

at http://www.research.att.com/~njas/sequences/.

[59] Soria-Cousineau, M. (1990) Méthodes d’analyse pour les constructions combinatoires et les

algorithmes. Doctorat ès sciences, Université de Paris–Sud, Orsay.

[60] Stanley, R. P. (1986) Enumerative Combinatorics, Vol. I, Wadsworth and Brooks/Cole.

[61] Stanley, R. P. (1998) Enumerative Combinatorics, Vol. II, Cambridge University Press.

[62] Stein, P. R. and Waterman, M. S. (1979) On some new sequences generalizing the Catalan and

Motzkin numbers. Discrete Math. 26 261–272.

[63] Van Cutsem, B. (1996) Combinatorial structures and structures for classification. Comput.

Statist. Data Anal. 23 169–188.

[64] Van Cutsem, B. and Ycart, B. (1998) Indexed dendrograms on random dissimilarities.

J. Classification 15 93–127.

[65] van der Hoeven, J. (2001) Relax, but don’t be too lazy. J. Symbolic Comput. 34 479–542.

Boltzmann Samplers for Random Generation 625

[66] van Rensburg, E. J. J. (2000) The Statistical Mechanics of Interacting Walks, Polygons, Animals

and Vesicles, Oxford University Press, Oxford.

[67] Vershik, A. M. (1996) Statistical mechanics of combinatorial partitions, and their limit

configurations. Funktsional’ny̆ı Analiz i ego Prilozheniya 30 19–39.

[68] Weiermann, A. (2002) Zero-one law characterizations of ε0. In Mathematics and Computer

Science II: Algorithms, Trees, Combinatorics and Probabilities, Basel, 2002 (B. Chauvin,

P. Flajolet, D. Gardy and A. Mokkadem, eds), Trends in Mathematics, Birkhäuser, pp. 527–539.

[69] Wilf, H. S. (1990) Generatingfunctionology, Academic Press.

[70] Woods, A. R. (1997) Coloring rules for finite trees, and probabilities of monadic second order

sentences. Random Struct. Alg. 10 453–485.

[71] Zimmermann, P. (2001) Arithmétique en précision arbitraire. Research Report 4272, Institut

National de Recherche en Informatique et en Automatique.

